3.3.4 and 3.3.5
This commit is contained in:
parent
41c18cdd32
commit
c470464a1e
4 changed files with 69 additions and 8 deletions
9
Makefile
9
Makefile
|
@ -2,7 +2,6 @@ GENDIR := html/src/generated
|
|||
AGDA_SOURCES := $(shell find src -not \( -path src/Misc -prune \) \( -name "*.agda" -o -name "*.lagda.md" \) )
|
||||
|
||||
build-to-html:
|
||||
nu scripts/build-table
|
||||
find src \
|
||||
-not \( -path src/Misc -prune \) \
|
||||
\( -name "*.agda" -o -name "*.lagda.md" \) \
|
||||
|
@ -14,7 +13,7 @@ build-to-html:
|
|||
--html-highlight=auto \
|
||||
--no-load-primitives \
|
||||
|| true
|
||||
fd --no-ignore "html$$" $(GENDIR) -x rm
|
||||
# fd --no-ignore "html$$" $(GENDIR) -x rm
|
||||
|
||||
.PHONY: html/src/generated/Progress.md
|
||||
|
||||
|
@ -25,8 +24,8 @@ html/book/Progress.html: html/src/generated/Progress.md
|
|||
pandoc \
|
||||
-f markdown-markdown_in_html_blocks+raw_html \
|
||||
-t html \
|
||||
-i html/src/generated/Progress.md \
|
||||
> html/book/Progress.html
|
||||
-i $^ \
|
||||
> $@
|
||||
|
||||
html/book/progress/index.html: html/book/Progress.html
|
||||
cat html/ProgressHeader.html $^ > $@
|
||||
|
@ -38,7 +37,7 @@ build-book: build-to-html
|
|||
refresh-book: build-to-html
|
||||
mdbook serve html
|
||||
|
||||
deploy: build-book html/book/Progress.html
|
||||
deploy: build-book html/book/progress/index.html
|
||||
rsync -azr html/book/ root@veil:/home/blogDeploy/public/research
|
||||
|
||||
.PHONY: build-book build-to-html deploy
|
||||
|
|
|
@ -83,8 +83,6 @@ let vizChapter = { |n|
|
|||
| each { $in | update column1 { do $viz ($in | where completed == "x" | length) ($in | length) } }
|
||||
| sort-by -n column0
|
||||
|
||||
print ($table2 | table)
|
||||
|
||||
let newColumn1 = { column0: "Ch", column1: (do $vizCh $n $table) }
|
||||
let newColumn2 = { column0: "Chnum", column1: $n }
|
||||
|
||||
|
|
|
@ -784,7 +784,7 @@ open axiom2∙10∙3
|
|||
-- ap f , qinv-to-isequiv eqv
|
||||
```
|
||||
|
||||
### Theorem 2.11.2
|
||||
### Lemma 2.11.2
|
||||
|
||||
```
|
||||
module lemma2∙11∙2 where
|
||||
|
|
|
@ -270,6 +270,47 @@ lemma3∙3∙2 {P} pp x0 =
|
|||
|
||||
{{#include HottBook.Chapter3Lemma333.md:lemma333}}
|
||||
|
||||
### Lemma 3.3.4
|
||||
|
||||
```
|
||||
lemma3∙3∙4 : {A : Set} → isProp A → isSet A
|
||||
lemma3∙3∙4 {A} f x y p q =
|
||||
let
|
||||
g : (y : A) → x ≡ y
|
||||
g y = f x y
|
||||
|
||||
step : (y z : A) → (p : y ≡ z) → transport (λ w → x ≡ w) p (g y) ≡ g z
|
||||
step y z p = apd g p
|
||||
|
||||
step2 : (y z : A) → (p : y ≡ z) → (g y) ∙ p ≡ g z
|
||||
step2 y z p = sym (lemma2∙11∙2.i p (g y)) ∙ step y z p
|
||||
|
||||
step3 : (y z : A) → (p : y ≡ z) → p ≡ sym (g y) ∙ (g z)
|
||||
step3 y z p =
|
||||
lemma2∙1∙4.i2 p
|
||||
∙ ap (λ q → q ∙ p) (sym (lemma2∙1∙4.ii1 (g y)))
|
||||
∙ sym (lemma2∙1∙4.iv (sym (g y)) (g y) p)
|
||||
∙ ap (λ q → sym (g y) ∙ q) (step2 y z p)
|
||||
|
||||
step4 = step3 x y p
|
||||
step5 = step3 x y q
|
||||
in step4 ∙ sym step5
|
||||
```
|
||||
|
||||
### Lemma 3.3.5
|
||||
|
||||
```
|
||||
module lemma3∙3∙5 where
|
||||
open axiom2∙9∙3
|
||||
|
||||
i : {A : Set} → isProp (isProp (A))
|
||||
i f g = funext λ x → funext λ y → (lemma3∙3∙4 f) x y (f x y) (g x y)
|
||||
|
||||
ii : {A : Set} → isProp (isSet (A))
|
||||
ii f g = funext λ x → funext λ y → funext λ p → funext λ q →
|
||||
(lemma3∙1∙8 f) x y p q (f x y p q) (g x y p q)
|
||||
```
|
||||
|
||||
## 3.4 Classical vs. intuitionistic logic
|
||||
|
||||
### Definition 3.4.3
|
||||
|
@ -409,6 +450,18 @@ lemma3∙9∙1 {P} Pprop = lemma3∙3∙3 Pprop prop2 ∣_∣ g
|
|||
admit : x ≡ y
|
||||
```
|
||||
|
||||
### Corollary 3.9.2
|
||||
|
||||
Principle of unique choice
|
||||
|
||||
```
|
||||
-- corollary3∙9∙2 : {A : Set} {P : A → Set}
|
||||
-- → ((x : A) → isProp (P x))
|
||||
-- → ((x : A) → ∥ P x ∥)
|
||||
-- → (x : A) → P x
|
||||
-- corollary3∙9∙2 assump1 assump2 x = {! !}
|
||||
```
|
||||
|
||||
## 3.11 Contractibility
|
||||
|
||||
### Definition 3.11.1
|
||||
|
@ -564,4 +617,15 @@ module lemma3∙11∙9 where
|
|||
where
|
||||
y : (q : a ≡ x) → transport P q (transport P (sym q) p) ≡ p
|
||||
y refl = refl
|
||||
```
|
||||
|
||||
### Lemma 3.11.10
|
||||
|
||||
```
|
||||
module lemma3∙11∙10 where
|
||||
i : {A : Set} → ((x y : A) → isContr (x ≡ y)) → isProp A
|
||||
i f x y = Σ.fst (f x y)
|
||||
|
||||
ii : {A : Set} → isProp A → ((x y : A) → isContr (x ≡ y))
|
||||
ii f x y = f x y , λ z → {! !}
|
||||
```
|
Loading…
Reference in a new issue