test
This commit is contained in:
parent
05eb94c28e
commit
d3f5406ffa
7 changed files with 131 additions and 40 deletions
|
@ -2,6 +2,14 @@
|
|||
|
||||
- [Front](./front.md)
|
||||
|
||||
# HoTT Book
|
||||
|
||||
- [Chapter 1](./generated/HottBook.Chapter1.md)
|
||||
- [Chapter 2](./generated/HottBook.Chapter2.md)
|
||||
- [Chapter 3](./generated/HottBook.Chapter3.md)
|
||||
- [Chapter 4](./generated/HottBook.Chapter4.md)
|
||||
- [Chapter 5](./generated/HottBook.Chapter5.md)
|
||||
|
||||
# HoTT Book (Cubical formulation)
|
||||
|
||||
- [Chapter 1](./generated/CubicalHott.Chapter1.md)
|
||||
|
|
22
src/CEKCoinductive.agda
Normal file
22
src/CEKCoinductive.agda
Normal file
|
@ -0,0 +1,22 @@
|
|||
{-# OPTIONS --guardedness #-}
|
||||
|
||||
module CEKCoinductive where
|
||||
|
||||
open import Agda.Primitive
|
||||
|
||||
private
|
||||
variable
|
||||
l l1 l2 l3 : Level
|
||||
|
||||
E : Set → Set
|
||||
R : Set
|
||||
|
||||
data ITreeF (ITree : Set) : Set where
|
||||
Ret : (r : R) → ITreeF ITree
|
||||
Tau : (t : ITree) → ITreeF ITree
|
||||
Vis : {A : Set l1} → (e : E A) → (k : A → ITreeF E R) → ITreeF E R
|
||||
|
||||
record ITree : Set where
|
||||
coinductive
|
||||
field
|
||||
_observe : ITreeF ITree
|
|
@ -6,6 +6,21 @@ open import CubicalHott.Chapter1
|
|||
open import CubicalHott.Chapter2
|
||||
```
|
||||
|
||||
## 6.3 The interval
|
||||
|
||||
```
|
||||
data Iv : Type where
|
||||
0I : Iv
|
||||
1I : Iv
|
||||
seg : 0I ≡ 1I
|
||||
```
|
||||
|
||||
### Lemma 6.3.1
|
||||
|
||||
```
|
||||
lemma6∙3∙1 : isContr Iv
|
||||
```
|
||||
|
||||
## 6.4 Circles and spheres
|
||||
|
||||
```
|
||||
|
@ -18,36 +33,36 @@ data S¹ : Type where
|
|||
|
||||
```
|
||||
lemma6∙4∙1 : loop ≢ refl
|
||||
lemma6∙4∙1 p =
|
||||
{! !}
|
||||
where
|
||||
open ≡-Reasoning
|
||||
-- lemma6∙4∙1 p =
|
||||
-- {! !}
|
||||
-- where
|
||||
-- open ≡-Reasoning
|
||||
|
||||
f : {A : Type} (x : A) → (p : x ≡ x) → S¹ → A
|
||||
f x p base = x
|
||||
f x p (loop i) = p i
|
||||
-- f : {A : Type} (x : A) → (p : x ≡ x) → S¹ → A
|
||||
-- f x p base = x
|
||||
-- f x p (loop i) = p i
|
||||
|
||||
bad : {A : Type} (x : A) → (p : x ≡ x) → p ≡ refl
|
||||
bad x p = begin
|
||||
p ≡⟨ {! !} ⟩
|
||||
p ≡⟨ {! !} ⟩
|
||||
refl ∎
|
||||
-- bad : {A : Type} (x : A) → (p : x ≡ x) → p ≡ refl
|
||||
-- bad x p = begin
|
||||
-- p ≡⟨ {! !} ⟩
|
||||
-- p ≡⟨ {! !} ⟩
|
||||
-- refl ∎
|
||||
```
|
||||
|
||||
### Lemma 6.4.2
|
||||
|
||||
```
|
||||
lemma6∙4∙2 : Σ ((x : S¹) → x ≡ x) (λ y → y ≢ (λ x → refl))
|
||||
lemma6∙4∙2 = f , g
|
||||
where
|
||||
f : (x : S¹) → x ≡ x
|
||||
f base = loop
|
||||
f (loop i) i₁ = loop {! !}
|
||||
-- lemma6∙4∙2 = f , g
|
||||
-- where
|
||||
-- f : (x : S¹) → x ≡ x
|
||||
-- f base = loop
|
||||
-- f (loop i) i₁ = loop {! !}
|
||||
|
||||
g : f ≢ (λ x → refl)
|
||||
g p = let
|
||||
z = happlyd p
|
||||
z2 = z base
|
||||
z3 = lemma6∙4∙1 z2
|
||||
in z3
|
||||
-- g : f ≢ (λ x → refl)
|
||||
-- g p = let
|
||||
-- z = happlyd p
|
||||
-- z2 = z base
|
||||
-- z3 = lemma6∙4∙1 z2
|
||||
-- in z3
|
||||
```
|
|
@ -724,11 +724,8 @@ module axiom2∙10∙3 where
|
|||
postulate
|
||||
ua : {l : Level} {A B : Set l} → (A ≃ B) → (A ≡ B)
|
||||
|
||||
forward : {l : Level} {A B : Set l} → (eqv : A ≃ B) → (idtoeqv ∘ ua) eqv ≡ eqv
|
||||
-- forward eqv = {! !}
|
||||
|
||||
backward : {l : Level} {A B : Set l} → (p : A ≡ B) → (ua ∘ idtoeqv) p ≡ p
|
||||
-- backward p = {! !}
|
||||
forward : {l : Level} {A B : Set l} → (eqv : A ≃ B) → (idtoeqv ∘ ua) eqv ≡ eqv
|
||||
|
||||
ua-eqv : {A B : Set l} → (A ≃ B) ≃ (A ≡ B)
|
||||
ua-eqv = ua , qinv-to-isequiv (mkQinv idtoeqv backward forward)
|
||||
|
|
|
@ -184,18 +184,8 @@ theorem3∙2∙2 double-neg = conclusion
|
|||
let y = what ∙ x in
|
||||
sym y ∙ foranyu
|
||||
|
||||
-- postulate
|
||||
huhh : (Σ.fst e) (fbool u) ≡ fbool u
|
||||
huhh =
|
||||
let
|
||||
equiv1 = ap ua (axiom2∙10∙3.forward e)
|
||||
|
||||
x : {A B : Set l} → (e : A ≃ B) → (a : A) → transport id (ua e) a ≡ Σ.fst e a
|
||||
x e a =
|
||||
{! axiom2∙10∙3.forward ? !}
|
||||
in
|
||||
{! !}
|
||||
-- sym (x e (fbool u)) ∙ nextStep
|
||||
postulate
|
||||
huhh : (Σ.fst e) (fbool u) ≡ fbool u
|
||||
|
||||
finalStep : (x : bool) → ¬ ((Σ.fst e) x ≡ x)
|
||||
finalStep (lift true) p =
|
||||
|
@ -310,5 +300,9 @@ lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 ∣_∣ g
|
|||
concat : g (∣ g x ∣) ≡ g (∣ g y ∣)
|
||||
concat = a ∙ eqProp ∙ (sym b)
|
||||
in
|
||||
{! prop ? !}
|
||||
admit
|
||||
where
|
||||
postulate
|
||||
-- TODO: Finish this
|
||||
admit : x ≡ y
|
||||
```
|
53
src/HottBook/Chapter6.lagda.md
Normal file
53
src/HottBook/Chapter6.lagda.md
Normal file
|
@ -0,0 +1,53 @@
|
|||
```
|
||||
module HottBook.Chapter6 where
|
||||
|
||||
open import HottBook.Chapter1
|
||||
open import HottBook.Chapter2
|
||||
open import HottBook.Chapter3
|
||||
|
||||
private
|
||||
variable
|
||||
l : Level
|
||||
```
|
||||
|
||||
# Chapter 6 Higher Inductive Types
|
||||
|
||||
```
|
||||
postulate
|
||||
S¹ : Set
|
||||
base : S¹
|
||||
loop : base ≡ base
|
||||
```
|
||||
|
||||
## 6.2 Induction principles and dependent paths
|
||||
|
||||
```
|
||||
dep-path : {A : Set} {x y : A} → (P : A → Set) → (p : x ≡ y) → (u : P x) → (v : P y) → Set
|
||||
dep-path P p u v = transport P p u ≡ v
|
||||
|
||||
syntax dep-path P p u v = u ≡[ P , p ] v
|
||||
```
|
||||
|
||||
## 6.3 The interval
|
||||
|
||||
```
|
||||
postulate
|
||||
I : Set
|
||||
0I : I
|
||||
1I : I
|
||||
seg : 0I ≡ 1I
|
||||
|
||||
record I-rec (B : Set) (b0 b1 : B) (s : b0 ≡ b1) : Set where
|
||||
field
|
||||
f : I → B
|
||||
prop1 : f 0I ≡ b0
|
||||
prop2 : f 1I ≡ b1
|
||||
prop3 : apd f seg ≡ {! s !}
|
||||
|
||||
record I-ind (P : I → Set) (b0 : P 0I) (b1 : P 1I) (s : b0 ≡[ P , seg ] b1) : Set where
|
||||
field
|
||||
f : (x : I) → P x
|
||||
prop1 : f 0I ≡ b0
|
||||
prop2 : f 1I ≡ b1
|
||||
prop3 : apd f seg ≡ {! s !}
|
||||
```
|
2
src/Hurewicz.agda
Normal file
2
src/Hurewicz.agda
Normal file
|
@ -0,0 +1,2 @@
|
|||
module Hurewicz where
|
||||
|
Loading…
Reference in a new issue