auto gitdoc commit

This commit is contained in:
Michael Zhang 2024-04-25 14:35:17 +00:00
parent eb53383a78
commit d5bbdfe962
5 changed files with 102 additions and 11 deletions

View file

@ -369,7 +369,7 @@ code (suc x) (suc y) = code x y
_For all $m, n : N$ we have $(m = n) \simeq \texttt{code}(m, n)$._
```
```text
theorem2∙13∙1 : (m n : ) → (m ≡ n) ≃ code m n
theorem2∙13∙1 m n = encode m n , equiv
where

View file

@ -0,0 +1,33 @@
```
module HottBook.Chapter5 where
open import Agda.Primitive
open import HottBook.Chapter1
```
## 5.1 Introduction to inductive types
### Theorem 5.1.1
```
-- theorem5∙1∙1 : {E : → Set}
-- → (f g : (x : ) → E x)
-- → (z : f 0 ≡ g 0)
-- → (s :
-- → f ≡ g
```
### Definition 5.4.1
```
Alg : {l : Level} → Set (lsuc l)
Alg {l} = Σ (Set l) (λ C → C × (C → C))
```
### Definition 5.4.2
```
Hom : {l : Level} → Alg {l} → Alg {l} → Set l
Hom alg1@(C , (cz , cs)) alg2@(D , (dz , ds)) =
Σ (C → D) λ h → (h cz ≡ dz) × ((c : C) → h (cs c) ≡ ds (h c))
```

View file

@ -1,16 +1,18 @@
```
module HottBook.Chapter6 where
open import Relation.Binary.PropositionalEquality
open import HottBook.Chapter1
open import HottBook.Chapter2
```
### Definition 6.2.2 (Dependent paths)
```
dep-path : {A : Type} (P : A → Type) {x y : A} (p : x ≡ y)
→ (u : P x) → (v : P y) → Type
dep-path : {A : Set}
→ (P : A → Set)
→ {x y : A}
→ (p : x ≡ y)
→ (u : P x) → (v : P y) → Set
dep-path P p u v = transport P p u ≡ v
```
@ -18,17 +20,41 @@ Circle definition
```
postulate
𝕊¹ : Type
base : 𝕊¹
S¹ : Set
base : S¹
loop : base ≡ base
𝕊¹-elim : (P : 𝕊¹ → Type) → (p-base : P base)
S¹-elim : (P : S¹ → Set)
→ (p-base : P base)
→ (p-loop : dep-path P loop p-base p-base)
→ (x : 𝕊¹) → P x
→ (x : S¹) → P x
```
### Lemma 6.2.5
```text
lemma6∙2∙5 : {A : Set}
→ (a : A)
→ (p : a ≡ a)
→ S¹ → A
lemma6∙2∙5 {A} a p circ = S¹-elim P p-base p-loop circ
where
P : S¹ → Set
P _ = A
p-base = a
p-loop : transport P loop a ≡ a
p-loop =
let wtf = {! lemma2∙3∙8 !} in
{! !}
```
lemma625 : {A : Type} (a : A) → (p : a ≡ a) → 𝕊¹ → A
lemma625 {A} a p circ = 𝕊¹-elim (λ _ → A) a ? circ
## 6.3 The interval
```
postulate
I : Set
0I : I
1I : I
seg : 0I ≡ 1I
```

View file

@ -0,0 +1,19 @@
```
module HottBook.Chapter8 where
open import Agda.Primitive
open import HottBook.Chapter6
```
## 8.1 π₁(S¹)
### Definition 8.1.1
```
data : Set where
```
```
code : {l : Level} → S¹ → Set l
code {l} = S¹-elim (λ _ → Set l) (ua succ)
```

View file

@ -0,0 +1,13 @@
```
module HottBook.Chapter9 where
open import Agda.Primitive
```
## 9.1 Categories and precategories
```
record precategory {l : Level} : Set (lsuc l) where
field
A : Set l
```