make sure individual docs render

This commit is contained in:
Michael Zhang 2024-05-20 03:13:49 -05:00
parent 69350b2242
commit f0c1bab9ed
4 changed files with 20 additions and 7 deletions

View file

@ -8,4 +8,11 @@
- [Chapter 3](./generated/HottBook.Chapter3.md)
- [Chapter 4](./generated/HottBook.Chapter4.md)
- [Chapter 5](./generated/HottBook.Chapter5.md)
- [Chapter 6](./generated/HottBook.Chapter6.md)
- [Chapter 6](./generated/HottBook.Chapter6.md)
# Individual lemmas
- [Lemma 2.2.1](./generated/HottBook.Chapter2Lemma221.md)
- [Definition 3.3.1](./generated/HottBook.Chapter3Definition331.md)
- [Lemma 3.3.3](./generated/HottBook.Chapter3Lemma333.md)

View file

@ -5,7 +5,9 @@ open import Agda.Primitive
open import HottBook.Chapter1
```
[]: ANCHOR: ap
## Lemma 2.2.1
[//]: <> (ANCHOR: ap)
```
ap : {l1 l2 : Level} {A : Set l1} {B : Set l2} {x y : A}
@ -16,4 +18,4 @@ ap {l1} {l2} {A} {B} {x} {y} f p =
J (λ x y p → f x ≡ f y) (λ x → refl) x y p
```
[]: ANCHOR_END: ap
[//]: <> (ANCHOR_END: ap)

View file

@ -5,11 +5,13 @@ open import Agda.Primitive
open import HottBook.Chapter1
```
[]: ANCHOR: isProp
## Definition 3.3.1
[//]: <> (ANCHOR: isProp)
```
isProp : (P : Set) → Set
isProp P = (x y : P) → x ≡ y
```
[]: ANCHOR_END: isProp
[//]: <> (ANCHOR_END: isProp)

View file

@ -7,7 +7,9 @@ open import HottBook.Chapter2
open import HottBook.Chapter3Definition331
```
[]: ANCHOR: lemma333
## Lemma 3.3.3
[//]: <> (ANCHOR: lemma333)
```
lemma3∙3∙3 : {P Q : Set}
@ -25,4 +27,4 @@ lemma3∙3∙3 pp qq f g = f , qinv-to-isequiv (mkQinv g backward forward)
backward x = qq ((f ∘ g) x) (id x)
```
[]: ANCHOR_END: lemma333
[//]: <> (ANCHOR_END: lemma333)