From a959efa0b62167b1b73bc86cf82e0d0d48da6dd3 Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Mon, 4 Nov 2024 11:04:59 -0600 Subject: [PATCH] wip --- src/Misc/FiveLemmaGroup.agda | 100 ++++++++++++++++++++++------------- 1 file changed, 63 insertions(+), 37 deletions(-) diff --git a/src/Misc/FiveLemmaGroup.agda b/src/Misc/FiveLemmaGroup.agda index 3f526bb..e74b3b7 100644 --- a/src/Misc/FiveLemmaGroup.agda +++ b/src/Misc/FiveLemmaGroup.agda @@ -2,19 +2,26 @@ module Misc.FiveLemmaGroup where -open import Cubical.Foundations.Prelude +open import Cubical.Algebra.Group.Base +open import Cubical.Algebra.Group.GroupPath +open import Cubical.Algebra.Group.Instances.Unit +open import Cubical.Algebra.Group.MorphismProperties +open import Cubical.Algebra.Group.Morphisms +open import Cubical.Algebra.Group.Properties +open import Cubical.Data.Unit open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism +open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure -open import Cubical.Data.Unit -open import Cubical.Algebra.Group.Base -open import Cubical.Algebra.Group.Morphisms -open import Cubical.Algebra.Group.MorphismProperties -open import Cubical.Algebra.Group.GroupPath -open import Cubical.Algebra.Group.Properties -open import Cubical.Algebra.Group.Instances.Unit -open import Cubical.HITs.PropositionalTruncation.Properties renaming (rec to propTruncRec) +open import Cubical.HITs.PropositionalTruncation.Base +open import Cubical.HITs.PropositionalTruncation.Properties + renaming (rec to propTruncRec ; map to propTruncMap ; rec2 to propTruncRec2 ; map2 to propTruncMap2) +open import Cubical.HITs.Pushout.Base +open import Cubical.HITs.Pushout + +open BijectionIso +open GroupStr private variable @@ -25,38 +32,57 @@ isExact f g = Ker g ≃ Im f module _ (A B C D E A' B' C' D' E' : Group ℓ) - (f : GroupHom A B) - (g : GroupHom B C) - (h : GroupHom C D) - (j : GroupHom D E) - (l : GroupHom A A') - (m : BijectionIso B B') - (n : GroupHom C C') - (p : BijectionIso D D') - (q : GroupHom E E') - (r : GroupHom A' B') - (s : GroupHom B' C') - (t : GroupHom C' D') - (u : GroupHom D' E') - (fg : isExact f g) - (gh : isExact g h) - (hj : isExact h j) - (rs : isExact r s) - (st : isExact s t) - (tu : isExact t u) + (f : GroupHom A B) (g : GroupHom B C) (h : GroupHom C D) (j : GroupHom D E) + (l : GroupHom A A') (m : BijectionIso B B') (n : GroupHom C C') (p : BijectionIso D D') (q : GroupHom E E') + (r : GroupHom A' B') (s : GroupHom B' C') (t : GroupHom C' D') (u : GroupHom D' E') + (fg : isExact f g) (gh : isExact g h) (hj : isExact h j) + (rs : isExact r s) (st : isExact s t) (tu : isExact t u) (lEpi : isSurjective l) - (q : isMono q) + (qMono : isMono q) + (sq1 : (a : fst A) → r .fst (l .fst a) ≡ m .fun .fst (f .fst a)) + (sq2 : (b : fst B) → s .fst (m .fun .fst b) ≡ n .fst (g .fst b)) + (sq3 : (c : fst C) → t .fst (n .fst c) ≡ p .fun .fst (h .fst c)) + (sq4 : (d : fst D) → u .fst (p .fun .fst d) ≡ q .fst (j .fst d)) where - open BijectionIso sur : isSurjective n + -- Let c′ be an element of C′. sur c' = - let pSurj = p .surj in - let t[c'] = t .fst c' in - let step1 = pSurj t[c'] in - let d-thing = snd D in - let d-is-group = isPropIsGroup {! !} {! !} {! !} in - let step2 = propTruncRec {! !} (λ x → fst x) step1 in + let + d' : fst D' + d' = t .fst c' + + -- Since p is surjective, there exists an element d in D with p(d) = t(c′). + d : ∥ ⟨ D ⟩ ∥₁ + d = propTruncMap fst (p .surj d') + + -- By commutativity of the diagram, u(p(d)) = q(j(d)). + u[p[d]] : ∥ ⟨ E' ⟩ ∥₁ + u[p[d]] = propTruncMap (λ d → u .fst (p .fun .fst d)) d + + q[j[d]] : ∥ ⟨ E' ⟩ ∥₁ + q[j[d]] = propTruncMap2 (λ e' d → subst (λ _ → ⟨ E' ⟩) (sq4 d) e') u[p[d]] d + + j[d] = ∥ ⟨ E ⟩ ∥₁ + j[d] = propTruncMap (λ d → j .fst d) d + + -- Since im t = ker u by exactness, 0 = u(t(c′)) = u(p(d)) = q(j(d)). + u[t[c']] : ⟨ E' ⟩ + u[t[c']] = u .fst (t .fst c') + + d'-ker-u : Ker u + d'-ker-u = invIsEq (tu .snd) (d' , ∣ (c' , refl) ∣₁) + + u[t[c']]≡0 : u[t[c']] ≡ E' .snd .1g + u[t[c']]≡0 = {! d'-ker-u .snd !} + in + + -- let pSurj = p .surj in + -- let t[c'] = t .fst c' in + -- let step1 = pSurj t[c'] in + -- let d-thing = snd D in + -- let d-is-group = isPropIsGroup {! !} {! !} {! !} in + -- let step2 = propTruncRec {! !} (λ x → fst x) step1 in {! !} mono : isMono n @@ -66,4 +92,4 @@ module _ lemma = gg , {! !} , {! !} where gg : C' .fst → C .fst gg c' = {! !} - \ No newline at end of file + \ No newline at end of file