This commit is contained in:
Michael Zhang 2024-05-17 18:35:10 -05:00
parent 447bd52025
commit f9ee8c0503

View file

@ -136,9 +136,25 @@ TODO
Ap rules
```
-- module lemma2∙2∙2 {A B : Set} {f : A → B} {x y z : A} {p : x ≡ y} {q : y ≡ z} where
-- i : ap f (p ∙ q) ≡ ap f p ∙ ap f q
-- i = J ((λ x1 y1 p1 → (q1 : y1 ≡ z) → ap f (p1 ∙ q1) ≡ ap f p1 ∙ ap f q1)) (λ x1 q1 → {! !}) x y p q
module lemma2∙2∙2 {A B C : Set} where
open ≡-Reasoning
i : {f : A → B} {x y z : A} (p : x ≡ y) (q : y ≡ z) → ap f (p ∙ q) ≡ ap f p ∙ ap f q
i {f} {x} {y} {z} p q = J
((λ x1 y1 p1 → (q1 : y1 ≡ z) → ap f (p1 ∙ q1) ≡ ap f p1 ∙ ap f q1))
(λ x1 q1 → J
(λ x2 y2 p2 → ap f (refl ∙ p2) ≡ ap f refl ∙ ap f p2)
(λ x2 → refl) x1 z q1
) x y p q
ii : {f : A → B} {x y : A} (p : x ≡ y) → ap f (sym p) ≡ sym (ap f p)
ii {f} {x} {y} p = J (λ x1 y1 p1 → ap f (sym p1) ≡ sym (ap f p1)) (λ x1 → refl) x y p
iii : (f : A → B) (g : B → C) {x y : A} (p : x ≡ y) → ap g (ap f p) ≡ ap (g ∘ f) p
iii f g {x} {y} p = J (λ x1 y1 p1 → ap g (ap f p1) ≡ ap (g ∘ f) p1) (λ x1 → refl) x y p
iv : {x y : A} (p : x ≡ y) → ap id p ≡ p
iv {x} {y} p = J (λ x1 y1 p1 → ap id p1 ≡ p1) (λ x1 → refl) x y p
```
## 2.3 Type families are fibrations
@ -155,24 +171,32 @@ transport {l₁} {l₂} {A} {x} {y} P p = J (λ x y p → P x → P y) (λ x →
### Lemma 2.3.2 (Path lifting property)
TODO
```
-- lift : {A : Set} (P : A → Set) {x y : A}
-- → (u : P x)
-- → (p : x ≡ y)
-- → (x , u) ≡ (y , transport P p u)
-- lift {A} P {x} {y} u p =
-- J (λ a b p → (x , {! !}) ≡ (y , {! !})) (λ x → {! !}) x y p
lift : {A : Set} {P : A → Set} {x y : A}
→ (u : P x)
→ (p : x ≡ y)
→ (x , u) ≡ (y , transport P p u)
lift {A} {P} {x} {y} u p =
J (λ x1 y1 p1 → (u1 : P x1) → (x1 , u1) ≡ (y1 , transport P p1 u1)) (λ x1 u1 → refl) x y p u
```
Verifying its property:
```
-- lift-prop : {A : Set} (P : A → Set) {x y : A} (u : P x) → (p : x ≡ y)
-- → Σ.fst (Σ-≡,≡←≡ (lift P u p)) ≡ p
-- lift-prop P u p =
-- J (λ the what → proj₁ (Σ-≡,≡←≡ (lift P u what)) ≡ what) p refl
module lemma2∙3∙2 where
pr₁ : {A : Set} {P : A → Set}
{x y : A}
{u : P x} {v : P y}
(p : (x , u) ≡ (y , v))
→ x ≡ y
pr₁ p = ap (λ (x , y) → x) p
open ≡-Reasoning
lift-prop : {A : Set} {P : A → Set} {x y : A} (u : P x) → (p : x ≡ y)
→ pr₁ (lift {A} {P} u p) ≡ p
lift-prop {A} {P} {x} {y} u p =
J (λ x1 y1 p1 → (u1 : P x1) → pr₁ (lift {A} {P} u1 p1) ≡ p1) (λ x1 u1 → refl) x y p u
```
### Lemma 2.3.4 (Dependent map)
@ -188,8 +212,6 @@ apd {l₁} {l₂} {A} {P} {x} {y} f p =
### Lemma 2.3.5
TODO
```
transportconst : {l₁ l₂ : Level} {A : Set l₁} {x y : A}
→ (B : Set l₂)
@ -562,15 +584,21 @@ postulate
-- theorem2∙11∙1 (f , f-eqv) a a' =
-- let
-- open ≡-Reasoning
-- mkQinv f⁻¹ α β = isequiv-to-qinv f-eqv
-- mkQinv g α β = isequiv-to-qinv f-eqv
-- inv : (f a ≡ f a') → a ≡ a'
-- inv p = (sym (β a)) ∙ (ap f⁻¹ p) ∙ (β a')
-- inv p = (sym (β a)) ∙ (ap g p) ∙ (β a')
-- backward : (p : f a ≡ f a') → (ap f ∘ inv) p ≡ id p
-- backward q = begin
-- ap f ((sym (β a)) ∙ (ap f⁻¹ q) ∙ (β a')) ≡⟨ {! !} ⟩
-- ap f ((sym (β a)) ∙ (ap g q) ∙ (β a')) ≡⟨ lemma2∙2∙2.i (sym (β a)) (ap g q ∙ β a') ⟩
-- ap f (sym (β a)) ∙ ap f ((ap g q) ∙ (β a')) ≡⟨ {! !} ⟩
-- ap f (sym (β a)) ∙ ap f ((ap g q) ∙ (β a')) ≡⟨ {! !} ⟩
-- id q ∎
-- forward : (p : a ≡ a') → (inv ∘ ap f) p ≡ id p
-- forward p = {! !}
-- forward p = begin
-- (sym (β a)) ∙ (ap g (ap f p)) ∙ (β a') ≡⟨ ap (λ p → (sym (β a)) ∙ p ∙ (β a')) (lemma2∙2∙2.iii f g p) ⟩
-- (sym (β a)) ∙ (ap (g ∘ f) p) ∙ (β a') ≡⟨ {! !} ⟩
-- (sym (β a)) ∙ (ap id p) ∙ (β a') ≡⟨ {! !} ⟩
-- id p ∎
-- eqv = mkQinv inv backward forward
-- in
-- ap f , qinv-to-isequiv eqv