updates
This commit is contained in:
parent
140819d511
commit
edf2393c2f
4 changed files with 74 additions and 17 deletions
|
@ -12,7 +12,7 @@ open import Cubical.Data.Nat
|
|||
open import Data.Unit
|
||||
|
||||
lemma : ∀ {l} → (n : HLevel) → isOfHLevel (suc n) (TypeOfHLevel l n)
|
||||
lemma zero (A , a , Acontr) (B , b , Bcontr) i = A≡B i , a≡b i , eq where
|
||||
lemma zero (A , a , Acontr) (B , b , Bcontr) i = A≡B i , a≡b i , λ y j → wtf i y j where
|
||||
eqv1 : A ≃ B
|
||||
eqv1 = isoToEquiv (iso (λ _ → b) (λ _ → a) Bcontr Acontr)
|
||||
|
||||
|
@ -22,8 +22,20 @@ lemma zero (A , a , Acontr) (B , b , Bcontr) i = A≡B i , a≡b i , eq where
|
|||
a≡b : PathP (λ i → A≡B i) a b
|
||||
a≡b j = glue (λ { (j = i0) → a ; (j = i1) → b }) b
|
||||
|
||||
eq : (y : A≡B i) → a≡b i ≡ y
|
||||
eq y j = {! !}
|
||||
eqv2 : ((y : A) → a ≡ y) ≡ ((y : B) → b ≡ y)
|
||||
eqv2 = λ i → (y : A≡B i) → a≡b i ≡ y
|
||||
|
||||
T1 = λ { (i = i0) → ((y : A) → a ≡ y) ; (i = i1) → ((y : B) → b ≡ y) }
|
||||
e1 = λ { (i = i0) → pathToEquiv eqv2 ; (i = i1) → idEquiv ((y : B) → b ≡ y) }
|
||||
Uhh = primGlue ((y : B) → b ≡ y) T1 e1
|
||||
|
||||
uhh : Uhh
|
||||
uhh = glue {T = T1} {e = e1} (λ { (i = i0) → Acontr ; (i = i1) → Bcontr }) λ y j → {! Bcontr y j !}
|
||||
|
||||
wtf : PathP (λ i → (y : A≡B i) → a≡b i ≡ y) Acontr Bcontr
|
||||
wtf = λ i y j → {! !}
|
||||
|
||||
|
||||
-- a≡b i ≡ y
|
||||
-- ———— Boundary (wanted) —————————————————————————————————————
|
||||
-- i = i0 ⊢ λ i₁ → Acontr y i₁
|
||||
|
@ -40,7 +52,7 @@ lemma zero (A , a , Acontr) (B , b , Bcontr) i = A≡B i , a≡b i , eq where
|
|||
-- in {! !}
|
||||
|
||||
|
||||
lemma (suc zero) (A , A-prop) (B , B-prop) x y i j = {! !} where
|
||||
lemma (suc zero) (A , A-prop) (B , B-prop) x y i j = {! !}
|
||||
|
||||
lemma (suc (suc n)) x y = {! !}
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@ module ThesisWork.Pi3S2.Step1 where
|
|||
|
||||
open import Agda.Primitive
|
||||
open import Cubical.Data.Sigma
|
||||
open import Cubical.Data.Nat
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Equiv.Properties
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
|
@ -11,8 +12,33 @@ open import Cubical.Foundations.Pointed
|
|||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Homotopy.Loopspace
|
||||
|
||||
-- open import ThesisWork.Pi3S2.Lemma4-1-5 renaming (lemma to lemma4-1-5)
|
||||
|
||||
fiberF : {l : Level} → {X∙ Y∙ : Pointed l} → (f : X∙ →∙ Y∙) → Pointed l
|
||||
fiberF {X∙ = X∙ @ (X , x)} {Y∙ = Y∙ @ (Y , y)} f∙ @ (f , f-eq) =
|
||||
fiber f y , x , f-eq
|
||||
-- fiber f y , x , f-eq
|
||||
|
||||
arrow∙ : {l : Level} → Type (lsuc l)
|
||||
arrow∙ {l} = Σ (Pointed l) (λ X → Σ (Pointed l) (λ Y → X →∙ Y))
|
||||
|
||||
F : {l : Level} → arrow∙ {l} → arrow∙ {l}
|
||||
F x @ (X , Y , f) = {! fiber !} , X , {! fst !}
|
||||
F (X∙ @ (X , x) , Y∙ @ (Y , y) , f∙ @ (f , f-eq)) = fiberF f∙ , X∙ , fst , refl
|
||||
|
||||
F⁻ : {l : Level} → (n : ℕ) → arrow∙ {l} → arrow∙ {l}
|
||||
F⁻ zero x = x
|
||||
F⁻ (suc n) x = F (F⁻ n x)
|
||||
|
||||
-- Given a pointed map f∙ : X∙ →∙ Y∙, we define its fiber sequence
|
||||
-- A : ℕ → Type by Aₙ :≡ p₂(Fⁿ(X , y , f))
|
||||
|
||||
A : {l : Level} → {X∙ Y∙ : Pointed l} → (f∙ : X∙ →∙ Y∙) → ℕ → Pointed l
|
||||
A {X∙ = X∙ @ (X , x)} {Y∙ = Y∙ @ (Y , y)} f∙ @ (f , f-eq) n =
|
||||
let it = F⁻ n (X∙ , Y∙ , f∙) in
|
||||
fst (snd it)
|
||||
|
||||
f⁻ : {l : Level} → {X∙ Y∙ : Pointed l} → (f∙ : X∙ →∙ Y∙) → (n : ℕ) → fst (A f∙ (suc n)) → fst (A f∙ n)
|
||||
f⁻ {X∙ = X∙ @ (X , x)} {Y∙ = Y∙ @ (Y , y)} f∙ n a =
|
||||
let it = F⁻ n (X∙ , Y∙ , f∙) in
|
||||
{! snd (snd it) !}
|
||||
|
|
@ -21,4 +21,14 @@ module _ where
|
|||
|
||||
-- (ℤ , λ n . n + 1)
|
||||
ℤ-SuccStr : (i : ℤ) → (n : ℕ) → ℤ
|
||||
ℤ-SuccStr = SuccStr ℤ zsuc
|
||||
ℤ-SuccStr = SuccStr ℤ zsuc
|
||||
|
||||
module _ where
|
||||
open import Data.Fin
|
||||
open import Data.Product
|
||||
|
||||
ℕ-k-SuccStr : (k : ℕ) → (ℕ × Fin k) → ℕ → (ℕ × Fin k)
|
||||
ℕ-k-SuccStr k = SuccStr (ℕ × Fin k) inc where
|
||||
inc : (ℕ × Fin k) → (ℕ × Fin k)
|
||||
inc (n , k) with suc k
|
||||
inc (n , k) | x = {! !}
|
|
@ -1,5 +1,4 @@
|
|||
|
||||
\documentclass[a4paper]{beamer}
|
||||
\documentclass[a4paper,xcolor={dvipsnames}]{beamer}
|
||||
\useoutertheme{miniframes}
|
||||
% \usetheme{Darmstadt}
|
||||
|
||||
|
@ -51,7 +50,7 @@
|
|||
|
||||
\item What does the current state of the ecosystem look like?
|
||||
\begin{itemize}
|
||||
\item Coq, Lean, Agda, ...
|
||||
\item Rocq (Coq), Lean, Agda, ...
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
@ -76,9 +75,10 @@
|
|||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Martin-L{\"o}f type theory}
|
||||
\frametitle{Important features of Martin-L{\"o}f type theory}
|
||||
|
||||
\begin{itemize}
|
||||
\item Universes: $\mathsf{Type}_0, \mathsf{Type}_1, \mathsf{Type}_2, \dots$
|
||||
\item Inductive types
|
||||
\\
|
||||
For example, $\mathbb{N}$ is defined with one of 2 constructors: $\mathsf{zero}$ and $\mathsf{suc}$.
|
||||
|
@ -91,8 +91,7 @@
|
|||
\TrinaryInfC{$ \Gamma \vdash \mathsf{ind}_{\mathbb{N}} (c_0 , x . y . c_s , n) : C $}
|
||||
\end{prooftree}
|
||||
|
||||
\item \emph{Dependent types}, or $\Pi$-types:
|
||||
$$ \mathsf{Vec} : (A : \mathsf{Type}) \rightarrow (n : \mathbb{N}) \rightarrow \mathsf{Type} $$
|
||||
\item \emph{Dependent types}, or $\Pi$-types: $ \mathsf{Vec} : (A : \mathsf{Type}) \rightarrow (n : \mathbb{N}) \rightarrow \mathsf{Type} $
|
||||
|
||||
\item \emph{Dependent sums}, or $\Sigma$-types
|
||||
\item The identity type, $\mathsf{Id}_A(x, y)$, for some $x, y : A$
|
||||
|
@ -107,11 +106,14 @@
|
|||
\begin{frame}
|
||||
\frametitle{Homotopy type theory}
|
||||
|
||||
\newcommand{\htcolor}[1]{\textcolor{Melon}{####1}}
|
||||
\newcommand{\ttcolor}[1]{\textcolor{Periwinkle}{####1}}
|
||||
|
||||
\begin{itemize}
|
||||
\item A \textcolor{orange}{"homotopy"}, from algebraic topology, is a way to continuously deform one path into another ($A \times [0, 1] \rightarrow B$)
|
||||
\item In type theory, we can imagine two functions \textcolor{blue}{$f, g : A \rightarrow B$} as being homotopic if we can inhabit $h : (x : A) \rightarrow \mathsf{Id}_B (f(x), g(x))$
|
||||
\item A \htcolor{"homotopy"}, from algebraic topology, is a way to continuously deform one path into another ($A \times [0, 1] \rightarrow B$)
|
||||
\item In type theory, we can imagine two functions \ttcolor{$f, g : A \rightarrow B$} as being homotopic if we can inhabit $h : (x : A) \rightarrow \mathsf{Id}_B (f(x), g(x))$
|
||||
\item Note: assume all functions are continuous.
|
||||
\item Interpret \textcolor{orange}{paths between points in a space} as the \textcolor{blue}{identity type $\mathsf{Id}$}
|
||||
\item Interpret \htcolor{paths between points in a space} as the \ttcolor{identity type $\mathsf{Id}$}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
@ -138,8 +140,7 @@
|
|||
\frametitle{Univalence axiom?}
|
||||
|
||||
\begin{itemize}
|
||||
\item Unfortunately, univalence does not compute
|
||||
\item Neither does function extensionality
|
||||
\item Unfortunately, univalence does not compute in the "base" version of homotopy type theory, also known as Book HoTT
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
@ -269,6 +270,14 @@
|
|||
|
||||
\section{Conclusion}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Other type theories}
|
||||
|
||||
\begin{itemize}
|
||||
\item Calculus of inductive constructions (Impredicative prop)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Conclusion}
|
||||
|
||||
|
|
Loading…
Reference in a new issue