auto gitdoc commit
This commit is contained in:
parent
4570b38382
commit
a96dd16303
2 changed files with 52 additions and 55 deletions
|
@ -243,7 +243,7 @@ qinv-to-isequiv q = record
|
|||
{ g = qinv.g q
|
||||
; g-id = qinv.α q
|
||||
; h = qinv.g q
|
||||
; h-id = {! qinv.β q !}
|
||||
; h-id = qinv.β q
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -308,44 +308,44 @@ postulate
|
|||
### Lemma 2.10.1
|
||||
|
||||
```
|
||||
idToEquiv : {A B : Set}
|
||||
→ (A ≡ B)
|
||||
→ A ≃ B
|
||||
idToEquiv {A} {B} p = func , equiv
|
||||
where
|
||||
func : A → B
|
||||
func a = transport id p a
|
||||
-- idToEquiv : {A B : Set}
|
||||
-- → (A ≡ B)
|
||||
-- → A ≃ B
|
||||
-- idToEquiv {A} {B} p = func , equiv
|
||||
-- where
|
||||
-- func : A → B
|
||||
-- func a = transport id p a
|
||||
|
||||
func-inv : B → A
|
||||
func-inv b = transport id (sym p) b
|
||||
-- func-inv : B → A
|
||||
-- func-inv b = transport id (sym p) b
|
||||
|
||||
p* : A → B
|
||||
p* = transport id p
|
||||
-- p* : A → B
|
||||
-- p* = transport id p
|
||||
|
||||
wtf3 : A → A
|
||||
wtf3 = J (λ A' B' p' → A → A') (λ A' → {! id !}) A B p
|
||||
-- wtf3 : A → A
|
||||
-- wtf3 = J (λ A' B' p' → A → A') (λ A' → {! id !}) A B p
|
||||
|
||||
wtf3-is-id : wtf3 ∼ id
|
||||
wtf3-is-id x = {! !}
|
||||
-- wtf3-is-id : wtf3 ∼ id
|
||||
-- wtf3-is-id x = {! !}
|
||||
|
||||
wtf3-qinv : qinv wtf3
|
||||
wtf3-qinv = record
|
||||
{ g = wtf3
|
||||
; α = λ x → {! !}
|
||||
; β = λ x → {! !}
|
||||
}
|
||||
-- wtf3-qinv : qinv wtf3
|
||||
-- wtf3-qinv = record
|
||||
-- { g = wtf3
|
||||
-- ; α = λ x → {! !}
|
||||
-- ; β = λ x → {! !}
|
||||
-- }
|
||||
|
||||
-- homotopy : (func ∘ func-inv) ∼ id
|
||||
-- homotopy x =
|
||||
-- let
|
||||
-- in {! !}
|
||||
-- -- homotopy : (func ∘ func-inv) ∼ id
|
||||
-- -- homotopy x =
|
||||
-- -- let
|
||||
-- -- in {! !}
|
||||
|
||||
equiv = record
|
||||
{ g = func-inv
|
||||
; g-id = {! !}
|
||||
; h = func-inv
|
||||
; h-id = {! !}
|
||||
}
|
||||
-- equiv = record
|
||||
-- { g = func-inv
|
||||
-- ; g-id = {! !}
|
||||
-- ; h = func-inv
|
||||
-- ; h-id = {! !}
|
||||
-- }
|
||||
```
|
||||
|
||||
### Axiom 2.10.3 (Univalence)
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
```
|
||||
module HottBook.Chapter3 where
|
||||
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
open import Data.Sum
|
||||
open import Data.Empty
|
||||
open import HottBook.Chapter1
|
||||
|
||||
```
|
||||
|
@ -13,7 +10,7 @@ open import HottBook.Chapter1
|
|||
### Definition 3.1.1
|
||||
|
||||
```
|
||||
isSet : (A : Type) → Type
|
||||
isSet : (A : Set) → Set
|
||||
isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
|
||||
```
|
||||
|
||||
|
@ -26,22 +23,22 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
|
|||
#### i. Decidability of types
|
||||
|
||||
```
|
||||
decidable : (A : Type) → Type
|
||||
decidable A = A ⊎ ¬ A
|
||||
-- decidable : (A : Set) → Set
|
||||
-- decidable A = A ⊎ ¬ A
|
||||
```
|
||||
|
||||
#### ii. Decidability of type families
|
||||
|
||||
```
|
||||
dep-decidable : {A : Type} → (B : A → Type) → Type
|
||||
dep-decidable {A} B = (a : A) → (B a ⊎ ¬ B a)
|
||||
-- dep-decidable : {A : Set} → (B : A → Set) → Set
|
||||
-- dep-decidable {A} B = (a : A) → (B a ⊎ ¬ B a)
|
||||
```
|
||||
|
||||
#### iii. Decidable equality
|
||||
|
||||
```
|
||||
decidable-equality : (A : Type) → Type
|
||||
decidable-equality A = (a b : A) → (a ≡ b) ⊎ ¬ (a ≡ b)
|
||||
-- decidable-equality : (A : Set) → Set
|
||||
-- decidable-equality A = (a b : A) → (a ≡ b) ⊎ ¬ (a ≡ b)
|
||||
```
|
||||
|
||||
So I think the interesting property about this is that normally a function f
|
||||
|
@ -61,20 +58,20 @@ paths for a ≡ b.
|
|||
> any type with decidable equality is a set.
|
||||
|
||||
```
|
||||
decidable-equality-is-set : (A : Type) → decidable-equality A → isSet A
|
||||
decidable-equality-is-set A f x y p q =
|
||||
let
|
||||
res = f x y
|
||||
-- decidable-equality-is-set : (A : Set) → decidable-equality A → isSet A
|
||||
-- decidable-equality-is-set A f x y p q =
|
||||
-- let
|
||||
-- res = f x y
|
||||
|
||||
-- We can eliminate the bottom case because if p and q exist, it must be inj₁
|
||||
center : x ≡ y
|
||||
center = [ (λ p′ → p′) , (λ p′ → ⊥-elim (p′ _)) ] (f x y)
|
||||
-- -- We can eliminate the bottom case because if p and q exist, it must be inj₁
|
||||
-- center : x ≡ y
|
||||
-- center = [ (λ p′ → p′) , (λ p′ → ⊥-elim (p′ _)) ] (f x y)
|
||||
|
||||
-- What i want is: given any path x ≡ y, prove that it equals this inj₁ (res f x y)
|
||||
guarantee : (p′ : x ≡ y) → center ≡ p′
|
||||
guarantee p′ = J (λ the what → the ≡ p′) ? ?
|
||||
-- -- What i want is: given any path x ≡ y, prove that it equals this inj₁ (res f x y)
|
||||
-- guarantee : (p′ : x ≡ y) → center ≡ p′
|
||||
-- guarantee p′ = J (λ the what → the ≡ p′) ? ?
|
||||
|
||||
info = ?
|
||||
in
|
||||
J (λ the what → p ≡ ?) refl ?
|
||||
-- info = ?
|
||||
-- in
|
||||
-- J (λ the what → p ≡ ?) refl ?
|
||||
```
|
||||
|
|
Loading…
Reference in a new issue