auto gitdoc commit
This commit is contained in:
parent
b99ce50aac
commit
abde273e80
2 changed files with 16 additions and 17 deletions
|
@ -1,8 +1,8 @@
|
|||
cubical
|
||||
type-theory
|
||||
===
|
||||
|
||||
This repository tracks my exploration into cubical type theory, including my
|
||||
progress into research for my master's degree.
|
||||
This repository tracks my exploration into HoTT and cubical type theory,
|
||||
including my progress into research for my master's degree.
|
||||
|
||||
Links:
|
||||
|
||||
|
|
|
@ -87,26 +87,25 @@ apd {l₁} {l₂} {A} {P} {x} {y} f p =
|
|||
TODO
|
||||
|
||||
```
|
||||
transportconst : {l₁ l₂ : Level} {A : Set l₁} {x y : A} (B : Set l₂) → (p : x ≡ y) → (b : B)
|
||||
transportconst : {l₁ l₂ : Level} {A : Set l₁} {x y : A}
|
||||
→ (B : Set l₂)
|
||||
→ (p : x ≡ y)
|
||||
→ (b : B)
|
||||
→ transport (λ _ → B) p b ≡ b
|
||||
transportconst {l₁} {l₂} {A} {x} B p b =
|
||||
let
|
||||
D : (x y : A) → (p : x ≡ y) → Set l₂
|
||||
D x y p = transport (λ _ → B) p b ≡ b
|
||||
|
||||
d : (x : A) → D x x refl
|
||||
d x = refl
|
||||
in
|
||||
J (λ x p → transport (λ _ → B) p b ≡ b) p (d x)
|
||||
transportconst {l₁} {l₂} {A} {x} {y} B p b =
|
||||
J (λ x y p → transport (λ _ → B) p b ≡ b) (λ x → refl) x y p
|
||||
```
|
||||
|
||||
### Lemma 2.3.8
|
||||
|
||||
```
|
||||
-- lemma238 : {A B : Set} (f : A → B) {x y : A} (p : x ≡ y)
|
||||
-- → apd f p ≡ transportconst B p (f x) ∙ ap f p
|
||||
-- lemma238 {A} {B} f {x} p =
|
||||
-- J (λ y p → apd f p ≡ transportconst B p (f x) ∙ ap f p) p refl
|
||||
lemma238 : {l : Level} {A B : Set l}
|
||||
→ (f : A → B)
|
||||
→ {x y : A}
|
||||
→ (p : x ≡ y)
|
||||
→ apd f p ≡ transportconst B p (f x) ∙ ap f p
|
||||
lemma238 {l} {A} {B} f {x} {y} p =
|
||||
J (λ x y p → apd f p ≡ transportconst B p (f x) ∙ ap f p) (λ x → refl) x y p
|
||||
```
|
||||
|
||||
### Lemma 2.3.9
|
||||
|
|
Loading…
Reference in a new issue