This commit is contained in:
Michael Zhang 2024-05-30 16:36:49 -05:00
parent 628e0d9e9f
commit df0887af8c
3 changed files with 64 additions and 37 deletions

View file

@ -130,7 +130,7 @@ rec- C z s (suc n) = s n (rec- C z s n)
```
infix 3 ¬_
¬_ : {l : Level} (A : Set l) → Set l
¬_ : {l : Level} (A : Set l) → Set l
¬_ {l} A = A → ⊥ {l}
```

View file

@ -344,7 +344,7 @@ lemma2∙4∙3 {A} {B} {f} {g} H {x} {y} p = let
### Definition 2.4.6
```
record qinv {l : Level} {A B : Set l} (f : A → B) : Set l where
record qinv {l1 l2 : Level} {A : Set l1} {B : Set l2} (f : A → B) : Set (l1 ⊔ l2) where
constructor mkQinv
field
g : B → A
@ -355,7 +355,7 @@ record qinv {l : Level} {A B : Set l} (f : A → B) : Set l where
### Example 2.4.7
```
id-qinv : {l : Level} {A : Set l} → qinv {l} {A} id
id-qinv : {l : Level} {A : Set l} → qinv {l} {l} {A} {A} id
id-qinv = mkQinv id (λ _ → refl) (λ _ → refl)
```
@ -396,7 +396,7 @@ record isequiv {l1 l2 : Level} {A : Set l1} {B : Set l2} (f : A → B) : Set (l1
```
```
qinv-to-isequiv : {l : Level} {A B : Set l}
qinv-to-isequiv : {l1 l2 : Level} {A : Set l1} {B : Set l2}
→ {f : A → B}
→ qinv f
→ isequiv f
@ -667,25 +667,47 @@ equation2∙9∙4 {l1} {l2} {X} {x1} {x2} {A} {B} f p =
(λ x3 f1 → refl) x1 x2 p f
```
### Equation 2.9.5
```
module equation2∙9∙5 {X : Set} {x1 x2 : X} where
Π : (A : X → Set) → (B : (x : X) → A x → Set) → X → Set
Π A B x = (a : A x) → B x a
hat : {A : X → Set} → (B : (x : X) → A x → Set) → (Σ X A) → Set
hat B (fst , snd) = B fst snd
--- I have no idea where this goes but this definitely needs to exist
pair-≡ : {A : Set} {B : A → Set} {a1 a2 : A} {b1 : B a1} {b2 : B a2}
→ (p : a1 ≡ a2) → (transport B p b1 ≡ b2) → (a1 , b1) ≡ (a2 , b2)
pair-≡ refl refl = refl
equation2∙9∙5 : (A : X → Set)
→ (B : (x : X) → A x → Set)
→ (f : (a : A x1) → B x1 a)
→ (p : x1 ≡ x2)
→ (a : A x2)
→ transport (Π A B) p f a ≡ transport (hat B) (sym (pair-≡ (sym p) refl)) (f (transport A (sym p) a))
equation2∙9∙5 A B f p a =
J (λ x1' x2' p' → (f' : (a : A x1') → B x1' a) → (a' : A x2') → transport (Π A B) p' f' a' ≡ transport (hat B) (sym (pair-≡ (sym p') refl)) (f' (transport A (sym p') a')))
(λ x' f' a' → refl) x1 x2 p f a
```
### Lemma 2.9.6
```
-- lemma2∙9∙6 : {X : Set} {A B : X → Set} {x y : X}
-- → (p : x ≡ y)
-- → (f : A x → B x)
-- → (g : A y → B y)
-- →
-- let P x = A x → B x in
-- (transport P p f ≡ g) ≃ ((a : A x) → transport B p (f a) ≡ g (transport A p a))
-- lemma2∙9∙6 {X} {A} {B} {x} {y} p f g =
-- let
-- P x = A x → B x
-- module lemma2∙9∙6 {X : Set} {A B : X → Set} {x y : X} where
-- P : (x : X) → Set
-- P x = A x → B x
-- F : (x1 : X) → (f1 : A x1 → B x1) → (g1 : A x1 → B x1) → (transport P refl f1 ≡ g1) → ((a : A x1) → transport B refl (f1 a) ≡ g1 (transport A refl a))
-- F x f g p a = {! !}
-- in
-- J (λ x1 y1 p1 → (f1 : A x1 → B x1) → (g1 : A y1 → B y1) → (transport P p1 f1 ≡ g1) ≃ ((a : A x1) → transport B p1 (f1 a) ≡ g1 (transport A p1 a)))
-- (λ x1 f1 g1 → F x1 f1 g1 , qinv-to-isequiv (mkQinv {! !} {! !} {! !})) x y p f g
-- lemma2∙9∙6 : (p : x ≡ y)
-- → (f : A x → B x)
-- → (g : A y → B y)
-- → (transport P p f ≡ g) ≃ ((a : A x) → transport B p (f a) ≡ g (transport A p a))
-- lemma2∙9∙6 p f g = func , qinv-to-isequiv (mkQinv {! !} {! !} {! !})
-- where
-- func : (transport P p f ≡ g) → (a : A x) → transport B p (f a) ≡ g (transport A p a)
-- func p1 a = J (λ x y p' → {! !} ≡ y (transport A {! !} a)) {! !} (transport P p f) g p1
```
## 2.10 Universes and the univalence axiom
@ -710,17 +732,18 @@ idtoeqv {l} {A} {B} p = J C c A B p
```
module axiom2∙10∙3 where
postulate
-- ua-eqv : {l1 l2 : Level} {A : Set l1} {B : Set l2} → (A ≃ B) ≃ (A ≡ B)
ua : {l : Level} {A B : Set l} → (A ≃ B) → (A ≡ B)
-- forward : {A B : Set} → (eqv @ (f , f-eqv) : A ≃ B) → (x : A) → transport id (ua eqv) x ≡ f x
-- forward eqv x = {! !}
forward : {l : Level} {A B : Set l} → (eqv : A ≃ B) → (idtoeqv ∘ ua) eqv ≡ eqv
-- forward eqv = {! !}
-- ua-refl : {A : Set} → refl ≡ ua (lemma2∙4∙12.id-equiv A)
-- ua-refl = {! !}
backward : {l : Level} {A B : Set l} → (p : A ≡ B) → (ua ∘ idtoeqv) p ≡ p
-- backward p = {! !}
open axiom2∙10∙3
ua-eqv : {l : Level} {A : Set l} {B : Set l} → (A ≃ B) ≃ (A ≡ B)
ua-eqv = ua , qinv-to-isequiv (mkQinv idtoeqv backward forward)
open axiom2∙10∙3 hiding (forward; backward)
```
### Lemma 2.10.5
@ -860,7 +883,7 @@ theorem2∙11∙4 {A} {B} {f} {g} {a} {a'} p q =
### Theorem 2.12.5
```
module 2∙12∙5 {l : Level} {A B : Set l} (a₀ : A) where
module theorem2∙12∙5 {l : Level} {A B : Set l} (a₀ : A) where
code : A + B → Set l
code (inl a) = a₀ ≡ a
code (inr b) = ⊥
@ -911,7 +934,7 @@ remark2∙12∙6 p = genBot tt
_For all $m, n : N$ we have $(m = n) \simeq \texttt{code}(m, n)$._
```
module 2∙13∙1 where
module theorem2∙13∙1 where
open ≡-Reasoning
code : → Set

View file

@ -1,3 +1,6 @@
<details>
<summary>Imports</summary>
```
module HottBook.Chapter3 where
@ -5,12 +8,13 @@ open import Agda.Primitive
open import HottBook.Chapter1
open import HottBook.Chapter1Util
open import HottBook.Chapter2
open import HottBook.Chapter3Definition331
open import HottBook.Chapter3Lemma333
open import HottBook.Chapter3Definition331 public
open import HottBook.Chapter3Lemma333 public
open import HottBook.Util
```
</details>
## 3.1 Sets and n-types
### Definition 3.1.1
@ -30,7 +34,7 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
### Example 3.1.3
```
⊥-is-Set : isSet ⊥
⊥-is-Set : ∀ {l} → isSet (⊥ {l})
⊥-is-Set () () p q
```
@ -44,7 +48,7 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
### Example 3.1.9
```
example3∙1∙9 : ¬ (isSet Set)
example3∙1∙9 : ∀ {l : Level} → ¬_ {lsuc l} (isSet (Set l))
example3∙1∙9 p = remark2∙12∙6 lol
where
open axiom2∙10∙3
@ -55,13 +59,13 @@ example3∙1∙9 p = remark2∙12∙6 lol
bogus : id ≡ neg
bogus =
let
helper : f-path ≡ refl
helper = p 𝟚 𝟚 f-path refl
-- helper : f-path ≡ refl
-- helper = p 𝟚 𝟚 f-path refl
a = ap
wtf : idtoeqv f-path ≡ idtoeqv refl
wtf = ap idtoeqv helper
-- wtf : idtoeqv f-path ≡ idtoeqv refl
-- wtf = ap idtoeqv helper
in {! !}
lol : true ≡ false