change margins to make the page size more readable
This commit is contained in:
parent
7599cebbf8
commit
f99ed6bd2b
2 changed files with 38 additions and 2 deletions
Binary file not shown.
|
@ -1,9 +1,39 @@
|
|||
\def\OPTpagesize{4.8in,7.9in} % Page size
|
||||
\def\OPTtopmargin{0.4in} % Margin at the top of the page
|
||||
\def\OPTbottommargin{0.4in} % Margin at the bottom of the page
|
||||
\def\OPTinnermargin{0.2in} % Margin on the inner side of the page
|
||||
\def\OPTbindingoffset{0.0in} % Extra offset on the inner side
|
||||
\def\OPToutermargin{0.2in} % Margin on the outer side of the page
|
||||
\def\OPTcoverwidth{4.75in} % width of text on cover page
|
||||
\def\OPTcoverheight{7.85in} % height of text on cover page
|
||||
\def\OPTlinkcolor{0,0.45,0} % RGB components for clickable links
|
||||
|
||||
\documentclass{amsbook}
|
||||
\usepackage{etex}
|
||||
\usepackage{amssymb, amsfonts, lacromay}
|
||||
\usepackage[
|
||||
papersize={\OPTpagesize},
|
||||
top=\OPTtopmargin,
|
||||
bottom=\OPTbottommargin,
|
||||
inner=\OPTinnermargin,
|
||||
outer=\OPToutermargin,
|
||||
]{geometry}
|
||||
|
||||
\usepackage[
|
||||
backref=page,
|
||||
colorlinks,
|
||||
citecolor=linkcolor,
|
||||
linkcolor=linkcolor,
|
||||
urlcolor=linkcolor,
|
||||
unicode,
|
||||
]{hyperref}
|
||||
|
||||
\usepackage[v2]{xy}
|
||||
|
||||
\PassOptionsToPackage{table}{xcolor}
|
||||
\usepackage{xcolor} % For colored cells in tables we need \cellcolor
|
||||
|
||||
|
||||
\definecolor{linkcolor}{rgb}{\OPTlinkcolor}
|
||||
%\makeindex
|
||||
|
||||
%theoremstyle{plain} --- default
|
||||
|
@ -52,6 +82,12 @@
|
|||
|
||||
%\renewcommand{\thechapter}{\arabic{chapter}}
|
||||
|
||||
|
||||
\newlength{\coverheight}
|
||||
\setlength{\coverheight}{\OPTcoverheight}
|
||||
\newlength{\coverwidth}
|
||||
\setlength{\coverwidth}{\OPTcoverwidth}
|
||||
|
||||
\title{A Concise Course in Algebraic Topology}
|
||||
|
||||
\author{J. P. May}
|
||||
|
@ -8289,7 +8325,7 @@ Let $M$ be a compact connected $n$-manifold with boundary $\pa M$, where $n\ge
|
|||
\item Prove: if $M$ is contractible, then $\pa M$ has the homology of a sphere.
|
||||
\item Assume that $M$ is orientable. Let $n = 2m+1$ and let $K$ be the kernel of the
|
||||
homomorphism $H_m(\pa M) \rtarr H_m(M)$ induced by the inclusion, where homology is taken
|
||||
with coefficients in a field. Prove: $\dimÊÊ\,H_m(\pa M)Ê=Ê2\dimÊÊ\,K$.
|
||||
with coefficients in a field. Prove: $\dim<EFBFBD><EFBFBD>\,H_m(\pa M)<EFBFBD>=<EFBFBD>2\dim<EFBFBD><EFBFBD>\,K$.
|
||||
\end{enumerate}
|
||||
|
||||
Let $n = 3$ in the rest of the problems.
|
||||
|
|
Loading…
Reference in a new issue