make it compile again

This commit is contained in:
Michael Zhang 2024-06-03 00:20:38 -04:00
parent 88afc145cc
commit bbc3848a8f
5 changed files with 11 additions and 72 deletions

View file

@ -8,8 +8,8 @@ title = "Research"
[preprocessor.katex]
macros = "./macros.txt"
[preprocessor.graph]
command = "bun aux/preprocessGraph.ts"
# [preprocessor.graph]
# command = "bun aux/preprocessGraph.ts"
[preprocessor.chapter-zero]
levels = [0]

View file

@ -22,5 +22,6 @@ I have scaled down some of these materials to eBook size, for easier reading on
[[ebook-sized pdf](https://git.mzhang.io/school/type-theory/src/branch/master/resources/MayConcise/ConciseRevised.pdf)]
[[original pdf](https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf)]
-
Cubical Type Theory: a constructive interpretation of the univalence axiom (CCHM) (2015)
[[ebook-sized pdf](https://git.mzhang.io/school/type-theory/raw/branch/master/resources/CCHM/main.pdf)]
[[original pdf](https://arxiv.org/pdf/1611.02108)]

View file

@ -201,20 +201,14 @@ module lemma2∙4∙12 where
```
module axiom2∙10∙3 where
Glue : ∀ {l l2} (A : Type l)
→ {φ : I}
→ (Te : Partial φ (Σ (Type l2) (λ T → T ≃ A)))
→ Type l2
-- Glue : ∀ {l l2} (A : Type l)
-- → {φ : I}
-- → (Te : Partial φ (Σ (Type l2) (λ T → T ≃ A)))
-- → Type l2
id-equiv : isequiv id
ua : ∀ {l} {A B : Type l} → A ≃ B → A ≡ B
ua {A = A} {B} eqv i = Glue B λ
{ (i = i0) → A , eqv
; (i = i1) → B , _ , id-equiv
}
-- postulate
-- ua : {l : Level} {A B : Type l} → (A ≃ B) → (A ≡ B)
postulate
-- TODO: Provide the definition for this after reading CCHM
ua : {l : Level} {A B : Type l} → (A ≃ B) → (A ≡ B)
-- forward : {l : Level} {A B : Type l} → (eqv : A ≃ B) → (idtoeqv ∘ ua) eqv ≡ eqv
-- -- forward eqv = {! !}
@ -225,7 +219,7 @@ module axiom2∙10∙3 where
-- ua-eqv : {l : Level} {A : Type l} {B : Type l} → (A ≃ B) ≃ (A ≡ B)
-- ua-eqv = ua , qinv-to-isequiv (mkQinv idtoeqv backward forward)
open axiom2∙10∙3 hiding (forward; backward)
open axiom2∙10∙3
```
### Remark 2.12.6

View file

@ -1,18 +0,0 @@
```
module HottBook.Chapter7 where
open import Agda.Primitive
open import HottBook.Chapter1
open import HottBook.Chapter2
open import HottBook.Chapter6
```
## 7.1 Definition of $n$-types
### Definition 7.1.1
```
is-_-type : → Set → Set
is- zero -type X = 𝟙
is- suc n -type X = (x y : X) → is- n -type (x ≡ y)
```

View file

@ -1,38 +0,0 @@
```
module HottBook.Chapter9 where
open import Agda.Primitive
open import HottBook.Chapter1
```
## 9.1 Categories and precategories
```
record precat {l : Level} (A : Set l) : Set (lsuc l) where
field
hom : (a b : A) → Set
id' : (a : A) → hom a a
comp : {a b c : A} → hom a b → hom b c → hom a c
lol : (a b : A) → (f : hom a b) → (f ≡ comp f (id' b)) × (f ≡ comp (id' a) f)
```
### Definition 9.1.2
```
-- record isIso {l : Level} {A : Set l} {PC : precat A} {a b : A} (f : precat.hom PC a b) : Set (lsuc l) where
-- field
-- g : precat.hom PC b a
-- g-f : precat.comp f g ≡ precat.id' a
```
### Lemma 9.1.4
```
idtoiso : {A : Set}
→ (PC : precat A)
→ (a b : A)
→ a ≡ b
→ precat.hom PC a b
idtoiso {A} PC a b refl = precat.id' PC a
```