lemma 3.11.9
This commit is contained in:
parent
4c9a94414d
commit
b16f3623ad
2 changed files with 55 additions and 9 deletions
|
@ -647,7 +647,7 @@ happly {A} {B} {f} {g} p x = ap (λ h → h x) p
|
|||
|
||||
```
|
||||
postulate
|
||||
funext : {A B : Set l}
|
||||
funext : ∀ {l} {A B : Set l}
|
||||
→ {f g : A → B}
|
||||
→ ((x : A) → f x ≡ g x)
|
||||
→ f ≡ g
|
||||
|
|
|
@ -185,8 +185,9 @@ theorem3∙2∙2 double-neg = conclusion
|
|||
allsame u v x = rec-⊥ (u x)
|
||||
|
||||
postulate
|
||||
allsamef : (u v : ¬ ¬ bool) → u ≡ v
|
||||
|
||||
allsamef : ∀ {l} {bool : Set l} → (u v : ¬ ¬ bool) → u ≡ v
|
||||
-- allsamef {l} {bool} u v = {! !}
|
||||
|
||||
all-dn-u-same : transport (λ A → ¬ ¬ A) (sym p) u ≡ u
|
||||
all-dn-u-same = allsamef (transport (λ A → ¬ ¬ A) (sym p) u) u
|
||||
|
||||
|
@ -324,7 +325,7 @@ lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 ∣_∣ g
|
|||
### Definition 3.11.1
|
||||
|
||||
```
|
||||
isContr : (A : Set) → Set
|
||||
isContr : (A : Set l) → Set l
|
||||
isContr A = Σ A (λ a → (x : A) → a ≡ x)
|
||||
```
|
||||
|
||||
|
@ -332,11 +333,56 @@ isContr A = Σ A (λ a → (x : A) → a ≡ x)
|
|||
|
||||
```
|
||||
lemma3∙11∙8 : (A : Set) → (a : A) → isContr (Σ A (λ x → a ≡ x))
|
||||
lemma3∙11∙8 A a = (a , refl) , λ y → Σ-≡ (Σ.snd y , helper y)
|
||||
lemma3∙11∙8 A a = center , proof
|
||||
where
|
||||
f : (x : A) → Set
|
||||
f x = a ≡ x
|
||||
-- choose center point (a, reflₐ)
|
||||
center = (a , refl)
|
||||
|
||||
helper : (y : Σ A f) → transport f (Σ.snd y) refl ≡ Σ.snd y
|
||||
helper y = {! !}
|
||||
proof : ((x , p) : Σ A (λ x → a ≡ x)) → center ≡ (x , p)
|
||||
proof (x , p) = Σ-≡ (p , lemma2∙11∙2.i p refl ∙ sym (lemma2∙1∙4.i2 p))
|
||||
```
|
||||
|
||||
### Lemma 3.11.9
|
||||
|
||||
```
|
||||
module lemma3∙11∙9 where
|
||||
i : ∀ {l1 l2} {A : Set l1} {P : A → Set l2} → ((x : A) → isContr (P x)) → Σ A P ≃ A
|
||||
i {l1} {l2} {A} {P} eachContr = Σ.fst , qinv-to-isequiv (mkQinv g (λ _ → refl) backward)
|
||||
where
|
||||
g : A → Σ A P
|
||||
g a = a , Σ.fst (eachContr a)
|
||||
|
||||
backward : (g ∘ Σ.fst) ∼ id
|
||||
backward (x , p) =
|
||||
let
|
||||
xContr = eachContr x
|
||||
y : Σ.fst xContr ≡ p
|
||||
y = Σ.snd xContr p
|
||||
in Σ-≡ (refl , y)
|
||||
|
||||
ii : ∀ {l1 l2} {A : Set l1} {P : A → Set l2} → ((a , _) : isContr A) → Σ A P ≃ P a
|
||||
ii {l1} {l2} {A} {P} (a , aContr) = f , qinv-to-isequiv (mkQinv g forward backward)
|
||||
where
|
||||
f : Σ A P → P a
|
||||
f (x , y) = transport P (sym (aContr x)) y
|
||||
|
||||
g : P a → Σ A P
|
||||
g p = a , p
|
||||
|
||||
forward : (p : P a) → transport P (sym (aContr a)) p ≡ p
|
||||
forward p = y (sym (aContr a))
|
||||
where
|
||||
y : (q : a ≡ a) → transport P q p ≡ p
|
||||
y refl = refl
|
||||
|
||||
|
||||
backward : (g ∘ f) ∼ id
|
||||
backward (x , p) =
|
||||
let
|
||||
lol : a ≡ x
|
||||
lol = aContr x
|
||||
in Σ-≡ (lol , y lol)
|
||||
where
|
||||
y : (q : a ≡ x) → transport P q (transport P (sym q) p) ≡ p
|
||||
y refl = refl
|
||||
```
|
Loading…
Reference in a new issue