auto gitdoc commit

This commit is contained in:
Michael Zhang 2024-04-22 01:44:06 +00:00
parent b99ce50aac
commit abde273e80
2 changed files with 16 additions and 17 deletions

View file

@ -1,8 +1,8 @@
cubical
type-theory
===
This repository tracks my exploration into cubical type theory, including my
progress into research for my master's degree.
This repository tracks my exploration into HoTT and cubical type theory,
including my progress into research for my master's degree.
Links:

View file

@ -87,26 +87,25 @@ apd {l₁} {l₂} {A} {P} {x} {y} f p =
TODO
```
transportconst : {l₁ l₂ : Level} {A : Set l₁} {x y : A} (B : Set l₂) → (p : x ≡ y) → (b : B)
transportconst : {l₁ l₂ : Level} {A : Set l₁} {x y : A}
→ (B : Set l₂)
→ (p : x ≡ y)
→ (b : B)
→ transport (λ _ → B) p b ≡ b
transportconst {l₁} {l₂} {A} {x} B p b =
let
D : (x y : A) → (p : x ≡ y) → Set l₂
D x y p = transport (λ _ → B) p b ≡ b
d : (x : A) → D x x refl
d x = refl
in
J (λ x p → transport (λ _ → B) p b ≡ b) p (d x)
transportconst {l₁} {l₂} {A} {x} {y} B p b =
J (λ x y p → transport (λ _ → B) p b ≡ b) (λ x → refl) x y p
```
### Lemma 2.3.8
```
-- lemma238 : {A B : Set} (f : A → B) {x y : A} (p : x ≡ y)
-- → apd f p ≡ transportconst B p (f x) ∙ ap f p
-- lemma238 {A} {B} f {x} p =
-- J (λ y p → apd f p ≡ transportconst B p (f x) ∙ ap f p) p refl
lemma238 : {l : Level} {A B : Set l}
→ (f : A → B)
→ {x y : A}
→ (p : x ≡ y)
→ apd f p ≡ transportconst B p (f x) ∙ ap f p
lemma238 {l} {A} {B} f {x} {y} p =
J (λ x y p → apd f p ≡ transportconst B p (f x) ∙ ap f p) (λ x → refl) x y p
```
### Lemma 2.3.9