make it compile again
This commit is contained in:
parent
88afc145cc
commit
bbc3848a8f
5 changed files with 11 additions and 72 deletions
|
@ -8,8 +8,8 @@ title = "Research"
|
|||
[preprocessor.katex]
|
||||
macros = "./macros.txt"
|
||||
|
||||
[preprocessor.graph]
|
||||
command = "bun aux/preprocessGraph.ts"
|
||||
# [preprocessor.graph]
|
||||
# command = "bun aux/preprocessGraph.ts"
|
||||
|
||||
[preprocessor.chapter-zero]
|
||||
levels = [0]
|
||||
|
|
|
@ -22,5 +22,6 @@ I have scaled down some of these materials to eBook size, for easier reading on
|
|||
[[ebook-sized pdf](https://git.mzhang.io/school/type-theory/src/branch/master/resources/MayConcise/ConciseRevised.pdf)]
|
||||
[[original pdf](https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf)]
|
||||
-
|
||||
Cubical Type Theory: a constructive interpretation of the univalence axiom (CCHM) (2015)
|
||||
[[ebook-sized pdf](https://git.mzhang.io/school/type-theory/raw/branch/master/resources/CCHM/main.pdf)]
|
||||
[[original pdf](https://arxiv.org/pdf/1611.02108)]
|
||||
|
|
|
@ -201,20 +201,14 @@ module lemma2∙4∙12 where
|
|||
|
||||
```
|
||||
module axiom2∙10∙3 where
|
||||
Glue : ∀ {l l2} (A : Type l)
|
||||
→ {φ : I}
|
||||
→ (Te : Partial φ (Σ (Type l2) (λ T → T ≃ A)))
|
||||
→ Type l2
|
||||
-- Glue : ∀ {l l2} (A : Type l)
|
||||
-- → {φ : I}
|
||||
-- → (Te : Partial φ (Σ (Type l2) (λ T → T ≃ A)))
|
||||
-- → Type l2
|
||||
|
||||
id-equiv : isequiv id
|
||||
|
||||
ua : ∀ {l} {A B : Type l} → A ≃ B → A ≡ B
|
||||
ua {A = A} {B} eqv i = Glue B λ
|
||||
{ (i = i0) → A , eqv
|
||||
; (i = i1) → B , _ , id-equiv
|
||||
}
|
||||
-- postulate
|
||||
-- ua : {l : Level} {A B : Type l} → (A ≃ B) → (A ≡ B)
|
||||
postulate
|
||||
-- TODO: Provide the definition for this after reading CCHM
|
||||
ua : {l : Level} {A B : Type l} → (A ≃ B) → (A ≡ B)
|
||||
|
||||
-- forward : {l : Level} {A B : Type l} → (eqv : A ≃ B) → (idtoeqv ∘ ua) eqv ≡ eqv
|
||||
-- -- forward eqv = {! !}
|
||||
|
@ -225,7 +219,7 @@ module axiom2∙10∙3 where
|
|||
-- ua-eqv : {l : Level} {A : Type l} {B : Type l} → (A ≃ B) ≃ (A ≡ B)
|
||||
-- ua-eqv = ua , qinv-to-isequiv (mkQinv idtoeqv backward forward)
|
||||
|
||||
open axiom2∙10∙3 hiding (forward; backward)
|
||||
open axiom2∙10∙3
|
||||
```
|
||||
|
||||
### Remark 2.12.6
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
```
|
||||
module HottBook.Chapter7 where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import HottBook.Chapter1
|
||||
open import HottBook.Chapter2
|
||||
open import HottBook.Chapter6
|
||||
```
|
||||
|
||||
## 7.1 Definition of $n$-types
|
||||
|
||||
### Definition 7.1.1
|
||||
|
||||
```
|
||||
is-_-type : ℕ → Set → Set
|
||||
is- zero -type X = 𝟙
|
||||
is- suc n -type X = (x y : X) → is- n -type (x ≡ y)
|
||||
```
|
|
@ -1,38 +0,0 @@
|
|||
```
|
||||
module HottBook.Chapter9 where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import HottBook.Chapter1
|
||||
```
|
||||
|
||||
## 9.1 Categories and precategories
|
||||
|
||||
```
|
||||
record precat {l : Level} (A : Set l) : Set (lsuc l) where
|
||||
field
|
||||
hom : (a b : A) → Set
|
||||
id' : (a : A) → hom a a
|
||||
comp : {a b c : A} → hom a b → hom b c → hom a c
|
||||
lol : (a b : A) → (f : hom a b) → (f ≡ comp f (id' b)) × (f ≡ comp (id' a) f)
|
||||
|
||||
```
|
||||
|
||||
### Definition 9.1.2
|
||||
|
||||
```
|
||||
-- record isIso {l : Level} {A : Set l} {PC : precat A} {a b : A} (f : precat.hom PC a b) : Set (lsuc l) where
|
||||
-- field
|
||||
-- g : precat.hom PC b a
|
||||
-- g-f : precat.comp f g ≡ precat.id' a
|
||||
```
|
||||
|
||||
### Lemma 9.1.4
|
||||
|
||||
```
|
||||
idtoiso : {A : Set}
|
||||
→ (PC : precat A)
|
||||
→ (a b : A)
|
||||
→ a ≡ b
|
||||
→ precat.hom PC a b
|
||||
idtoiso {A} PC a b refl = precat.id' PC a
|
||||
```
|
Loading…
Reference in a new issue