rest of 2.3
This commit is contained in:
parent
9e1d8d57ba
commit
afb49b5b35
1 changed files with 28 additions and 2 deletions
|
@ -3,8 +3,9 @@ module HottBook.Chapter2 where
|
|||
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
open import Function
|
||||
open import Data.Product
|
||||
open import Data.Product.Properties
|
||||
Type = Set
|
||||
transport = subst
|
||||
_∙_ = trans
|
||||
```
|
||||
|
||||
|
@ -19,7 +20,32 @@ ap f {x} p = J (λ y p → f x ≡ f y) p refl
|
|||
|
||||
## 2.3 Type families are fibrations
|
||||
|
||||
### Lemma 2.3.4 (Dependent Map)
|
||||
### Lemma 2.3.1 (Transport)
|
||||
|
||||
```
|
||||
transport : {A : Type} (P : A → Type) {x y : A} (p : x ≡ y) → P x → P y
|
||||
transport P p = J (λ y r → P y) p
|
||||
```
|
||||
|
||||
### Lemma 2.3.2 (Path lifting property)
|
||||
|
||||
```
|
||||
lift : {A : Type} (P : A → Type) {x y : A} (u : P x) → (p : x ≡ y)
|
||||
→ (x , u) ≡ (y , transport P p u)
|
||||
lift {A} P {x} {y} u p =
|
||||
J (λ the what → (x , u) ≡ (the , transport P what u)) p refl
|
||||
```
|
||||
|
||||
Verifying its property:
|
||||
|
||||
```
|
||||
lift-prop : {A : Type} (P : A → Type) {x y : A} (u : P x) → (p : x ≡ y)
|
||||
→ proj₁ (Σ-≡,≡←≡ (lift P u p)) ≡ p
|
||||
lift-prop P u p =
|
||||
J (λ the what → proj₁ (Σ-≡,≡←≡ (lift P u what)) ≡ what) p refl
|
||||
```
|
||||
|
||||
### Lemma 2.3.4 (Dependent map)
|
||||
|
||||
```
|
||||
apd : {A : Type} {P : A → Type} (f : (x : A) → P x) {x y : A} (p : x ≡ y)
|
||||
|
|
Loading…
Reference in a new issue