change margins to make the page size more readable

This commit is contained in:
Michael Zhang 2024-05-23 09:50:34 -05:00
parent 7599cebbf8
commit f99ed6bd2b
2 changed files with 38 additions and 2 deletions

View file

@ -1,9 +1,39 @@
\def\OPTpagesize{4.8in,7.9in} % Page size
\def\OPTtopmargin{0.4in} % Margin at the top of the page
\def\OPTbottommargin{0.4in} % Margin at the bottom of the page
\def\OPTinnermargin{0.2in} % Margin on the inner side of the page
\def\OPTbindingoffset{0.0in} % Extra offset on the inner side
\def\OPToutermargin{0.2in} % Margin on the outer side of the page
\def\OPTcoverwidth{4.75in} % width of text on cover page
\def\OPTcoverheight{7.85in} % height of text on cover page
\def\OPTlinkcolor{0,0.45,0} % RGB components for clickable links
\documentclass{amsbook}
\usepackage{etex}
\usepackage{amssymb, amsfonts, lacromay}
\usepackage[
papersize={\OPTpagesize},
top=\OPTtopmargin,
bottom=\OPTbottommargin,
inner=\OPTinnermargin,
outer=\OPToutermargin,
]{geometry}
\usepackage[
backref=page,
colorlinks,
citecolor=linkcolor,
linkcolor=linkcolor,
urlcolor=linkcolor,
unicode,
]{hyperref}
\usepackage[v2]{xy}
\PassOptionsToPackage{table}{xcolor}
\usepackage{xcolor} % For colored cells in tables we need \cellcolor
\definecolor{linkcolor}{rgb}{\OPTlinkcolor}
%\makeindex
%theoremstyle{plain} --- default
@ -52,6 +82,12 @@
%\renewcommand{\thechapter}{\arabic{chapter}}
\newlength{\coverheight}
\setlength{\coverheight}{\OPTcoverheight}
\newlength{\coverwidth}
\setlength{\coverwidth}{\OPTcoverwidth}
\title{A Concise Course in Algebraic Topology}
\author{J. P. May}
@ -8289,7 +8325,7 @@ Let $M$ be a compact connected $n$-manifold with boundary $\pa M$, where $n\ge
\item Prove: if $M$ is contractible, then $\pa M$ has the homology of a sphere.
\item Assume that $M$ is orientable. Let $n = 2m+1$ and let $K$ be the kernel of the
homomorphism $H_m(\pa M) \rtarr H_m(M)$ induced by the inclusion, where homology is taken
with coefficients in a field. Prove: $\dimÊÊ\,H_m(\pa M)Ê=Ê2\dimÊÊ\,K$.
with coefficients in a field. Prove: $\dim<EFBFBD><EFBFBD>\,H_m(\pa M)<EFBFBD>=<EFBFBD>2\dim<EFBFBD><EFBFBD>\,K$.
\end{enumerate}
Let $n = 3$ in the rest of the problems.