define left module composition and graded module composition
This commit is contained in:
parent
953e80c3b1
commit
f7f4f434aa
2 changed files with 24 additions and 9 deletions
|
@ -20,10 +20,10 @@ module _ {R : Ring ℓ} where
|
|||
→ (g : LeftModuleHom N P)
|
||||
→ LeftModuleHom M P
|
||||
compLeftModule {M = M} {N} {P} f g =
|
||||
fg , record { pres0 = pres0 ; pres+ = pres+ ; pres- = {! !} ; pres⋆ = {! !} } where
|
||||
open LeftModuleStr (M .snd) using () renaming (0m to 0M; _+_ to _+M_; -_ to -M_)
|
||||
open LeftModuleStr (N .snd) using () renaming (0m to 0N; _+_ to _+N_; -_ to -N_)
|
||||
open LeftModuleStr (P .snd) using () renaming (0m to 0P; _+_ to _+P_; -_ to -P_)
|
||||
fg , record { pres0 = pres0 ; pres+ = pres+ ; pres- = pres- ; pres⋆ = pres⋆ } where
|
||||
open LeftModuleStr (M .snd) using () renaming (0m to 0M; _+_ to _+M_; -_ to -M_; _⋆_ to _⋆M_)
|
||||
open LeftModuleStr (N .snd) using () renaming (0m to 0N; _+_ to _+N_; -_ to -N_; _⋆_ to _⋆N_)
|
||||
open LeftModuleStr (P .snd) using () renaming (0m to 0P; _+_ to _+P_; -_ to -P_; _⋆_ to _⋆P_)
|
||||
|
||||
fg = g .fst ∘ f .fst
|
||||
|
||||
|
@ -39,4 +39,17 @@ module _ {R : Ring ℓ} where
|
|||
p
|
||||
|
||||
pres- : (x : M .fst) → fg (-M x) ≡ -P (fg x)
|
||||
pres- x = {! !}
|
||||
-- g(f(-x)) ≡ g(-f(x)) ≡ -g(f(x))
|
||||
pres- x =
|
||||
let p = refl {x = g .fst (f .fst (-M x))} in
|
||||
let p = p ∙ cong (g .fst) (f .snd .IsLeftModuleHom.pres- x) in
|
||||
let p = p ∙ g .snd .IsLeftModuleHom.pres- (f .fst x) in
|
||||
p
|
||||
|
||||
pres⋆ : (r : ⟨ R ⟩) (y : M .fst) → fg (r ⋆M y) ≡ r ⋆P fg y
|
||||
-- g(f(r⋆y)) ≡ g(r⋆f(y)) ≡ r⋆g(f(y))
|
||||
pres⋆ r y =
|
||||
let p = refl {x = g .fst (f .fst (r ⋆M y))} in
|
||||
let p = p ∙ cong (g .fst) (f .snd .IsLeftModuleHom.pres⋆ r y) in
|
||||
let p = p ∙ g .snd .IsLeftModuleHom.pres⋆ r (f .fst y) in
|
||||
p
|
|
@ -12,6 +12,8 @@ open import Cubical.Algebra.Group.Morphisms
|
|||
open import Cubical.Algebra.Group.MorphismProperties
|
||||
open import Cubical.Foundations.Structure
|
||||
|
||||
open import ThesisWork.Ext
|
||||
|
||||
private
|
||||
variable
|
||||
ℓ ℓ' ℓ'' : Level
|
||||
|
@ -89,7 +91,7 @@ gradedHomComp {G = G} {M₁} {M₂} {M₃} (mkGradedHom feqv fp ffn) (mkGradedHo
|
|||
p
|
||||
|
||||
fgFn : {x y : ⟨ G ⟩} → fg x ≡ y → M₁ x -[lm]→ M₃ y
|
||||
fgFn {x} {y} p = {! !}
|
||||
-- p : f(g(x)) ≡ y
|
||||
where
|
||||
open import Cubical.Foundations.Function
|
||||
fgFn {x} {y} p = compLeftModule (ffn refl) (gfn p)
|
||||
-- p : g(f(x)) ≡ y
|
||||
-- break into f(x) ≡ z and g(z) ≡ y for some z
|
||||
-- just pick z = f(x) and the second can use p
|
Loading…
Reference in a new issue