LES
This commit is contained in:
parent
ce6a6f734a
commit
e64326c1c3
1 changed files with 93 additions and 0 deletions
93
src/ThesisWork/LES.agda
Normal file
93
src/ThesisWork/LES.agda
Normal file
|
@ -0,0 +1,93 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.LES where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Data.Nat
|
||||
open import Data.Fin
|
||||
open import Data.Product
|
||||
open import Cubical.Homotopy.Base
|
||||
open import Cubical.Homotopy.Loopspace
|
||||
open import Cubical.Homotopy.Group.Base
|
||||
open import Cubical.Homotopy.Group.LES
|
||||
open import Cubical.HITs.SetTruncation renaming (map to mapTrunc)
|
||||
open import Cubical.HITs.SetTruncation.Fibers
|
||||
|
||||
private
|
||||
variable
|
||||
X Y : Type
|
||||
|
||||
LES-node : ∀ {l} → {X Y : Pointed l} → (f : X →∙ Y) → ℕ × Fin 3 → Type l
|
||||
LES-node {Y = Y} f (n , zero) = π n Y
|
||||
LES-node {X = X} f (n , suc zero) = π n X
|
||||
LES-node {X = (X , x)} {Y = (Y , y)} (f , f-eq) (n , suc (suc zero)) =
|
||||
let F = fiber f y in
|
||||
π n (F , x , f-eq)
|
||||
|
||||
sucF : ℕ × Fin 3 → ℕ × Fin 3
|
||||
sucF (n , zero) = n , suc zero
|
||||
sucF (n , suc zero) = n , suc (suc zero)
|
||||
sucF (n , suc (suc zero)) = suc n , zero
|
||||
|
||||
LES-edge : ∀ {l} → {X∙ Y∙ : Pointed l} → (f∙ : X∙ →∙ Y∙) → (n : ℕ × Fin 3)
|
||||
→ LES-node f∙ (sucF n) → LES-node f∙ n
|
||||
LES-edge {X∙ = X∙ @ (X , x)} {Y∙ = Y∙ @ (Y , y)} f∙ @ (f , f-eq) (n , zero) = h n where
|
||||
h1 : ∀ (n : ℕ) → (Ω^ n) X∙ →∙ (Ω^ n) Y∙
|
||||
h1 zero = f∙
|
||||
h1 (suc n) = (λ x → refl) , helper where
|
||||
helper : refl ≡ snd (Ω ((Ω^ n) Y∙))
|
||||
helper i j = (Ω^ n) (Y , y) .snd
|
||||
|
||||
-- helper = λ i j →
|
||||
-- let
|
||||
-- top : (Ω^ n) (Y , y) .fst
|
||||
-- top = {! refl !}
|
||||
-- u = λ k → λ where
|
||||
-- (i = i0) → {! !}
|
||||
-- (i = i1) → {! !}
|
||||
-- (j = i0) → {! !}
|
||||
-- (j = i1) → {! !}
|
||||
-- in hcomp u {! !}
|
||||
|
||||
h : ∀ (n : ℕ) → π n X∙ → π n Y∙
|
||||
h n = mapTrunc (fst (h1 n))
|
||||
|
||||
-- h zero ∣ a ∣₂ = ∣ f a ∣₂
|
||||
-- h (suc n) ∣ a ∣₂ = let IH = h n ∣ a i0 ∣₂ in ∣ {! !} ∣₂
|
||||
-- h zero (squash₂ a b p q i j) = squash₂ (h 0 a) (h 0 b) (cong (h 0) p) (cong (h 0) q) i j
|
||||
-- h (suc n) (squash₂ a b p q i j) = {! !}
|
||||
|
||||
LES-edge {X∙ = X∙ @ (X , x)} {Y∙ = Y∙ @ (Y , y)} f∙ @ (f , f-eq) (n , suc zero) = h n where
|
||||
F = fiber f y
|
||||
|
||||
h1 : ∀ (n : ℕ) → (Ω^ n) (F , x , f-eq) →∙ (Ω^ n) X∙
|
||||
h1 zero = fst , refl
|
||||
h1 (suc n) = (λ f i → (Ω^ n) (X , x) .snd) , λ i j → (Ω^ n) (X , x) .snd
|
||||
|
||||
h : ∀ (n : ℕ) → π n (F , x , f-eq) → π n X∙
|
||||
h n = mapTrunc (fst (h1 n))
|
||||
|
||||
LES-edge {X∙ = X∙ @ (X , x)} {Y∙ = Y∙ @ (Y , y)} f∙ @ (f , f-eq) (n , suc (suc zero)) = h n where
|
||||
F = fiber f y
|
||||
|
||||
h1 : ∀ (n : ℕ) → (Ω^ (suc n)) Y∙ →∙ (Ω^ n) (F , x , f-eq)
|
||||
h1 zero = (λ y → x , f-eq) , refl
|
||||
h1 (suc n) = (λ y i → (Ω^ n) (F , x , f-eq) .snd) , λ i j → (Ω^ n) (F , x , f-eq) .snd
|
||||
|
||||
h : ∀ (n : ℕ) → π (suc n) Y∙ → π n (F , x , f-eq)
|
||||
h n = mapTrunc (fst (h1 n))
|
||||
|
||||
-- LES-edge f n_ with mapN n_
|
||||
-- LES-edge {X = X∙ @ (X , x)} {Y = Y∙ @ (Y , y)} f n_ | (n , zero) = {! h !} where
|
||||
-- h : π n X∙ → π n Y∙
|
||||
-- h ∣ x ∣₂ = ∣ {! !} ∣₂
|
||||
-- h (squash₂ z z₁ p q i i₁) = {! !}
|
||||
-- -- z : LES-node f (mapN (suc n_))
|
||||
-- -- z : π n X
|
||||
-- -- z : ∥ typ ((Ω^ 0) X) ∥₂
|
||||
-- -- z : ∥ typ X ∥₂
|
||||
-- -- z : ∥ typ X ∥₂
|
||||
-- LES-edge f n_ | (n , suc zero) = λ z → {! !}
|
||||
-- LES-edge f n_ | (n , suc (suc zero)) = λ z → {! !}
|
Loading…
Reference in a new issue