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About this book

We did not set out to write a book. The present work has its origins in
our collective attempts to develop a new style of “informal type theory”
that can be read and understood by a human being, as a complement to
a formal proof that can be checked by a machine. Univalent foundations
is closely tied to the idea of a foundation of mathematics that can be im-
plemented in a computer proof assistant. Although such a formalization
is not part of this book, much of the material presented here was actu-
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Introduction

Homotopy type theory is a new branch of mathematics that combines as-
pects of several different fields in a surprising way. It is based on a re-
cently discovered connection between homotopy theory and type theory.
Homotopy theory is an outgrowth of algebraic topology and homologi-
cal algebra, with relationships to higher category theory; while type the-
ory is a branch of mathematical logic and theoretical computer science.
Although the connections between the two are currently the focus of in-
tense investigation, it is increasingly clear that they are just the beginning
of a subject that will take more time and more hard work to fully under-
stand. It touches on topics as seemingly distant as the homotopy groups
of spheres, the algorithms for type checking, and the definition of weak
co-groupoids.

Homotopy type theory also brings new ideas into the very founda-
tion of mathematics. On the one hand, there is Voevodsky’s subtle and
beautiful univalence axiom. The univalence axiom implies, in particular,
that isomorphic structures can be identified, a principle that mathemati-
cians have been happily using on workdays, despite its incompatibility
with the “official” doctrines of conventional foundations. On the other
hand, we have higher inductive types, which provide direct, logical de-
scriptions of some of the basic spaces and constructions of homotopy
theory: spheres, cylinders, truncations, localizations, etc. Both ideas are
impossible to capture directly in classical set-theoretic foundations, but
when combined in homotopy type theory, they permit an entirely new
kind of “logic of homotopy types”.

This suggests a new conception of foundations of mathematics, with
intrinsic homotopical content, an “invariant” conception of the objects
of mathematics — and convenient machine implementations, which can
serve as a practical aid to the working mathematician. This is the Univa-
lent Foundations program. The present book is intended as a first system-
atic exposition of the basics of univalent foundations, and a collection



2 INTRODUCTION

of examples of this new style of reasoning — but without requiring the
reader to know or learn any formal logic, or to use any computer proof
assistant.

We emphasize that homotopy type theory is a young field, and uni-
valent foundations is very much a work in progress. This book should
be regarded as a “snapshot” of just one portion of the field, taken at the
time it was written, rather than a polished exposition of a completed edi-
fice. As we will discuss briefly later, there are many aspects of homotopy
type theory that are not yet fully understood — and some that are not
even touched upon here. The ultimate theory will almost certainly not
look exactly like the one described in this book, but it will surely be at
least as capable and powerful; we therefore believe that univalent foun-
dations will eventually become a viable alternative to set theory as the
“implicit foundation” for the unformalized mathematics done by most
mathematicians.

Type theory

Type theory was originally invented by Bertrand Russell [Rus08], as a de-
vice for blocking the paradoxes in the logical foundations of mathemat-
ics that were under investigation at the time. It was developed further
by many people over the next few decades, particularly Church [Chu40,
Chu41] who combined it with his A-calculus. Although it is not generally
regarded as the foundation for classical mathematics, set theory being
more customary, type theory still has numerous applications, especially
in computer science and the theory of programming languages [Pie02].
Per Martin-Lof [ML98, ML75, ML82, ML84], among others, developed a
“predicative” modification of Church’s type system, which is now usu-
ally called dependent, constructive, intuitionistic, or simply Martin-Lof
type theory. This is the basis of the system that we consider here; it was
originally intended as a rigorous framework for the formalization of con-
structive mathematics. In what follows, we will often use “type theory”
to refer specifically to this system and similar ones, although type theory
as a subject is much broader (see [Som10, KLN04] for the history of type
theory).

In type theory, unlike set theory, objects are classified using a prim-
itive notion of type, similar to the data-types used in programming lan-
guages. These elaborately structured types can be used to express de-
tailed specifications of the objects classified, giving rise to principles of
reasoning about these objects. To take a very simple example, the ob-
jects of a product type A x B are known to be of the form (a,b), and



so one automatically knows how to construct them and how to decom-
pose them. Similarly, an object of function type A — B can be acquired
from an object of type B parametrized by objects of type A, and can be
evaluated at an argument of type A. This rigidly predictable behavior of
all objects (as opposed to set theory’s more liberal formation principles,
allowing inhomogeneous sets) is one aspect of type theory that has led
to its extensive use in verifying the correctness of computer programs.
The clear reasoning principles associated with the construction of types
also form the basis of modern computer proof assistants, which are used
for formalizing mathematics and verifying the correctness of formalized
proofs. We return to this aspect of type theory below.

One problem in understanding type theory from a mathematical point
of view, however, has always been that the basic concept of type is unlike
that of set in ways that have been hard to make precise. We believe that
the new idea of regarding types, not as strange sets (perhaps constructed
without using classical logic), but as spaces, viewed from the perspective
of homotopy theory, is a significant step forward. In particular, it solves
the problem of understanding how the notion of equality of elements of
a type differs from that of elements of a set.

In homotopy theory one is concerned with spaces and continuous
mappings between them, up to homotopy. A homotopy between a pair
of continuous maps f : X — Y and g : X — Y is a continuous map
H : X x [0,1] — Y satisfying H(x,0) = f(x) and H(x,1) = g(x). The
homotopy H may be thought of as a “continuous deformation” of f into
g. The spaces X and Y are said to be homotopy equivalent, X ~ Y, if there
are continuous maps going back and forth, the composites of which are
homotopical to the respective identity mappings, i.e., if they are isomor-
phic “up to homotopy”. Homotopy equivalent spaces have the same
algebraic invariants (e.g., homology, or the fundamental group), and are
said to have the same homotopy type.

Homotopy type theory

Homotopy type theory (HoTT) interprets type theory from a homotopi-
cal perspective. In homotopy type theory, we regard the types as “spaces”
(as studied in homotopy theory) or higher groupoids, and the logical
constructions (such as the product A x B) as homotopy-invariant con-
structions on these spaces. In this way, we are able to manipulate spaces
directly without first having to develop point-set topology (or any com-
binatorial replacement for it, such as the theory of simplicial sets). To
briefly explain this perspective, consider first the basic concept of type
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theory, namely that the term a is of type A, which is written:
a:A.
This expression is traditionally thought of as akin to:
“a is an element of the set A”.
However, in homotopy type theory we think of it instead as:
“a is a point of the space A”.

Similarly, every function f : A — B in type theory is regarded as a
continuous map from the space A to the space B.

We should stress that these “spaces” are treated purely homotopi-
cally, not topologically. For instance, there is no notion of “open subset”
of a type or of “convergence” of a sequence of elements of a type. We
only have “homotopical” notions, such as paths between points and ho-
motopies between paths, which also make sense in other models of ho-
motopy theory (such as simplicial sets). Thus, it would be more accurate
to say that we treat types as co-groupoids; this is a name for the “invari-
ant objects” of homotopy theory which can be presented by topological
spaces, simplicial sets, or any other model for homotopy theory. How-
ever, it is convenient to sometimes use topological words such as “space”
and “path”, as long as we remember that other topological concepts are
not applicable.

(It is tempting to also use the phrase homotopy type for these objects,
suggesting the dual interpretation of “a type (as in type theory) viewed
homotopically” and “a space considered from the point of view of ho-
motopy theory”. The latter is a bit different from the classical meaning
of “homotopy type” as an equivalence class of spaces modulo homotopy
equivalence, although it does preserve the meaning of phrases such as
“these two spaces have the same homotopy type”.)

The idea of interpreting types as structured objects, rather than sets,
has a long pedigree, and is known to clarify various mysterious aspects
of type theory. For instance, interpreting types as sheaves helps explain
the intuitionistic nature of type-theoretic logic, while interpreting them
as partial equivalence relations or “domains” helps explain its computa-
tional aspects. It also implies that we can use type-theoretic reasoning
to study the structured objects, leading to the rich field of categorical
logic. The homotopical interpretation fits this same pattern: it clarifies
the nature of identity (or equality) in type theory, and allows us to use
type-theoretic reasoning in the study of homotopy theory.



The key new idea of the homotopy interpretation is that the logical
notion of identity a = b of two objects a,b : A of the same type A can be
understood as the existence of a path p : a4 ~ b from point a to point b
in the space A. This also means that two functions f,g : A — B can be
identified if they are homotopic, since a homotopy is just a (continuous)
family of paths py : f(x) ~ g(x) in B, one for each x : A. In type theory,
for every type A there is a (formerly somewhat mysterious) type Id4 of
identifications of two objects of A; in homotopy type theory, this is just
the path space A! of all continuous maps I — A from the unit interval. In
this way, a term p : Id 4 (a,b) represents a path p : a ~ bin A.

The idea of homotopy type theory arose around 2006 in independent
work by Awodey and Warren [AW09] and Voevodsky [Voe06], but it
was inspired by Hofmann and Streicher’s earlier groupoid interpreta-
tion [HS98]. Indeed, higher-dimensional category theory (particularly
the theory of weak co-groupoids) is now known to be intimately con-
nected to homotopy theory, as proposed by Grothendieck and now being
studied intensely by mathematicians of both sorts. The original semantic
models of Awodey-Warren and Voevodsky use well-known notions and
techniques from homotopy theory which are now also in use in higher
category theory, such as Quillen model categories and Kan simplicial
sets.

In particular, Voevodsky constructed an interpretation of type theory
in Kan simplicial sets, and recognized that this interpretation satisfied a
further crucial property which he dubbed univalence. This had not previ-
ously been considered in type theory (although Church’s principle of ex-
tensionality for propositions turns out to be a very special case of it, and
Hofmann and Streicher had considered another special case under the
name “universe extensionality”). Adding univalence to type theory in
the form of a new axiom has far-reaching consequences, many of which
are natural, simplifying and compelling. The univalence axiom also fur-
ther strengthens the homotopical view of type theory, since it holds in
the simplicial model and other related models, while failing under the
view of types as sets.

Univalent foundations

Very briefly, the basic idea of the univalence axiom can be explained as
follows. In type theory, one can have a type whose elements are them-
selves types; such a type is called a universe and is usually denoted by
U. Those types that are terms of ¢/ are commonly called small types.
Like any type, U has an identity type ldy;, which expresses the identity
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relation A = B between small types. Thinking of types as spaces, U is
a space, the points of which are spaces; to understand its identity type,
we must ask, what is a path p : A ~ B between spaces in U? The
univalence axiom says that such paths correspond to homotopy equiva-
lences A ~ B, (roughly) as explained above. A bit more precisely, given
any (small) types A and B, in addition to the primitive type Id;(A, B)
of identifications of A with B, there is the defined type Equiv(A, B) of
equivalences from A to B. Since the identity map on any object is an
equivalence, there is a canonical map,

(A, B) — Equiv(A, B).

The univalence axiom states that this map is itself an equivalence. At the
risk of oversimplifying, we can state this succinctly as follows:

Univalence Axiom: (A =B) ~ (A~ B).

In other words, identity is equivalent to equivalence. In particular, one
may say that “equivalent types are identical”. However, this phrase is
somewhat misleading, since it may sound like a sort of “skeletality” con-
dition which collapses the notion of equivalence to coincide with identity,
whereas in fact univalence is about expanding the notion of identity so as
to coincide with the (unchanged) notion of equivalence.

From the homotopical point of view, univalence implies that spaces
of the same homotopy type are connected by a path in the universe ¢/, in
accord with the intuition of a classifying space for (small) spaces. From
the logical point of view, however, it is a radically new idea: it says that
isomorphic things can be identified! Mathematicians are of course used
to identifying isomorphic structures in practice, but they generally do
so by “abuse of notation”, or some other informal device, knowing that
the objects involved are not “really” identical. But in this new founda-
tional scheme, such structures can be formally identified, in the logical
sense that every property or construction involving one also applies to
the other. Indeed, the identification is now made explicit, and properties
and constructions can be systematically transported along it. Moreover,
the different ways in which such identifications may be made themselves
form a structure that one can (and should!) take into account.

Thus in sum, for points A and B of the universe i/ (i.e., small types),
the univalence axiom identifies the following three notions:

¢ (logical) an identification p : A = B of A and B
* (topological) a path p : A ~ B from A to Bin U
¢ (homotopical) an equivalence p : A ~ B between A and B.



Higher inductive types

One of the classical advantages of type theory is its simple and effec-
tive techniques for working with inductively defined structures. The
simplest nontrivial inductively defined structure is the natural numbers,
which is inductively generated by zero and the successor function. From
this statement one can algorithmically extract the principle of mathemat-
ical induction, which characterizes the natural numbers. More general
inductive definitions encompass lists and well-founded trees of all sorts,
each of which is characterized by a corresponding “induction principle”.
This includes most data structures used in certain programming lan-
guages; hence the usefulness of type theory in formal reasoning about
the latter. If conceived in a very general sense, inductive definitions
also include examples such as a disjoint union A + B, which may be
regarded as “inductively” generated by the two injections A — A + B
and B — A + B. The “induction principle” in this case is “proof by case
analysis”, which characterizes the disjoint union.

In homotopy theory, it is natural to consider also “inductively de-
fined spaces” which are generated not merely by a collection of points,
but also by collections of paths and higher paths. Classically, such spaces
are called CW complexes. For instance, the circle S! is generated by a
single point and a single path from that point to itself. Similarly, the 2-
sphere S? is generated by a single point b and a single two-dimensional
path from the constant path at b to itself, while the torus T? is gener-
ated by a single point, two paths p and g from that point to itself, and a
two-dimensional path from p-q to g+ p.

By using the identification of paths with identities in homotopy type
theory, these sort of “inductively defined spaces” can be characterized in
type theory by “induction principles”, entirely analogously to classical
examples such as the natural numbers and the disjoint union. The re-
sulting higher inductive types give a direct “logical” way to reason about
familiar spaces such as spheres, which (in combination with univalence)
can be used to perform familiar arguments from homotopy theory, such
as calculating homotopy groups of spheres, in a purely formal way. The
resulting proofs are a marriage of classical homotopy-theoretic ideas with
classical type-theoretic ones, yielding new insight into both disciplines.

Moreover, this is only the tip of the iceberg: many abstract construc-
tions from homotopy theory, such as homotopy colimits, suspensions,
Postnikov towers, localization, completion, and spectrification, can also
be expressed as higher inductive types. Many of these are classically con-
structed using Quillen’s “small object argument”, which can be regarded
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as a finite way of algorithmically describing an infinite CW complex pre-
sentation of a space, just as “zero and successor” is a finite algorithmic
description of the infinite set of natural numbers. Spaces produced by
the small object argument are infamously complicated and difficult to
understand; the type-theoretic approach is potentially much simpler, by-
passing the need for any explicit construction by giving direct access to
the appropriate “induction principle”. Thus, the combination of univa-
lence and higher inductive types suggests the possibility of a revolution,
of sorts, in the practice of homotopy theory.

Sets in univalent foundations

We have claimed that univalent foundations can eventually serve as a
foundation for “all” of mathematics, but so far we have discussed only
homotopy theory. Of course, there are many specific examples of the use
of type theory without the new homotopy type theory features to formal-
ize mathematics, such as the recent formalization of the Feit-Thompson
odd-order theorem in CoQ [GAA™13].

But the traditional view is that mathematics is founded on set the-
ory, in the sense that all mathematical objects and constructions can be
coded into a theory such as Zermelo-Fraenkel set theory (ZF). However,
it is well-established by now that for most mathematics outside of set
theory proper, the intricate hierarchical membership structure of sets in
ZF is really unnecessary: a more “structural” theory, such as Lawvere’s
Elementary Theory of the Category of Sets [Law05], suffices.

In univalent foundations, the basic objects are “homotopy types” rather
than sets, but we can define a class of types which behave like sets. Ho-
motopically, these can be thought of as spaces in which every connected
component is contractible, i.e. those which are homotopy equivalent to
a discrete space. It is a theorem that the category of such “sets” satisfies
Lawvere’s axioms (or related ones, depending on the details of the the-
ory). Thus, any sort of mathematics that can be represented in an ETCS-
like theory (which, experience suggests, is essentially all of mathematics)
can equally well be represented in univalent foundations.

This supports the claim that univalent foundations is at least as good
as existing foundations of mathematics. A mathematician working in
univalent foundations can build structures out of sets in a familiar way,
with more general homotopy types waiting in the foundational back-
ground until there is need of them. For this reason, most of the applica-
tions in this book have been chosen to be areas where univalent founda-
tions has something new to contribute that distinguishes it from existing



foundational systems.

Unsurprisingly, homotopy theory and category theory are two of these,
but perhaps less obvious is that univalent foundations has something
new and interesting to offer even in subjects such as set theory and real
analysis. For instance, the univalence axiom allows us to identify iso-
morphic structures, while higher inductive types allow direct descrip-
tions of objects by their universal properties. Thus we can generally
avoid resorting to arbitrarily chosen representatives or transfinite iter-
ative constructions. In fact, even the objects of study in ZF set theory
can be characterized, inside the sets of univalent foundations, by such
an inductive universal property.

Informal type theory

One difficulty often encountered by the classical mathematician when
faced with learning about type theory is that it is usually presented as a
fully or partially formalized deductive system. This style, which is very
useful for proof-theoretic investigations, is not particularly convenient
for use in applied, informal reasoning. Nor is it even familiar to most
working mathematicians, even those who might be interested in foun-
dations of mathematics. One objective of the present work is to develop
an informal style of doing mathematics in univalent foundations that is
at once rigorous and precise, but is also closer to the language and style
of presentation of everyday mathematics.

In present-day mathematics, one usually constructs and reasons about
mathematical objects in a way that could in principle, one presumes, be
formalized in a system of elementary set theory, such as ZFC — at least
given enough ingenuity and patience. For the most part, one does not
even need to be aware of this possibility, since it largely coincides with
the condition that a proof be “fully rigorous” (in the sense that all math-
ematicians have come to understand intuitively through education and
experience). But one does need to learn to be careful about a few aspects
of “informal set theory”: the use of collections too large or inchoate to
be sets; the axiom of choice and its equivalents; even (for undergradu-
ates) the method of proof by contradiction; and so on. Adopting a new
foundational system such as homotopy type theory as the implicit formal
basis of informal reasoning will require adjusting some of one’s instincts
and practices. The present text is intended to serve as an example of this
“new kind of mathematics”, which is still informal, but could now in
principle be formalized in homotopy type theory, rather than ZFC, again
given enough ingenuity and patience.
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It is worth emphasizing that, in this new system, such formalization
can have real practical benefits. The formal system of type theory is
suited to computer systems and has been implemented in existing proof
assistants. A proof assistant is a computer program which guides the
user in construction of a fully formal proof, only allowing valid steps
of reasoning. It also provides some degree of automation, can search li-
braries for existing theorems, and can even extract numerical algorithms
from the resulting (constructive) proofs.

We believe that this aspect of the univalent foundations program dis-
tinguishes it from other approaches to foundations, potentially provid-
ing a new practical utility for the working mathematician. Indeed, proof
assistants based on older type theories have already been used to for-
malize substantial mathematical proofs, such as the four-color theorem
and the Feit-Thompson theorem. Computer implementations of uni-
valent foundations are presently works in progress (like the theory it-
self). However, even its currently available implementations (which are
mostly small modifications to existing proof assistants such as COQ and
AGDA) have already demonstrated their worth, not only in the formal-
ization of known proofs, but in the discovery of new ones. Indeed, many
of the proofs described in this book were actually first done in a fully
formalized form in a proof assistant, and are only now being “unformal-
ized” for the first time — a reversal of the usual relation between formal
and informal mathematics.

One can imagine a not-too-distant future when it will be possible for
mathematicians to verify the correctness of their own papers by working
within the system of univalent foundations, formalized in a proof assis-
tant, and that doing so will become as natural as typesetting their own
papers in TgX. In principle, this could be equally true for any other foun-
dational system, but we believe it to be more practically attainable using
univalent foundations, as witnessed by the present work and its formal
counterpart.

Constructivity

One of the most striking differences between classical foundations and
type theory is the idea of proof relevance, according to which mathemat-
ical statements, and even their proofs, become first-class mathematical
objects. In type theory, we represent mathematical statements by types,
which can be regarded simultaneously as both mathematical construc-
tions and mathematical assertions, a conception also known as proposi-
tions as types. Accordingly, we can regard a term a : A as both an element
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of the type A (or in homotopy type theory, a point of the space A), and at
the same time, a proof of the proposition A. To take an example, suppose
we have sets A and B (discrete spaces), and consider the statement “A is
isomorphic to B”. In type theory, this can be rendered as:

Iso(A, B) :=
YL ([eastf() =x) x [ys f4) =v))-

(f:A—B) ($:B—A)

Reading the type constructors %, I1, x here as “there exists”, “for all”,
and “and” respectively yields the usual formulation of “A and B are iso-
morphic”; on the other hand, reading them as sums and products yields
the type of all isomorphisms between A and B! To prove that A and B are
isomorphic, one constructs a proof p : Iso(A, B), which is therefore the
same as constructing an isomorphism between A and B, i.e., exhibiting
a pair of functions f, g together with proofs that their composites are the
respective identity maps. The latter proofs, in turn, are nothing but ho-
motopies of the appropriate sorts. In this way, proving a proposition is
the same as constructing an element of some particular type. In particular, to
prove a statement of the form “A and B” is just to prove A and to prove
B, i.e, to give an element of the type A X B. And to prove that A im-
plies B is just to find an element of A — B, i.e. a function from A to B
(determining a mapping of proofs of A to proofs of B).

The logic of propositions-as-types is flexible and supports many vari-
ations, such as using only a subclass of types to represent propositions.
In homotopy type theory, there are natural such subclasses arising from
the fact that the system of all types, just like spaces in classical homo-
topy theory, is “stratified” according to the dimensions in which their
higher homotopy structure exists or collapses. In particular, Voevod-
sky has found a purely type-theoretic definition of homotopy n-types, cor-
responding to spaces with no nontrivial homotopy information above
dimension n. (The O-types are the “sets” mentioned previously as sat-
isfying Lawvere’s axioms.) Moreover, with higher inductive types, we
can universally “truncate” a type into an n-type; in classical homotopy
theory this would be its n" Postnikov section. Particularly important for
logic is the case of homotopy (—1)-types, which we call mere propositions.
Classically, every (—1)-type is empty or contractible; we interpret these
possibilities as the truth values “false” and “true” respectively.

Using all types as propositions yields a very “constructive” concep-
tion of logic; for more on this, see [Kol32, TvD88a, TvD88b]. For instance,
every proof that something exists carries with it enough information to
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actually find such an object; and every proof that “A or B” holds is either
a proof that A holds or a proof that B holds. Thus, from every proof we
can automatically extract an algorithm; this can be very useful in appli-
cations to computer programming.

On the other hand, however, this logic does diverge from the tradi-
tional understanding of existence proofs in mathematics. In particular,
it does not faithfully represent certain important classical principles of
reasoning, such as the axiom of choice and the law of excluded middle.
For these we need to use the “(—1)-truncated” logic, in which only the
homotopy (—1)-types represent propositions.

More specifically, consider on one hand the axiom of choice: “if for
every x : A there exists a y : B such that R(x,y), there is a function
f : A — B such that for all x : A we have R(x, f(x)).” The pure
propositions-as-types notion of “there exists” is strong enough to make
this statement simply provable — yet it does not have all the conse-
quences of the usual axiom of choice. However, in (—1)-truncated logic,
this statement is not automatically true, but is a strong assumption with
the same sorts of consequences as its counterpart in classical set theory.

On the other hand, consider the law of excluded middle: “for all A,
either A or not A.” Interpreting this in the pure propositions-as-types
logic yields a statement that is inconsistent with the univalence axiom.
For since proving “A” means exhibiting an element of it, this assumption
would give a uniform way of selecting an element from every nonempty
type — a sort of Hilbertian choice operator. Univalence implies that the
element of A selected by such a choice operator must be invariant under
all self-equivalences of A, since these are identified with self-identities
and every operation must respect identity; but clearly some types have
automorphisms with no fixed points, e.g. we can swap the elements of a
two-element type. However, the “(—1)-truncated law of excluded mid-
dle”, though also not automatically true, may consistently be assumed
with most of the same consequences as in classical mathematics.

In other words, while the pure propositions-as-types logic is “con-
structive” in the strong algorithmic sense mentioned above, the default
(—1)-truncated logic is “constructive” in a different sense (namely, that
of the logic formalized by Heyting under the name “intuitionistic”); and
to the latter we may freely add the axioms of choice and excluded mid-
dle to obtain a logic that may be called “classical”. Thus, homotopy type
theory is compatible with both constructive and classical conceptions of
logic, and many more besides. Indeed, the homotopical perspective re-
veals that classical and constructive logic can coexist, as endpoints of a
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spectrum of different systems, with an infinite number of possibilities
in between (the homotopy n-types for —1 < n < o0). We may speak
of “LEM,,” and “AC,”, with AC,, being provable and LEM., inconsistent
with univalence, while AC_; and LEM _4 are the versions familiar to clas-
sical mathematicians (hence in most cases it is appropriate to assume the
subscript (—1) when none is given). Indeed, one can even have useful
systems in which only certain types satisfy such further “classical” prin-
ciples, while types in general remain “constructive”.

It is worth emphasizing that univalent foundations does not require
the use of constructive or intuitionistic logic. Most of classical mathe-
matics which depends on the law of excluded middle and the axiom of
choice can be performed in univalent foundations, simply by assuming
that these two principles hold (in their proper, (—1)-truncated, form).
However, type theory does encourage avoiding these principles when
they are unnecessary, for several reasons.

First of all, every mathematician knows that a theorem is more pow-
erful when proven using fewer assumptions, since it applies to more ex-
amples. The situation with AC and LEM is no different: type theory ad-
mits many interesting “nonstandard” models, such as in sheaf toposes,
where classicality principles such as AC and LEM tend to fail. Homotopy
type theory admits similar models in higher toposes, such as are studied
in [TV02, Rez05, Lur09]. Thus, if we avoid using these principles, the
theorems we prove will be valid internally to all such models.

Secondly, one of the additional virtues of type theory is its computable
character. In addition to being a foundation for mathematics, type the-
ory is a formal theory of computation, and can be treated as a powerful
programming language. From this perspective, the rules of the system
cannot be chosen arbitrarily the way set-theoretic axioms can: there must
be a harmony between them which allows all proofs to be “executed”
as programs. We do not yet fully understand the new principles intro-
duced by homotopy type theory, such as univalence and higher induc-
tive types, from this point of view, but the basic outlines are emerging;
see, for example, [LH12]. It has been known for a long time, however,
that principles such as AC and LEM are fundamentally antithetical to
computability, since they assert baldly that certain things exist without
giving any way to compute them. Thus, avoiding them is necessary to
maintain the character of type theory as a theory of computation.

Fortunately, constructive reasoning is not as hard as it may seem. In
some cases, simply by rephrasing some definitions, a theorem can be
made constructive and its proof more elegant. Moreover, in univalent
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foundations this seems to happen more often. For instance:

(i) In set-theoretic foundations, at various points in homotopy the-
ory and category theory one needs the axiom of choice to perform
transfinite constructions. But with higher inductive types, we can
encode these constructions directly and constructively. In particu-
lar, none of the “synthetic” homotopy theory in Chapter 8 requires
LEM or AC.

(ii) In set-theoretic foundations, the statement “every fully faithful and
essentially surjective functor is an equivalence of categories” is equiv-
alent to the axiom of choice. But with the univalence axiom, it is
just true; see Chapter 9.

(iii) In set theory, various circumlocutions are required to obtain no-
tions of “cardinal number” and “ordinal number” which canoni-
cally represent isomorphism classes of sets and well-ordered sets,
respectively — possibly involving the axiom of choice or the axiom
of foundation. But with univalence and higher inductive types, we
can obtain such representatives directly by truncating the universe;
see Chapter 10.

(iv) In set-theoretic foundations, the definition of the real numbers as
equivalence classes of Cauchy sequences requires either the law
of excluded middle or the axiom of (countable) choice to be well-
behaved. But with higher inductive types, we can give a version of
this definition which is well-behaved and avoids any choice prin-
ciples; see Chapter 11.

Of course, these simplifications could as well be taken as evidence that
the new methods will not, ultimately, prove to be really constructive.
However, we emphasize again that the reader does not have to care, or
worry, about constructivity in order to read this book. The point is that
in all of the above examples, the version of the theory we give has in-
dependent advantages, whether or not LEM and AC are assumed to be
available. Constructivity, if attained, will be an added bonus.

Given this discussion of adding new principles such as univalence,
higher inductive types, AC, and LEM, one may wonder whether the re-
sulting system remains consistent. (One of the original virtues of type
theory, relative to set theory, was that it can be seen to be consistent by
proof-theoretic means). As with any foundational system, consistency is
a relative question: “consistent with respect to what?” The short answer
is that all of the constructions and axioms considered in this book have
a model in the category of Kan complexes, due to Voevodsky [KLV12]
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(see [LS17] for higher inductive types). Thus, they are known to be con-
sistent relative to ZFC (with as many inaccessible cardinals as we need
nested univalent universes). Giving a more traditionally type-theoretic
account of this consistency is work in progress (see, e.g., [LH12, BCH13]).

We summarize the different points of view of the type-theoretic op-
erations in Table 1.

Types Logic Sets Homotopy

A proposition set space

a:A proof element point

B(x) predicate family of sets fibration

b(x) : B(x) conditional proof family of elements  section

0,1 LT ?, {2} @, *

A+B AV B disjoint union coproduct
AXB ANB set of pairs product space
A—B A=B set of functions function space
L(x:a) B(x) Jr.aB(x) disjoint sum total space
[Tx:a) B(x) Vy.aB(x) product space of sections
Idg equality = {(x,x)|x€ A} path space A’

Table 1: Comparing points of view on type-theoretic operations

Open problems

For those interested in contributing to this new branch of mathematics, it
may be encouraging to know that there are many interesting open ques-
tions.

Perhaps the most pressing of them is the “constructivity” of the Uni-
valence Axiom, posed by Voevodsky in [Voel2]. The basic system of
type theory follows the structure of Gentzen’s natural deduction. Logi-
cal connectives are defined by their introduction rules, and have elimina-
tion rules justified by computation rules. Following this pattern, and us-
ing Tait’s computability method, originally designed to analyse Godel’s
Dialectica interpretation, one can show the property of normalization for
type theory. This in turn implies important properties such as decidabil-
ity of type-checking (a crucial property since type-checking corresponds
to proof-checking, and one can argue that we should be able to “recog-
nize a proof when we see one”), and the so-called “canonicity property”
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that any closed term of the type of natural numbers reduces to a numeral.
This last property, and the uniform structure of introduction/elimination
rules, are lost when one extends type theory with an axiom, such as
the axiom of function extensionality, or the univalence axiom. Voevod-
sky has formulated a precise mathematical conjecture connected to this
question of canonicity for type theory extended with the axiom of Uni-
valence: given a closed term of the type of natural numbers, is it always
possible to find a numeral and a proof that this term is equal to this nu-
meral, where this proof of equality may itself use the univalence axiom?
More generally, an important issue is whether it is possible to provide
a constructive justification of the univalence axiom. What about if one
adds other homotopically motivated constructions, like higher inductive
types? These questions remain open at the present time, although meth-
ods are currently being developed to try to find answers.

Another basic issue is the difficulty of working with types, such as
the natural numbers, that are essentially sets (i.e., discrete spaces), con-
taining only trivial paths. At present, homotopy type theory can re-
ally only characterize spaces up to homotopy equivalence, which means
that these “discrete spaces” may only be homotopy equivalent to discrete
spaces. Type-theoretically, this means there are many paths that are
equal to reflexivity, but not judgmentally equal to it (see §1.1 for the mean-
ing of “judgmentally”). While this homotopy-invariance has advantages,
these “meaningless” identity terms do introduce needless complications
into arguments and constructions, so it would be convenient to have a
systematic way of eliminating or collapsing them.

A more specialized, but no less important, problem is the relation be-
tween homotopy type theory and the research on higher toposes currently
happening at the intersection of higher category theory and homotopy
theory. There is a growing conviction among those familiar with both
subjects that they are intimately connected. For instance, the notion of a
univalent universe should coincide with that of an object classifier, while
higher inductive types should be an “elementary” reflection of local pre-
sentability. More generally, homotopy type theory should be the “inter-
nal language” of (oo, 1)-toposes, just as intuitionistic higher-order logic is
the internal language of ordinary 1-toposes. Despite this general consen-
sus, however, details remain to be worked out — in particular, questions
of coherence and strictness remain to be addressed — and doing so will
undoubtedly lead to further insights into both concepts.

But by far the largest field of work to be done is in the ongoing for-
malization of everyday mathematics in this new system. Recent suc-
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cesses in formalizing some facts from basic homotopy theory and cate-
gory theory have been encouraging; some of these are described in Chap-
ters 8 and 9. Obviously, however, much work remains to be done.

The homotopy type theory community maintains a web site and group
blog at http://homotopytypetheory.org, as well as a discussion
email list. Newcomers are always welcome!

How to read this book

This book is divided into two parts. Part I, “Foundations”, develops the
fundamental concepts of homotopy type theory. This is the mathemat-
ical foundation on which the development of specific subjects is built,
and which is required for the understanding of the univalent founda-
tions approach. To a programmer, this is “library code”. Since univalent
foundations is a new and different kind of mathematics, its basic notions
take some getting used to; thus Part I is fairly extensive.

Part II, “Mathematics”, consists of four chapters that build on the
basic notions of Part I to exhibit some of the new things we can do with
univalent foundations in four different areas of mathematics: homotopy
theory (Chapter 8), category theory (Chapter 9), set theory (Chapter 10),
and real analysis (Chapter 11). The chapters in Part II are more or less
independent of each other, although occasionally one will use a lemma
proven in another.

A reader who wants to seriously understand univalent foundations,
and be able to work in it, will eventually have to read and understand
most of Part I. However, a reader who just wants to get a taste of univa-
lent foundations and what it can do may understandably balk at having
to work through over 200 pages before getting to the “meat” in Part IL
Fortunately, not all of Part I is necessary in order to read the chapters
in Part II. Each chapter in Part Il begins with a brief overview of its sub-
ject, what univalent foundations has to contribute to it, and the necessary
background from Part I, so the courageous reader can turn immediately
to the appropriate chapter for their favorite subject. For those who want
to understand one or more chapters in Part Il more deeply than this, but
are not ready to read all of Part I, we provide here a brief summary of
Part I, with remarks about which parts are necessary for which chapters
in Part I

Chapter 1 is about the basic notions of type theory, prior to any ho-
motopical interpretation. A reader who is familiar with Martin-Lo6f type
theory can quickly skim it to pick up the particulars of the theory we are
using. However, readers without experience in type theory will need to
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read Chapter 1, as there are many subtle differences between type theory
and other foundations such as set theory.

Chapter 2 introduces the homotopical viewpoint on type theory, along
with the basic notions supporting this view, and describes the homotopi-
cal behavior of each component of the type theory from Chapter 1. It also
introduces the univalence axiom (§2.10) — the first of the two basic innova-
tions of homotopy type theory. Thus, it is quite basic and we encourage
everyone to read it, especially §§2.1-2.4.

Chapter 3 describes how we represent logic in homotopy type the-
ory, and its connection to classical logic as well as to constructive and
intuitionistic logic. Here we define the law of excluded middle, the ax-
iom of choice, and the axiom of propositional resizing (although, for the
most part, we do not need to assume any of these in the rest of the book),
as well as the propositional truncation which is essential for representing
traditional logic. This chapter is essential background for Chapters 10
and 11, less important for Chapter 9, and not so necessary for Chapter 8.

Chapters 4 and 5 study two special topics in detail: equivalences (and
related notions) and generalized inductive definitions. While these are
important subjects in their own rights and provide a deeper understand-
ing of homotopy type theory, for the most part they are not necessary for
Part II. Only a few lemmas from Chapter 4 are used here and there, while
the general discussions in §§5.1, 5.6 and 5.7 are helpful for providing the
intuition required for Chapter 6. The generalized sorts of inductive def-
inition discussed in §5.7 are also used in a few places in Chapters 10
and 11.

Chapter 6 introduces the second basic innovation of homotopy type
theory — higher inductive types — with many examples. Higher inductive
types are the primary object of study in Chapter 8, and some particular
ones play important roles in Chapters 10 and 11. They are not so neces-
sary for Chapter 9, although one example is used in §9.9.

Finally, Chapter 7 discusses homotopy n-types and related notions
such as n-connected types. These notions are important for Chapter 8,
but not so important in the rest of Part II, although the case n = —1 of
some of the lemmas are used in §10.1.

This completes Part I. As mentioned above, Part II consists of four
largely unrelated chapters, each describing what univalent foundations
has to offer to a particular subject.

Of the chapters in Part II, Chapter 8 (Homotopy theory) is perhaps
the most radical. Univalent foundations has a very different “synthetic”
approach to homotopy theory in which homotopy types are the basic
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objects (namely, the types) rather than being constructed using topolog-
ical spaces or some other set-theoretic model. This enables new styles of
proof for classical theorems in algebraic topology, of which we present a
sampling, from 711 (S') = Z to the Freudenthal suspension theorem.

In Chapter 9 (Category theory), we develop some basic (1-)category
theory, adhering to the principle of the univalence axiom that equality is
isomorphism. This has the pleasant effect of ensuring that all definitions
and constructions are automatically invariant under equivalence of cat-
egories: indeed, equivalent categories are equal just as equivalent types
are equal. (It also has connections to higher category theory and higher
topos theory.)

Chapter 10 (Set theory) studies sets in univalent foundations. The
category of sets has its usual properties, hence provides a foundation
for any mathematics that doesn’t need homotopical or higher-categorical
structures. We also observe that univalence makes cardinal and ordinal
numbers a bit more pleasant, and that higher inductive types yield a
cumulative hierarchy satisfying the usual axioms of Zermelo-Fraenkel
set theory.

In Chapter 11 (Real numbers), we summarize the construction of
Dedekind real numbers, and then observe that higher inductive types
allow a definition of Cauchy real numbers that avoids some associated
problems in constructive mathematics. Then we sketch a similar ap-
proach to Conway’s surreal numbers.

Each chapter in this book ends with a Notes section, which collects
historical comments, references to the literature, and attributions of re-
sults, to the extent possible. We have also included Exercises at the end
of each chapter, to assist the reader in gaining familiarity with doing
mathematics in univalent foundations.

Finally, recall that this book was written as a massively collaborative
effort by a large number of people. We have done our best to achieve
consistency in terminology and notation, and to put the mathematics in a
linear sequence that flows logically, but it is very likely that some imper-
fections remain. We ask the reader’s forgiveness for any such infelicities,
and welcome suggestions for improvement of the next edition.
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Chapter 1
Type theory

1.1 Type theory versus set theory

Homotopy type theory is (among other things) a foundational language
for mathematics, i.e., an alternative to Zermelo—Fraenkel set theory. How-
ever, it behaves differently from set theory in several important ways,
and that can take some getting used to. Explaining these differences
carefully requires us to be more formal here than we will be in the rest of
the book. As stated in the introduction, our goal is to write type theory
informally; but for a mathematician accustomed to set theory, more preci-
sion at the beginning can help avoid some common misconceptions and
mistakes.

We note that a set-theoretic foundation has two “layers”: the deduc-
tive system of first-order logic, and, formulated inside this system, the
axioms of a particular theory, such as ZFC. Thus, set theory is not only
about sets, but rather about the interplay between sets (the objects of the
second layer) and propositions (the objects of the first layer).

By contrast, type theory is its own deductive system: it need not be
formulated inside any superstructure, such as first-order logic. Instead
of the two basic notions of set theory, sets and propositions, type the-
ory has one basic notion: types. Propositions (statements which we can
prove, disprove, assume, negate, and so onl) are identified with partic-
ular types, via the correspondence shown in Table 1 on page 15. Thus,

IConfusingly, it is also a common practice (dating back to Euclid) to use the word
“proposition” synonymously with “theorem”. We will confine ourselves to the logician’s
usage, according to which a proposition is a statement susceptible to proof, whereas a theorem
(or “lemma” or “corollary”) is such a statement that has been proven. Thus “0 = 1” and its
negation “—(0 = 1)” are both propositions, but only the latter is a theorem.
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the mathematical activity of proving a theorem is identified with a special
case of the mathematical activity of constructing an object—in this case, an
inhabitant of a type that represents a proposition.

This leads us to another difference between type theory and set the-
ory, but to explain it we must say a little about deductive systems in
general. Informally, a deductive system is a collection of rules for de-
riving things called judgments. If we think of a deductive system as a
formal game, then the judgments are the “positions” in the game which
we reach by following the game rules. We can also think of a deductive
system as a sort of algebraic theory, in which case the judgments are the
elements (like the elements of a group) and the deductive rules are the
operations (like the group multiplication). From a logical point of view,
the judgments can be considered to be the “external” statements, living
in the metatheory, as opposed to the “internal” statements of the theory
itself.

In the deductive system of first-order logic (on which set theory is
based), there is only one kind of judgment: that a given proposition has
a proof. That is, each proposition A gives rise to a judgment “A has a
proof”, and all judgments are of this form. A rule of first-order logic
such as “from A and B infer A A B” is actually a rule of “proof construc-
tion” which says that given the judgments “A has a proof” and “B has
a proof”, we may deduce that “A A B has a proof”. Note that the judg-
ment “A has a proof” exists at a different level from the proposition A
itself, which is an internal statement of the theory.

The basic judgment of type theory, analogous to “A has a proof”, is
written “a : A” and pronounced as “the term a has type A”, or more
loosely “a is an element of A” (or, in homotopy type theory, “a is a point
of A”). When A is a type representing a proposition, then a may be called
a witness to the provability of A, or evidence of the truth of A (or even a
proof of A, but we will try to avoid this confusing terminology). In this
case, the judgment a : A is derivable in type theory (for some a) precisely
when the analogous judgment “A has a proof” is derivable in first-order
logic (modulo differences in the axioms assumed and in the encoding of
mathematics, as we will discuss throughout the book).

On the other hand, if the type A is being treated more like a set than
like a proposition (although as we will see, the distinction can become
blurry), then “a : A” may be regarded as analogous to the set-theoretic
statement “a € A”. However, there is an essential difference in that
“a: A”is ajudgment whereas “a € A” is a proposition. In particular, when
working internally in type theory, we cannot make statements such as
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“if a : A then it is not the case that b : B”, nor can we “disprove” the
judgment “a : A”.

A good way to think about this is that in set theory, “membership” is
a relation which may or may not hold between two pre-existing objects
“a” and “A”, while in type theory we cannot talk about an element “a” in
isolation: every element by its very nature is an element of some type, and
that type is (generally speaking) uniquely determined. Thus, when we
say informally “let x be a natural number”, in set theory this is shorthand
for “let x be a thing and assume that x € IN”, whereas in type theory “let
x : IN” is an atomic statement: we cannot introduce a variable without
specifying its type.

At first glance, this may seem an uncomfortable restriction, but it
is arguably closer to the intuitive mathematical meaning of “let x be a
natural number”. In practice, it seems that whenever we actually need
“a € A” to be a proposition rather than a judgment, there is always an
ambient set B of which a is known to be an element and A is known to be
a subset. This situation is also easy to represent in type theory, by taking
a to be an element of the type B, and A to be a predicate on B; see §3.5.

A last difference between type theory and set theory is the treatment
of equality. The familiar notion of equality in mathematics is a propo-
sition: e.g. we can disprove an equality or assume an equality as a hy-
pothesis. Since in type theory, propositions are types, this means that
equality is a type: for elements a,b : A (thatis, botha: Aand b : A) we
have a type “a =4 b”. (In homotopy type theory, of course, this equality
proposition can behave in unfamiliar ways: see §1.12 and Chapter 2, and
the rest of the book). When a =4 b is inhabited, we say that a and b are
(propositionally) equal.

However, in type theory there is also a need for an equality judgment,
existing at the same level as the judgment “x : A”. This is called judg-
mental equality or definitional equality, and we writeitasa =b: A or
simply a = b. It is helpful to think of this as meaning “equal by defini-
tion”. For instance, if we define a function f : N — IN by the equation
f(x) = x?, then the expression f(3) is equal to 3? by definition. Inside
the theory, it does not make sense to negate or assume an equality-by-
definition; we cannot say “if x is equal to y by definition, then z is not
equal to w by definition”. Whether or not two expressions are equal by
definition is just a matter of expanding out the definitions; in particu-
lar, it is algorithmically decidable (though the algorithm is necessarily
meta-theoretic, not internal to the theory).

As type theory becomes more complicated, judgmental equality can
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get more subtle than this, but it is a good intuition to start from. Al-
ternatively, if we regard a deductive system as an algebraic theory, then
judgmental equality is simply the equality in that theory, analogous to
the equality between elements of a group—the only potential for con-
fusion is that there is also an object inside the deductive system of type
theory (namely the type “a = b”) which behaves internally as a notion
of “equality”.

The reason we want a judgmental notion of equality is so that it can
control the other form of judgment, “a : A”. For instance, suppose we
have given a proof that 3> = 9, i.e. we have derived the judgment p :
(32 = 9) for some p. Then the same witness p ought to count as a proof
that f(3) = 9, since f(3) is 3% by definition. The best way to represent this
is with a rule saying that given the judgments a : A and A = B, we may
derive the judgment a : B.

Thus, for us, type theory will be a deductive system based on two
forms of judgment:

Judgment Meaning

a:A “a is an object of type A”
a=b:A “aandb are definitionally equal objects of type A”

When introducing a definitional equality, i.e., defining one thing to be
equal to another, we will use the symbol “:=". Thus, the above definition
of the function f would be written as f(x) := x2.

Because judgments cannot be put together into more complicated
statements, the symbols “:” and “=" bind more loosely than anything
else.? Thus, for instance, “p : x = y” should be parsed as “p : (x = y)”,
which makes sense since “x = y” is a type, and not as “(p : x) = y”,
which is senseless since “p : x” is a judgment and cannot be equal to
anything. Similarly, “A = x = y” can only be parsed as “A = (x = y)”,
although in extreme cases such as this, one ought to add parentheses
anyway to aid reading comprehension. Moreover, later on we will fall
into the common notation of chaining together equalities — e.g. writing
a=b=c=dtomean “a = band b = cand c = d, hencea = d”" —
and we will also include judgmental equalities in such chains. Context
usually suffices to make the intent clear.

%In formalized type theory, commas and turnstiles can bind even more loosely. For
instance, x : A,y : B c: Cisparsedas ((x: A),(y: B)) I (¢ : C). However, in this book
we refrain from such notation until Appendix A.
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This is perhaps also an appropriate place to mention that the com-
mon mathematical notation “f : A — B”, expressing the fact that f is a
function from A to B, can be regarded as a typing judgment, since we use
“A — B” as notation for the type of functions from A to B (as is standard
practice in type theory; see §1.4).

Judgments may depend on assumptions of the form x : A, where x
is a variable and A is a type. For example, we may construct an object
m + n : N under the assumptions that m, n : IN. Another example is that
assuming A is a type, x,y : A, and p : x =4 Yy, we may construct an
element p~! : y =4 x. The collection of all such assumptions is called
the context; from a topological point of view it may be thought of as a
“parameter space”. In fact, technically the context must be an ordered
list of assumptions, since later assumptions may depend on previous
ones: the assumption x : A can only be made after the assumptions of
any variables appearing in the type A.

If the type A in an assumption x : A represents a proposition, then the
assumption is a type-theoretic version of a hypothesis: we assume that the
proposition A holds. When types are regarded as propositions, we may
omit the names of their proofs. Thus, in the second example above we
may instead say that assuming x =4 y, we can prove y =4 x. However,
since we are doing “proof-relevant” mathematics, we will frequently re-
fer back to proofs as objects. In the example above, for instance, we may
want to establish that p~! together with the proofs of transitivity and
reflexivity behave like a groupoid; see Chapter 2.

Note that under this meaning of the word assumption, we can assume
a propositional equality (by assuming a variable p : x = y), but we
cannot assume a judgmental equality x = y, since it is not a type that can
have an element. However, we can do something else which looks kind
of like assuming a judgmental equality: if we have a type or an element
which involves a variable x : A, then we can substitute any particular
element a : A for x to obtain a more specific type or element. We will
sometimes use language like “now assume x = a” to refer to this process
of substitution, even though it is not an assumption in the technical sense
introduced above.

By the same token, we cannot prove a judgmental equality either,
since it is not a type in which we can exhibit a witness. Nevertheless,
we will sometimes state judgmental equalities as part of a theorem, e.g.
“there exists f : A — B such that f(x) = y”. This should be regarded
as the making of two separate judgments: first we make the judgment
f : A — B for some element f, then we make the additional judgment
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that f(x) = y.

In the rest of this chapter, we attempt to give an informal presenta-
tion of type theory, sufficient for the purposes of this book; we give a
more formal account in Appendix A. Aside from some fairly obvious
rules (such as the fact that judgmentally equal things can always be sub-
stituted for each other), the rules of type theory can be grouped into fype
formers. Each type former consists of a way to construct types (possibly
making use of previously constructed types), together with rules for the
construction and behavior of elements of that type. In most cases, these
rules follow a fairly predictable pattern, but we will not attempt to make
this precise here; see however the beginning of §1.5 and also Chapter 5.

An important aspect of the type theory presented in this chapter is
that it consists entirely of rules, without any axioms. In the description
of deductive systems in terms of judgments, the rules are what allow us
to conclude one judgment from a collection of others, while the axioms
are the judgments we are given at the outset. If we think of a deductive
system as a formal game, then the rules are the rules of the game, while
the axioms are the starting position. And if we think of a deductive sys-
tem as an algebraic theory, then the rules are the operations of the theory,
while the axioms are the generators for some particular free model of that
theory.

In set theory, the only rules are the rules of first-order logic (such as
the rule allowing us to deduce “A A B has a proof” from “A has a proof”
and “B has a proof”): all the information about the behavior of sets is
contained in the axioms. By contrast, in type theory, it is usually the rules
which contain all the information, with no axioms being necessary. For
instance, in §1.5 we will see that there is a rule allowing us to deduce the
judgment “(a,b) : A x B” from “a : A” and “b : B”, whereas in set theory
the analogous statement would be (a consequence of) the pairing axiom.

The advantage of formulating type theory using only rules is that
rules are “procedural”. In particular, this property is what makes pos-
sible (though it does not automatically ensure) the good computational
properties of type theory, such as “canonicity”. However, while this style
works for traditional type theories, we do not yet understand how to
formulate everything we need for homotopy type theory in this way. In
particular, in §§2.9 and 2.10 and Chapter 6 we will have to augment the
rules of type theory presented in this chapter by introducing additional
axioms, notably the univalence axiom. In this chapter, however, we con-
fine ourselves to a traditional rule-based type theory.
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1.2 Function types

Given types A and B, we can construct the type A — B of functions
with domain A and codomain B. We also sometimes refer to functions
as maps. Unlike in set theory, functions are not defined as functional
relations; rather they are a primitive concept in type theory. We explain
the function type by prescribing what we can do with functions, how to
construct them and what equalities they induce.

Given a function f : A — B and an element of the domain a : A, we
can apply the function to obtain an element of the codomain B, denoted
f(a) and called the value of f at a. It is common in type theory to omit
the parentheses and denote f(a) simply by f a, and we will sometimes
do this as well.

But how can we construct elements of A — B? There are two equiv-
alent ways: either by direct definition or by using A-abstraction. Intro-
ducing a function by definition means that we introduce a function by
giving it a name — let’s say, f — and saying we define f : A — B by
giving an equation

flx) =@ (1.2.1)

where x is a variable and & is an expression which may use x. In order
for this to be valid, we have to check that @ : B assuming x : A.

Now we can compute f(a) by replacing the variable x in ® with a.
As an example, consider the function f : IN — IN which is defined by
f(x) :== x + x. (We will define N and + in §1.9.) Then f(2) is judgmen-
tally equal to 2 + 2.

If we don’t want to introduce a name for the function, we can use
A-abstraction. Given an expression ® of type B which may use x :
A, as above, we write A(x: A). ® to indicate the same function defined
by (1.2.1). Thus, we have

(A(x:A).P): A— B.
For the example in the previous paragraph, we have the typing judgment
(AM(x:N).x+x):IN — N.

As another example, for any types A and B and any element y : B, we
have a constant function (A(x: A).y) : A — B.

We generally omit the type of the variable x in a A-abstraction and
write Ax. ®, since the typing x : A is inferable from the judgment that
the function Ax. ® has type A — B. By convention, the “scope” of the
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variable binding “Ax.” is the entire rest of the expression, unless delim-
ited with parentheses. Thus, for instance, Ax. x 4 x should be parsed as
Ax.(x 4+ x), not as (Ax.x) + x (which would, in this case, be ill-typed
anyway).

Another equivalent notation is

(x = ®): A — B.

We may also sometimes use a blank “~" in the expression ® in place of
a variable, to denote an implicit A-abstraction. For instance, g(x, -) is
another way to write Ay. g(x,y).
Now a A-abstraction is a function, so we can apply it to an argument
a : A. We then have the following computation rule®, which is a defini-
tional equality:
(Ax.®)(a) = @

where @' is the expression ® in which all occurrences of x have been
replaced by a. Continuing the above example, we have

(Ax.x+x)(2) =2+2.

Note that from any function f : A — B, we can construct a lambda
abstraction function Ax. f(x). Since this is by definition “the function
that applies f to its argument” we consider it to be definitionally equal
to f:4

f = (Ax.f(x)).

This equality is the uniqueness principle for function types, because it
shows that f is uniquely determined by its values.

The introduction of functions by definitions with explicit parameters
can be reduced to simple definitions by using A-abstraction: i.e., we can
read a definition of f : A — B by

as
fi=Ax.d.

When doing calculations involving variables, we have to be careful
when replacing a variable with an expression that also involves vari-
ables, because we want to preserve the binding structure of expressions.

3Use of this equality is often referred to as f-conversion or S-reduction.
4Use of this equality is often referred to as ;7-conversion or ;j-expansion.
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By the binding structure we mean the invisible link generated by binders
such as A, IT and X (the latter we are going to meet soon) between the
place where the variable is introduced and where it is used. As an exam-
ple, consider f : N — (N — IN) defined as

f(x):=Ay.x+y.

Now if we have assumed somewhere that y : IN, then what is f(y)? It
would be wrong to just naively replace x by y everywhere in the expres-
sion “Ay.x 4+ y” defining f(x), obtaining Ay.y + y, because this means
that i gets captured. Previously, the substituted y was referring to our
assumption, but now it is referring to the argument of the A-abstraction.
Hence, this naive substitution would destroy the binding structure, al-
lowing us to perform calculations which are semantically unsound.

But what is f(y) in this example? Note that bound (or “dummy”)
variables such as y in the expression Ay.x + y have only a local mean-
ing, and can be consistently replaced by any other variable, preserving
the binding structure. Indeed, Ay.x + y is declared to be judgmentally
equal® to Az. x + z. It follows that f(y) is judgmentally equal to Az.y + z,
and that answers our question. (Instead of z, any variable distinct from
y could have been used, yielding an equal result.)

Of course, this should all be familiar to any mathematician: it is the

same phenomenon as the fact that if f(x) := 12 %, then f(t) is not

flz % but rather 12 td_—ss. A A-abstraction binds a dummy variable in
exactly the same way that an integral does.

We have seen how to define functions in one variable. One way to
define functions in several variables would be to use the cartesian prod-
uct, which will be introduced later; a function with parameters A and
B and results in C would be given the type f : A x B — C. However,
there is another choice that avoids using product types, which is called
currying (after the mathematician Haskell Curry).

The idea of currying is to represent a function of two inputs a : A and
b : B as a function which takes one input a : A and returns another func-
tion, which then takes a second input b : B and returns the result. That
is, we consider two-variable functions to belong to an iterated function
type, f : A — (B — C). We may also write this without the parentheses,
as f : A = B — C, with associativity to the right as the default conven-
tion. Then given a : A and b : B, we can apply f to a and then apply the
result to b, obtaining f(a)(b) : C. To avoid the proliferation of parenthe-
ses, we allow ourselves to write f(a)(b) as f(a,b) even though there are

5Use of this equality is often referred to as a-conversion.
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no products involved. When omitting parentheses around function ar-
guments entirely, we write f a b for (f a) b, with the default associativity
now being to the left so that f is applied to its arguments in the correct
order.

Our notation for definitions with explicit parameters extends to this
situation: we can define a named function f : A — B — C by giving an
equation

fxy) =

where ®@ : C assuming x : A and y : B. Using A-abstraction this corre-
sponds to
f=AxAy. @,

which may also be written as
f=x—y— o

We can also implicitly abstract over multiple variables by writing mul-
tiple blanks, e.g. g(—, —) means Ax.Ay.g(x,y). Currying a function of
three or more arguments is a straightforward extension of what we have
just described.

1.3 Universes and families

So far, we have been using the expression “A is a type” informally. We
are going to make this more precise by introducing universes. A uni-
verse is a type whose elements are types. As in naive set theory, we
might wish for a universe of all types U, including itself (that is, with
U : Us). However, as in set theory, this is unsound, i.e. we can deduce
from it that every type, including the empty type representing the propo-
sition False (see §1.7), is inhabited. For instance, using a representation
of sets as trees, we can directly encode Russell’s paradox [Coq92a].
To avoid the paradox we introduce a hierarchy of universes

Z/{OZU1:U2:~~~

where every universe U; is an element of the next universe ;. More-
over, we assume that our universes are cumulative, that is that all the
elements of the i™ universe are also elements of the (i + 1) universe,
ie.if A : U; then also A : U; ;1. This is convenient, but has the slightly
unpleasant consequence that elements no longer have unique types, and
is a bit tricky in other ways that need not concern us here; see the Notes.
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When we say that A is a type, we mean that it inhabits some universe
U;. We usually want to avoid mentioning the level i explicitly, and just
assume that levels can be assigned in a consistent way; thus we may
write A : U omitting the level. This way we can even write I/ : U,
which can be read as Uf; : U;1, having left the indices implicit. Writing
universes in this style is referred to as typical ambiguity. It is convenient
but a bit dangerous, since it allows us to write valid-looking proofs that
reproduce the paradoxes of self-reference. If there is any doubt about
whether an argument is correct, the way to check it is to try to assign
levels consistently to all universes appearing in it. When some universe
U is assumed, we may refer to types belonging to I as small types.

To model a collection of types varying over a given type A, we use
functions B : A — U whose codomain is a universe. These functions are
called families of types (or sometimes dependent types); they correspond
to families of sets as used in set theory.

An example of a type family is the family of finite sets Fin : IN — U,
where Fin(n) is a type with exactly n elements. (We cannot define the
family Fin yet — indeed, we have not even introduced its domain IN yet
— but we will be able to soon; see Exercise 1.9.) We may denote the ele-
ments of Fin(n) by 04,14, ..., (n — 1), with subscripts to emphasize that
the elements of Fin(n) are different from those of Fin(m) if n is different
from m, and all are different from the ordinary natural numbers (which
we will introduce in §1.9).

A more trivial (but very important) example of a type family is the
constant type family at a type B : U, which is of course the constant
function (A(x: A).B) : A = U.

As a non-example, in our version of type theory there is no type fam-
ily “A(i:IN).U;”. Indeed, there is no universe large enough to be its
codomain. Moreover, we do not even identify the indices i of the uni-
verses U; with the natural numbers IN of type theory (the latter to be
introduced in §1.9).

1.4 Dependent function types (II1-types)

In type theory we often use a more general version of function types,
called a Il-type or dependent function type. The elements of a II-type
are functions whose codomain type can vary depending on the element
of the domain to which the function is applied, called dependent func-
tions. The name “I1-type” is used because this type can also be regarded
as the cartesian product over a given type.
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Given a type A : U and a family B : A — U, we may construct the
type of dependent functions [](,.) B(x) : U. There are many alternative
notations for this type, such as

[T(x.a)B(x) (H) B(x)  Tl(x:A), B(x).
x:A

If B is a constant family, then the dependent product type is the ordinary
function type:

[T(x:a)B = (A — B).

Indeed, all the constructions of II-types are generalizations of the corre-
sponding constructions on ordinary function types.

We can introduce dependent functions by explicit definitions: to de-
fine f : [1(x.a) B(x), where f is the name of a dependent function to be
defined, we need an expression ® : B(x) possibly involving the variable
x : A, and we write

f(x):=®  forx:A.

Alternatively, we can use A-abstraction

Ax.® : ] B(x). (1.4.1)
xA

As with non-dependent functions, we can apply a dependent function
f :IT(x.n) B(x) toanargument a : A to obtain an element f(a) : B(a). The
equalities are the same as for the ordinary function type, i.e. we have the
computation rule given a : A we have f(a) = ® and (Ax. ®)(a) = ¥/,
where @' is obtained by replacing all occurrences of x in ® by a (avoiding
variable capture, as always). Similarly, we have the uniqueness principle
f=(Ax. f(x)) forany f : [1x.4) B(x).

As an example, recall from §1.3 that there is a type family Fin : IN —
U whose values are the standard finite sets, with elements 0, 1, ..., (1 —
1)y : Fin(n). There is then a dependent function fmax : [T, Fin(n +
1) which returns the “largest” element of each nonempty finite type,
fmax(n) := n,,1. As was the case for Fin itself, we cannot define fmax
yet, but we will be able to soon; see Exercise 1.9.

Another important class of dependent function types, which we can
define now, are functions which are polymorphic over a given universe.
A polymorphic function is one which takes a type as one of its argu-
ments, and then acts on elements of that type (or of other types con-
structed from it). An example is the polymorphic identity function id :
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[Tawy A — A, which we define by id := A(A:U).A(x:A).x. (Like A-
abstractions, I1s automatically scope over the rest of the expression un-
less delimited; thus id : [T a) A — A meansid : [T (44 (A — A). This
convention, though unusual in mathematics, is common in type theory.)

We sometimes write some arguments of a dependent function as sub-
scripts. For instance, we might equivalently define the polymorphic
identity function by id4(x) := x. Moreover, if an argument can be in-
ferred from context, we may omit it altogether. For instance, if a : A,
then writing id (a) is unambiguous, since id must mean id4 in order for it
to be applicable to a.

Another, less trivial, example of a polymorphic function is the “swap”
operation that switches the order of the arguments of a (curried) two-
argument function:

swap: [[ J[] J[I(A—=B—=C)— (B—A—C).
(Au) (BU) (C:U)

We can define this by
swap(A,B,C,g) := Ab. Aa. g(a)(D).
We might also equivalently write the type arguments as subscripts:

swap,p,c(8)(b,a) 1= g(a,b).

Note that as we did for ordinary functions, we use currying to define
dependent functions with several arguments (such as swap). However,
in the dependent case the second domain may depend on the first one,
and the codomain may depend on both. That is, given A : I/ and type
families B : A — U and C : [](y.) B(x) — U, we may construct the
type [T(x.a) [1(y:8(x)) C(x,y) of functions with two arguments. In the case
when B is constant and equal to A, we may condense the notation and
write [](y,.4); for instance, the type of swap could also be written as

swap: [[ (A=-B—=C)— (B—A—CQ).
AB,CU
Finally, given f : IT(x.a) I1(y:B(x)) C(x,y) and arguments a : A and b :
B(a), we have f(a)(b) : C(a,b), which, as before, we write as f(a,b) :
C(a,b).

1.5 Product types

Given types A, B : U we introduce the type A x B : U, which we call their
cartesian product. We also introduce a nullary product type, called the
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unit type 1 : /. We intend the elements of A x B to be pairs (a,b) : A X B,
where a : Aand b : B, and the only element of 1 to be some particular ob-
ject % : 1. However, unlike in set theory, where we define ordered pairs
to be particular sets and then collect them all together into the carte-
sian product, in type theory, ordered pairs are a primitive concept, as are
functions.

Remark 1.5.1. There is a general pattern for introduction of a new kind of
type in type theory. We have already seen this pattern in §§1.2 and 1.4%,
so it is worth emphasizing the general form. To specify a type, we spec-

ify:

(i) how to form new types of this kind, via formation rules. (For ex-
ample, we can form the function type A — B when A is a type
and when B is a type. We can form the dependent function type
[T(x:a) B(x) when A is a type and B(x) is a type for x : A.)

(ii) how to construct elements of that type. These are called the type’s
constructors or introduction rules. (For example, a function type
has one constructor, A-abstraction. Recall that a direct definition
like f(x) := 2x can equivalently be phrased as a A-abstraction f :=
Ax.2x.)

(iii) how to use elements of that type. These are called the type’s elim-
inators or elimination rules. (For example, the function type has
one eliminator, namely function application.)

(iv) a computation rule’, which expresses how an eliminator acts on
a constructor. (For example, for functions, the computation rule
states that (Ax. ®)(a) is judgmentally equal to the substitution of a
for x in ®.)

(v) an optional uniqueness principle®, which expresses uniqueness
of maps into or out of that type. For some types, the uniqueness
principle characterizes maps into the type, by stating that every
element of the type is uniquely determined by the results of ap-
plying eliminators to it, and can be reconstructed from those re-
sults by applying a constructor—thus expressing how constructors
act on eliminators, dually to the computation rule. (For example,
for functions, the uniqueness principle says that any function f
is judgmentally equal to the “expanded” function Ax. f(x), and
thus is uniquely determined by its values.) For other types, the

®The description of universes above is an exception.
7also referred to as B-reduction
8also referred to as 77-expansion
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uniqueness principle says that every map (function) from that type
is uniquely determined by some data. (An example is the coprod-
uct type introduced in §1.7, whose uniqueness principle is men-
tioned in §2.15.)

When the uniqueness principle is not taken as a rule of judgmental
equality, it is often nevertheless provable as a propositional equality
from the other rules for the type. In this case we call it a proposi-
tional uniqueness principle. (In later chapters we will also occa-
sionally encounter propositional computation rules.)

The inference rules in Appendix A.2 are organized and named accord-
ingly; see, for example, Appendix A.2.4, where each possibility is real-
ized.

The way to construct pairs is obvious: givena : A and b : B, we
may form (a,b) : A x B. Similarly, there is a unique way to construct
elements of 1, namely we have x : 1. We expect that “every element of
A x B is a pair”, which is the uniqueness principle for products; we do
not assert this as a rule of type theory, but we will prove it later on as a
propositional equality.

Now, how can we use pairs, i.e. how can we define functions out of
a product type? Let us first consider the definition of a non-dependent
function f : A x B — C. Since we intend the only elements of A x B to
be pairs, we expect to be able to define such a function by prescribing the
result when f is applied to a pair (4,b). We can prescribe these results
by providing a function ¢ : A — B — C. Thus, we introduce a new rule
(the elimination rule for products), which says that for any such g, we
can define a function f : A x B — Cby

f((a,b)) = g(a)(b).

We avoid writing ¢(a,b) here, in order to emphasize that g is not a func-
tion on a product. (However, later on in the book we will often write
g(a,b) both for functions on a product and for curried functions of two
variables.) This defining equation is the computation rule for product
types.

Note that in set theory, we would justify the above definition of f by
the fact that every element of A x B is an ordered pair, so that it suffices to
define f on such pairs. By contrast, type theory reverses the situation: we
assume that a function on A x B is well-defined as soon as we specify its
values on pairs, and from this (or more precisely, from its more general
version for dependent functions, below) we will be able to prove that
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every element of A x B is a pair. From a category-theoretic perspective,
we can say that we define the product A x B to be left adjoint to the
“exponential” B — C, which we have already introduced.

As an example, we can derive the projection functions

pri:AxXxB— A
prp: AXB—B

with the defining equations

pri((a,b)) =a
pra((a,b)) =0

Rather than invoking this principle of function definition every time we
want to define a function, an alternative approach is to invoke it once,
in a universal case, and then simply apply the resulting function in all
other cases. That is, we may define a function of type

recaxp: | [(A—B—C)—»AxB—C (1.5.2)
cu

with the defining equation

recaxp(C, g, (a,b)) := g(a)(b).

Then instead of defining functions such as pr; and pr, directly by a defin-
ing equation, we could define

pr; := recaxp(A, Aa. Ab.a)
pry := recaxp(B, Aa. Ab. D).

We refer to the function rec,p as the recursor for product types. The
name “recursor” is a bit unfortunate here, since no recursion is taking
place. It comes from the fact that product types are a degenerate example
of a general framework for inductive types, and for types such as the
natural numbers, the recursor will actually be recursive. We may also
speak of the recursion principle for cartesian products, meaning the fact
that we can define a function f : A x B — C as above by giving its value
on pairs.

We leave it as a simple exercise to show that the recursor can be de-
rived from the projections and vice versa.

We also have a recursor for the unit type:

recl:HC%IAC
cu
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with the defining equation
reci(C,c, %) :=c.

Although we include it to maintain the pattern of type definitions, the
recursor for 1 is completely useless, because we could have defined such
a function directly by simply ignoring the argument of type 1.

To be able to define dependent functions over the product type, we
have to generalize the recursor. Given C : A X B — U, we may define a
function f : [T(x.axp) C(x) by providing a function

g [T ITT C((xy)

(x:A) (y:B)

with defining equation

f((xy) == g(x)(y)-

For example, in this way we can prove the propositional uniqueness
principle, which says that every element of A x B is equal to a pair.
Specifically, we can construct a function

unigaxp: [ ((pr1(x),pra(x)) =axp x).
x:AXB
Here we are using the identity type, which we are going to introduce
below in §1.12. However, all we need to know now is that there is a
reflexivity element refly : x =4 x for any x : A. Given this, we can define

uniqaxp((a,b)) = reﬂ(a,b)'

This construction works, because in the case that x := (a,b) we can cal-
culate

(pr1((a,b)), pr2((a,b))) = (a,b)

using the defining equations for the projections. Therefore,

reflo,p) = (pri((a, b)), pra((a, b)) = (a,b)

is well-typed, since both sides of the equality are judgmentally equal.
More generally, the ability to define dependent functions in this way
means that to prove a property for all elements of a product, it is enough
to prove it for its canonical elements, the ordered pairs. When we come
to inductive types such as the natural numbers, the analogous property
will be the ability to write proofs by induction. Thus, if we do as we
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did above and apply this principle once in the universal case, we call the
resulting function induction for product types: given A, B : U we have

indaxg: |1 (1‘[ Hny) [T c&)

C:AXB—U “(x:A) (y:B) x:AXB

with the defining equation

indaxp(C, g, (a,b)):=g(a)(b).

Similarly, we may speak of a dependent function defined on pairs being
obtained from the induction principle of the cartesian product. It is easy
to see that the recursor is just the special case of induction in the case
that the family C is constant. Because induction describes how to use
an element of the product type, induction is also called the (dependent)
eliminator, and recursion the non-dependent eliminator.

Induction for the unit type turns out to be more useful than the re-

cursor:
ind;: [] C(*)—>IIIC(x)

C1-U

with the defining equation
ind1(C, ¢, %) :==c.

Induction enables us to prove the propositional uniqueness principle for
1, which asserts that its only inhabitant is . That is, we can construct

unigq : H X =%
x:1

by using the defining equations
unigq (x) = refl,
or equivalently by using induction:

unigq := indq (Ax. x = %, refly).

1.6 Dependent pair types (X-types)

Just as we generalized function types (§1.2) to dependent function types
(§1.4), it is often useful to generalize the product types from §1.5 to allow
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the type of the second component of a pair to vary depending on the
choice of the first component. This is called a dependent pair type, or
2-type, because in set theory it corresponds to an indexed sum (in the
sense of coproduct or disjoint union) over a given type.

Given a type A : U and a family B : A — U, the dependent pair type
is written as Y ,.4) B(x) : U. Alternative notations are

Y (xa)B(%) (Z) B(x) Y(x: A), B(x).
x:A

Like other binding constructs such as A-abstractions and Ils, Xs auto-
matically scope over the rest of the expression unless delimited, so e.g.
Y(x:a) B(x) = Cmeans Y (,.4) (B(x) — C).

The way to construct elements of a dependent pair type is by pairing:
wehave (a,b) : ¥(y.4) B(x) givena : Aand b : B(a). If B is constant, then
the dependent pair type is the ordinary cartesian product type:

(ZA B) = (A xB).

All the constructions on X-types arise as straightforward generalizations
of the ones for product types, with dependent functions often replacing
non-dependent ones.

For instance, the recursion principle says that to define a non-dependent
function out of a X-type f : (L (x.a) B(x)) — C, we provide a function
8 : IT(x:a) B(x) = C, and then we can define f via the defining equation

f((a,b)) := g(a)(b).

For instance, we can derive the first projection from a X-type:
pry : (2 B(x)) — A
XA

by the defining equation
pri((a,b)) :=a.
However, since the type of the second component of a pair

(a,b) : ) B(x)
x:A

is B(a), the second projection must be a dependent function, whose type
involves the first projection function:

po: [ Bler(p)).

p:Z(X:A) B(x)
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Thus we need the induction principle for X-types (the “dependent elimi-
nator”). This says that to construct a dependent function out of a X-type
into a family C : (¥ (y.4) B(x)) — U, we need a function

g:H H C((a,b)).

(a:A) (b:B(a))

We can then derive a function

with defining equation

f((a,0)) := g(a)(b).
Applying this with C(p) := B(pry(p)), we can define

po: [ Blper(p))

p:Z(x:A) B(X)
with the obvious equation
pro((a,b)) :=b.

To convince ourselves that this is correct, we note that B(pr;((a,b))) =
B(a), using the defining equation for pry, and indeed b : B(a).

We can package the recursion and induction principles into the recur-
sor for X

I’ECZ(X:A)B(X) : ((I:—Z/[{) (H(x:A)B(x) — C) — (Z(x:A)B(x)) —C

with the defining equation
recy, 4 B(x) (C, & (a,0)) := g(a) ()

and the corresponding induction operator:

ind):(x:A) B(x)

(H(a:A)H(b:B(a))C((a/ b))) - JI <
(C:(X(x:n) B(x))—U) (P:L(x:a) B(x))

with the defining equation

indy,., 80(C.8, (a,)) = g(a) (b).
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As before, the recursor is the special case of induction when the family C
is constant.

As a further example, consider the following principle, where A and
Baretypesand R: A — B — U:

ac: (Tt ZyR(Y)) = (Z(pass TR f(2)).

We may regard R as a “proof-relevant relation” between A and B, with
R(a,b) the type of witnesses for relatedness of 2 : A and b : B. Then
ac says intuitively that if we have a dependent function g assigning to
every a : A a dependent pair (b,r) where b : Band r : R(a,b), then we
have a function f : A — B and a dependent function assigning to every
a : A awitness that R(a, f(a)). Our intuition tells us that we can just split
up the values of g into their components. Indeed, using the projections
we have just defined, we can define:

ac(g) := (Ax.pri(g(x), Ax.pra(8(x)) ).

To verify that this is well-typed, note that if g : [T(x.4) L(,:8) R(x,y), w
have

Ax.pri(g(x)): A — B,
Ax.pra(g(x)) : TT(x:a)R(x, pri(g(x))).

Moreover, the type [(y.4) R(x, prl( (x))) is the result of applying the
type family Af. [T(x.a) ( x, f(x)) being summed over in the codomain
of ac to the function )\x pri(g(x)):

e R(xpr () = (Af-TTeayR(x, f(x)) ) (Ax.pra((x)))-

Thus, we have

(A pri(g(x)), Ax.pra(8(x)) : Koo Ty R(x, ()

as required.

If we read I1 as “for all” and X as “there exists”, then the type of the
function ac expresses: if for all x : A there is a y : B such that R(x,y),
then there is a function f : A — B such that for all x : A we have R(x, f(x)).
Since this sounds like a version of the axiom of choice, the function ac has
traditionally been called the type-theoretic axiom of choice, and as we
have just shown, it can be proved directly from the rules of type theory,
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rather than having to be taken as an axiom. However, note that no choice
is actually involved, since the choices have already been given to us in
the premise: all we have to do is take it apart into two functions: one
representing the choice and the other its correctness. In §3.8 we will give
another formulation of an “axiom of choice” which is closer to the usual
one.

Dependent pair types are often used to define types of mathematical
structures, which commonly consist of several dependent pieces of data.
To take a simple example, suppose we want to define a magma to be a
type A together with a binary operationm : A — A — A. The precise
meaning of the phrase “together with” (and the synonymous “equipped
with”) is that “a magma” is a pair (A, m) consisting of a type A : U and
an operationm : A — A — A. Since the type A -+ A — A of the second
component m of this pair depends on its first component A, such pairs
belong to a dependent pair type. Thus, the definition “a magma is a type
A together with a binary operation m : A -+ A — A” should be read as
defining the type of magmas to be

Magma:= ) (A — A — A).
AU
Given a magma, we extract its underlying type (its “carrier”) with the
first projection pry, and its operation with the second projection pr,. Of
course, structures built from more than two pieces of data require it-
erated pair types, which may be only partially dependent; for instance
the type of pointed magmas (magmas (A, m) equipped with a basepoint
e:A)is
PointedMagma := ) (A — A — A) x A.
AU

We generally also want to impose axioms on such a structure, e.g. to
make a pointed magma into a monoid or a group. This can also be done
using X-types; see §1.11.

In the rest of the book, we will sometimes make definitions of this
sort explicit, but eventually we trust the reader to translate them from
English into X-types. We also generally follow the common mathemat-
ical practice of using the same letter for a structure of this sort and for
its carrier (which amounts to leaving the appropriate projection function
implicit in the notation): that is, we will speak of a magma A with its
operationm : A -+ A — A.

Note that the canonical elements of PointedMagma are of the form
(A, (m,e)) where A: U, m: A — A — A,and e : A. Because of the fre-
quency with which iterated X-types of this sort arise, we use the usual
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notation of ordered triples, quadruples and so on to stand for nested
pairs (possibly dependent) associating to the right. That is, we have

(x,y,2) = (x,(y,z)) and (x,y,z,w) := (x, (y, (z,w))), etc.

1.7 Coproduct types

Given A, B : U, we introduce their coproduct type A 4 B : Y. This cor-
responds to the disjoint union in set theory, and we may also use that
name for it. In type theory, as was the case with functions and products,
the coproduct must be a fundamental construction, since there is no pre-
viously given notion of “union of types”. We also introduce a nullary
version: the empty type 0 : U{.

There are two ways to construct elements of A + B, either as inl(a) :
A+Bfora: A orasinr(b) : A+ B for b : B. (The names inl and inr
are short for “left injection” and “right injection”.) There are no ways to
construct elements of the empty type.

To construct a non-dependent function f : A+ B — C, we need
functions gg : A =+ Cand g1 : B — C. Then f is defined via the defining
equations

f(inl(a)) := go(a),
f(inr(b)) := g1(b).

That is, the function f is defined by case analysis. As before, we can
derive the recursor:

recarg: [ (A—=C)—-(B—=C)—=A+B—C
(CU)

with the defining equations
reca+8(C, 80, 81,inl(a)) = go(a),
reca+5(C, g0,81,inr(b)) := g1(b).

We can always construct a function f : 0 — C without having to give
any defining equations, because there are no elements of 0 on which to
define f. Thus, the recursor for 0 is

reco : [Tc.)0 — C,

which constructs the canonical function from the empty type to any other
type. Logically, it corresponds to the principle ex falso quodlibet.
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To construct a dependent function f : [(y.a1p) C(x) out of a coprod-
uct, we assume as given the family C : (A + B) — U, and require

g0 1;1 C(inl(a)),
g1 : [ [ Clinr(b)).
b:B

This yields f with the defining equations:

F(inl(a)) = go(a),
f(inr(b)) := g1(b).

We package this scheme into the induction principle for coproducts:

indayp: I (H(HZA)C(inI(a))) -

(C:(A+B)—=U)
(Ms) Cline(8)) ) = (a5 C():

As before, the recursor arises in the case that the family C is constant.
The induction principle for the empty type

indo: J] ] Cl2)

(C:0—=U) (z:0)

gives us a way to define a trivial dependent function out of the empty
type.

1.8 The type of booleans

The type of booleans 2 : U is intended to have exactly two elements
02,1 : 2. It is clear that we could construct this type out of coproduct
and unit types as 1 + 1. However, since it is used frequently, we give the
explicit rules here. Indeed, we are going to observe that we can also go
the other way and derive binary coproducts from Z-types and 2.

To derive a function f : 2 — C weneed ¢, c1 : C and add the defining
equations
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The recursor corresponds to the if-then-else construct in functional pro-
gramming;:
recz:HC—>C—>2—>C
cu

with the defining equations
reca(C,co,c1,02) := co,

recz(C, Co,C1, 12) =1,

Given C : 2 — U, to derive a dependent function f : [ (y.2) C(x) we
need cp : C(02) and c; : C(1), in which case we can give the defining
equations

f(Oz) = Cp,
f(lz) =C1.

We package this up into the induction principle

indy : H C(02) — C(12) — H(x:Z)C(x)
(C:2—=U)

with the defining equations

indz(c, Co,C1, 02) = Cp,
indz(C,Co,Cl,lz) .

C1.

As an example, using the induction principle we can deduce that, as
we expect, every element of 2 is either 1, or 0,. As before, in order to
state this we use the equality types which we have not yet introduced,
but we need only the fact that everything is equal to itself by refl, : x = x.
Thus, we construct an element of

[T(x=02)+ (x =12), (1.8.1)
x:2

i.e. a function assigning to each x : 2 either an equality x = 0 or an
equality x = 1. We define this element using the induction principle for
2, with C(x) := (x = 02) + (x = 12); the two inputs are inl(refly,) : C(02)
and inr(refl,) : C(12). In other words, our element of (1.8.1) is

inda(Ax. (x = 02) + (x = 12), inl(refly, ), inr(refly,)).

We have remarked that X-types can be regarded as analogous to in-
dexed disjoint unions, while coproducts are binary disjoint unions. It is
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natural to expect that a binary disjoint union A 4 B could be constructed
as an indexed one over the two-element type 2. For this we need a type
family P : 2 — U such that P(0;) = A and P(12) = B. Indeed, we can
obtain such a family precisely by the recursion principle for 2. (The abil-
ity to define type families by induction and recursion, using the fact that
the universe U is itself a type, is a subtle and important aspect of type
theory.) Thus, we could have defined

A+B:= 2 reco(U, A, B, x)
x:2

with

inl(a) := (0,4),
inr(b) := (1,b).

We leave it as an exercise to derive the induction principle of a coproduct
type from this definition. (See also Exercise 1.5 and §5.2.)
We can apply the same idea to products and II-types: we could have
defined
A X B:= H reco(U, A, B, x).
x:2

Pairs could then be constructed using induction for 2:
(a,b) := inda(reca(U, A, B),a,Db)
while the projections are straightforward applications

),
).

The derivation of the induction principle for binary products defined
in this way is a bit more involved, and requires function extensional-
ity, which we will introduce in §2.9. Moreover, we do not get the same
judgmental equalities; see Exercise 1.6. This is a recurrent issue when
encoding one type as another; we will return to it in §5.5.

We may occasionally refer to the elements 0 and 12 of 2 as “false”
and “true” respectively. However, note that unlike in classical mathe-
matics, we do not use elements of 2 as truth values or as propositions.
(Instead we identify propositions with types; see §1.11.) In particular,
the type A — 2 is not generally the power set of A; it represents only the
“decidable” subsets of A (see Chapter 3).

pri(p) = p(
p

. 02
pra(p) := p(12
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1.9 The natural numbers

So far we have rules for constructing new types by abstract operations,
but for doing concrete mathematics we also require some concrete types,
such as types of numbers. The most basic such is the type N : U of
natural numbers; once we have this we can construct integers, rational
numbers, real numbers, and so on (see Chapter 11).

The elements of IN are constructed using 0 : IN and the successor
operation succ : N — IN. When denoting natural numbers, we adopt
the usual decimal notation 1 := succ(0), 2 := succ(1), 3 := succ(2), ....

The essential property of the natural numbers is that we can define
functions by recursion and perform proofs by induction — where now
the words “recursion” and “induction” have a more familiar meaning.
To construct a non-dependent function f : IN — C out of the natural
numbers by recursion, it is enough to provide a starting point cg : C and
a “next step” function ¢; : N — C — C. This gives rise to f with the
defining equations

£(0) := co,
f(suce(n)) == cs(n, f(n)).

We say that f is defined by primitive recursion.

As an example, we look at how to define a function on natural num-
bers which doubles its argument. In this case we have C := IN. We
first need to supply the value of double(0), which is easy: we put ¢g := 0.
Next, to compute the value of double(succ(n)) for a natural number 1, we
first compute the value of double(n) and then perform the successor oper-
ation twice. This is captured by the recurrence c;(n,y) := succ(succ(y)).
Note that the second argument y of ¢; stands for the result of the recursive
call double(n).

Defining double : IN — IN by primitive recursion in this way, there-
fore, we obtain the defining equations:

double(0) :=0
double(succ(n)) := succ(succ(double(n))).

This indeed has the correct computational behavior: for example, we
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have

double(2) = double(succ(succ(0)))
= ¢s(succ(0), double(succ(0)))
= succ(succ(double(succ(0))))
= succ(succ(cs (0, double(0))))
= succ (

= succ(succ(succ(succ(cy))))

(
(suce(
(succ(succ(succ(double(0)))))
(succe(
= succ(succ(succ(succ(0))))

=4,

We can define multi-variable functions by primitive recursion as well, by
currying and allowing C to be a function type. For example, we define
addition add : N — N — IN with C := N — IN and the following
“starting point” and “next step” data:

co:IN—IN
co(n) :=n
¢s:IN— (IN—-N) - (IN—N)
cs(m, g)(n) := succ(g(n)).
We thus obtain add : N — IN — N satisfying the definitional equalities
add(0,n) =n
add(succ(m),n) = succ(add(m,n)).

As usual, we write add(m, n) as m + n. The reader is invited to verify
that2 42 = 4.

As in previous cases, we can package the principle of primitive recur-
sion into a recursor:

reey: [[C(IN-C—C)—-N=C
(cu)

with the defining equations
recn (C, o, ¢s,0) := co,
recn (C, o, ¢, succ(n)) := cs(n, reen(C, cg, ¢s, 1) ).
Using recy we can present double and add as follows:

double := rec(IN, 0, An. Ay.succ(succ(y))) (1.9.1)
add := recny (N — IN, An.n, Am. Ag. An.succ(g(n))). (1.9.2)
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Of course, all functions definable only using the primitive recursion prin-
ciple will be computable. (The presence of higher function types — that s,
functions with other functions as arguments — does, however, mean we
can define more than the usual primitive recursive functions; see e.g. Ex-
ercise 1.10.) This is appropriate in constructive mathematics; in §§3.4
and 3.8 we will see how to augment type theory so that we can define
more general mathematical functions.

We now follow the same approach as for other types, generalizing
primitive recursion to dependent functions to obtain an induction princi-
ple. Thus, assume as given a family C : N — U, an element ¢y : C(0),
and a function cs : [Tj:n) C(n) — C(succ(n)); then we can construct
f : In:n) C(n) with the defining equations:

£(0) := co,
f(suce(n)) == cs(n, f(n)).

We can also package this into a single function

ndn: T €(0) = (T C(n) = Clsuce(n)) ) = Ty C(n)
(C:N=U)

with the defining equations

indN(C, Co, Cs, 0) = Cp,
indN (C, co, ¢s, succ(n)) := ¢s(n, indN(C, co, cs,11)).

Here we finally see the connection to the classical notion of proof by in-
duction. Recall that in type theory we represent propositions by types,
and proving a proposition by inhabiting the corresponding type. In par-
ticular, a property of natural numbers is represented by a family of types
P :IN — U. From this point of view, the above induction principle says
that if we can prove P(0), and if for any n we can prove P(succ(n)) as-
suming P(n), then we have P(n) for all n. This is, of course, exactly the
usual principle of proof by induction on natural numbers.

As an example, consider how we might represent an explicit proof
that + is associative. (We will not actually write out proofs in this style,
but it serves as a useful example for understanding how induction is
represented formally in type theory.) To derive

assoc: [ i+ (j+k)=(i+j) +k
i kN
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it is sufficient to supply

assoco: [ [ 0+ (j+k) = (0+]) +k
jk:IN

and

assocs : [ | (H i+(G+k) = (i—i—j)—i—k)
J

iIN \jk:IN

— [ succ(i) + (j+ k) = (succ(i) +j) + k.
jk:IN

To derive assocy, recall that 0 +7n = n, and hence 0+ (j +k) = j+k =
(0 + j) + k. Hence we can just set

assocy(j, k) := refl; 4.

For assoc;, recall that the definition of + gives succ(m) + n = succ(m +
n), and hence

succ(i) + (j+ k) = succ(i+ (j+k)) and
(succ(i) +j) + k = succ((i +j) + k).

Thus, the output type of assoc; is equivalently succ(i + (j+k)) = succ((i+
j) + k). But its input (the “inductive hypothesis”) yields i + (j + k) =

(i+ j) + k, so it suffices to invoke the fact that if two natural numbers

are equal, then so are their successors. (We will prove this obvious fact

in Lemma 2.2.1, using the induction principle of identity types.) We call

this latter fact apg . : (m =N 1) — (succ(m) =N succ(n)), so we can

define

assocs(i, 1, ,k) := apsycc(h(j, k)).

Putting these together with indp;, we obtain a proof of associativity.

1.10 Pattern matching and recursion
The natural numbers introduce an additional subtlety over the types
considered up until now. In the case of coproducts, for instance, we

could define a function f : A + B — C either with the recursor:

f= recA+B(C,go,g1)
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or by giving the defining equations:

f(inl(a)) := go(a)
f(inr(b)) := g1(b).

To go from the former expression of f to the latter, we simply use the
computation rules for the recursor. Conversely, given any defining equa-
tions

f(inl(a)) :== g
f(inr(b)) := P

where ®( and P; are expressions that may involve the variables a and b
respectively, we can express these equations equivalently in terms of the
recursor by using A-abstraction:

fi=recayp(C, Aa. Dy, Ab. Pq).

In the case of the natural numbers, however, the “defining equations” of
a function such as double:

double(0) :=0 (1.10.1)
double(succ(n)) := succ(succ(double(n))) (1.10.2)

involve the function double itself on the right-hand side. However, we
would still like to be able to give these equations, rather than (1.9.1),
as the definition of double, since they are much more convenient and
readable. The solution is to read the expression “double(rn)” on the right-
hand side of (1.10.2) as standing in for the result of the recursive call,
which in a definition of the form double := recy(IN, ¢o, ¢s) would be the
second argument of cs.

More generally, if we have a “definition” of a function f : N — C
such as

f(O) = q)o
f(succ(n)) =

where @ is an expression of type C, and @ is an expression of type C
which may involve the variable n and also the symbol “f(n)”, we may
translate it to a definition

f :=recn(C, @p, An. Ar. D)
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where @ is obtained from ®; by replacing all occurrences of “f(n)” by
the new variable 7.

This style of defining functions by recursion (or, more generally, de-
pendent functions by induction) is so convenient that we frequently adopt
it. It is called definition by pattern matching. Of course, it is very similar
to how a computer programmer may define a recursive function with
a body that literally contains recursive calls to itself. However, unlike
the programmer, we are restricted in what sort of recursive calls we can
make: in order for such a definition to be re-expressible using the recur-
sion principle, the function f being defined can only appear in the body
of f(succ(n)) as part of the composite symbol “f(n)”. Otherwise, we
could write nonsense functions such as

f(0):=0
f(succ(n)) := f(succ(succ(n))).

If a programmer wrote such a function, it would simply call itself forever
on any positive input, going into an infinite loop and never returning a
value. In mathematics, however, to be worthy of the name, a function
must always associate a unique output value to every input value, so
this would be unacceptable.

This point will be even more important when we introduce more
complicated inductive types in Chapters 5, 6 and 11. Whenever we in-
troduce a new kind of inductive definition, we always begin by deriving
its induction principle. Only then do we introduce an appropriate sort
of “pattern matching” which can be justified as a shorthand for the in-
duction principle.

1.11 Propositions as types

As mentioned in the introduction, to show that a proposition is true in
type theory corresponds to exhibiting an element of the type correspond-
ing to that proposition. We regard the elements of this type as evidence
or witnesses that the proposition is true. (They are sometimes even called
proofs, but this terminology can be misleading, so we generally avoid it.)
In general, however, we will not construct witnesses explicitly; instead
we present the proofs in ordinary mathematical prose, in such a way that
they could be translated into an element of a type. This is no different
from reasoning in classical set theory, where we don’t expect to see an
explicit derivation using the rules of predicate logic and the axioms of
set theory.
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However, the type-theoretic perspective on proofs is nevertheless dif-
ferent in important ways. The basic principle of the logic of type theory
is that a proposition is not merely true or false, but rather can be seen as
the collection of all possible witnesses of its truth. Under this conception,
proofs are not just the means by which mathematics is communicated,
but rather are mathematical objects in their own right, on a par with
more familiar objects such as numbers, mappings, groups, and so on.
Thus, since types classify the available mathematical objects and govern
how they interact, propositions are nothing but special types — namely,
types whose elements are proofs.

The basic observation which makes this identification feasible is that
we have the following natural correspondence between logical opera-
tions on propositions, expressed in English, and type-theoretic operations
on their corresponding types of witnesses.

English Type Theory

True 1

False 0

Aand B AXB

AorB A+B

If A then B A— B
Aifandonlyif B (A — B) x (B— A)
Not A A—0

The point of the correspondence is that in each case, the rules for
constructing and using elements of the type on the right correspond to
the rules for reasoning about the proposition on the left. For instance, the
basic way to prove a statement of the form “A and B” is to prove A and
also prove B, while the basic way to construct an element of A x B is as
a pair (a,b), where a is an element (or witness) of A and b is an element
(or witness) of B. And if we want to use “A and B” to prove something
else, we are free to use both A and B in doing so, analogously to how the
induction principle for A x B allows us to construct a function out of it
by using elements of A and of B.

Similarly, the basic way to prove an implication “if A then B” is to
assume A and prove B, while the basic way to construct an element of
A — B is to give an expression which denotes an element (witness) of
B which may involve an unspecified variable element (witness) of type
A. And the basic way to use an implication “if A then B” is deduce B if
we know A, analogously to how we can apply a function f : A — B to
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an element of A to produce an element of B. We strongly encourage the
reader to do the exercise of verifying that the rules governing the other
type constructors translate sensibly into logic.

Of special note is that the empty type 0 corresponds to falsity. When
speaking logically, we refer to an inhabitant of 0 as a contradiction: thus
there is no way to prove a contradiction,” while from a contradiction
anything can be derived. We also define the negation of a type A as

-A:= A—0.

Thus, a witness of —A is a function A — 0, which we may construct by
assuming x : A and deriving an element of 0. Note that although the
logic we obtain is “constructive”, as discussed in the introduction, this
sort of “proof by contradiction” (assume A and derive a contradiction,
concluding —A) is perfectly valid constructively: it is simply invoking
the meaning of “negation”. The sort of “proof by contradiction” which
is disallowed is to assume —A and derive a contradiction as a way of
proving A. Constructively, such an argument would only allow us to
conclude ——A, and the reader can verify that there is no obvious way to
get from ——A (that is, from (A — 0) — 0) to A.

The above translation of logical connectives into type-forming opera-
tions is referred to as propositions as types: it gives us a way to translate
propositions and their proofs, written in English, into types and their el-
ements. For example, suppose we want to prove the following tautology
(one of “de Morgan’s laws”):

“If not A and not B, then not (A or B)”. (1.11.1)

An ordinary English proof of this fact might go as follows.

Suppose not A and not B, and also suppose A or B; we will
derive a contradiction. There are two cases. If A holds, then
since not A, we have a contradiction. Similarly, if B holds,
then since not B, we also have a contradiction. Thus we have
a contradiction in either case, so not (A or B).

Now, the type corresponding to our tautology (1.11.1), according to the
rules given above, is

(A—=0)x(B—0)— (A+B—0) (1.11.2)

9More precisely, there is no basic way to prove a contradiction, i.e. 0 has no constructors.
If our type theory were inconsistent, then there would be some more complicated way to
construct an element of 0.
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so we should be able to translate the above proof into an element of this
type.

As an example of how such a translation works, let us describe how
a mathematician reading the English proof above might simultaneously
construct, in their head, an element of (1.11.2). The introductory phrase
“Suppose not A and not B” translates into defining a function, with an
implicit application of the recursion principle for the cartesian product
in its domain (A — 0) x (B — 0). This introduces unnamed variables
(hypotheses) of types A — 0 and B — 0. When translating into type
theory, we have to give these variables names; let us call them x and y.
At this point our partial definition of an element of (1.11.2) can be written
as

flx,y))=0:A+B—0

with a “hole” O of type A 4+ B — 0 indicating what remains to be done.
(We could equivalently write f := rec(4_,0)x(8—0)(A+ B — 0,Ax. Ay.0),
using the recursor instead of pattern matching.) The next phrase “also
suppose A or B; we will derive a contradiction” indicates filling this
hole by a function definition, introducing another unnamed hypothesis
z : A+ B, leading to the proof state:

fl(xy))(z) = o :0.

Now saying “there are two cases” indicates a case split, i.e. an application
of the recursion principle for the coproduct A + B. If we write this using
the recursor, it would be

f((x,y))(z) :==recarp(0,Aa.0,Ab. 0O, 2)

while if we write it using pattern matching, it would be

f((x,y))(inl(a)) :== O : 0
f((x,y))(inr(b)) := O : 0.

Note that in both cases we now have two “holes” of type 0 to fill in,
corresponding to the two cases where we have to derive a contradiction.
Finally, the conclusion of a contradiction froma : Aand x : A — 0is
simply application of the function x to 4, and similarly in the other case.
(Note the convenient coincidence of the phrase “applying a function”
with that of “applying a hypothesis” or theorem.) Thus our eventual
definition is

f((x,y))(inl(a)) :
f((x,y))(inr (D)) :

x(a)
y(D).
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As an exercise, you should verify the converse tautology “If not (A or
B), then (not A) and (not B)” by exhibiting an element of

((A+B)—>0) = (A—0)x(B—0),

for any types A and B, using the rules we have just introduced.
However, not all classical tautologies hold under this interpretation.

For example, the rule “If not (A and B), then (not A) or (not B)” is not valid:

we cannot, in general, construct an element of the corresponding type

(AxB)—=0)—(A—0)+(B—0).

This reflects the fact that the “natural” propositions-as-types logic of type
theory is constructive. This means that it does not include certain classical
principles, such as the law of excluded middle (LEM) or proof by contra-
diction, and others which depend on them, such as this instance of de
Morgan’s law.

Philosophically, constructive logic is so-called because it confines it-
self to constructions that can be carried out effectively, which is to say
those with a computational meaning. Without being too precise, this
means there is some sort of algorithm specifying, step-by-step, how to
build an object (and, as a special case, how to see that a theorem is true).
This requires omission of LEM, since there is no effective procedure for
deciding whether a proposition is true or false.

The constructivity of type-theoretic logic means it has an intrinsic
computational meaning, which is of interest to computer scientists. It
also means that type theory provides axiomatic freedom. For example,
while by default there is no construction witnessing LEM, the logic is
still compatible with the existence of one (see §3.4). Thus, because type
theory does not deny LEM, we may consistently add it as an assumption,
and work conventionally without restriction. In this respect, type theory
enriches, rather than constrains, conventional mathematical practice.

We encourage the reader who is unfamiliar with constructive logic to
work through some more examples as a means of getting familiar with
it. See Exercises 1.12 and 1.13 for some suggestions.

So far we have discussed only propositional logic. Now we consider
predicate logic, where in addition to logical connectives like “and” and
“or” we have quantifiers “there exists” and “for all”. In this case, types
play a dual role: they serve as propositions and also as types in the con-
ventional sense, i.e., domains we quantify over. A predicate over a type
A is represented as a family P : A — U, assigning to every elementa : A
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a type P(a) corresponding to the proposition that P holds for a. We now
extend the above translation with an explanation of the quantifiers:

English Type Theory

Forall x : A, P(x) holds [T(x:a) P(x)
There exists x : A such that P(x) Y (,.4) P(x)

As before, we can show that tautologies of (constructive) predicate logic
translate into inhabited types. For example, If for all x : A, P(x) and Q(x)
then (for all x : A, P(x)) and (for all x : A, Q(x)) translates to

(H(x:A)P(x) X Q(x)) - (H(x:A)P(x)) X (H(xA)Q(x))
An informal proof of this tautology might go as follows:

Suppose for all x, P(x) and Q(x). First, we suppose given
x and prove P(x). By assumption, we have P(x) and Q(x),
and hence we have P(x). Second, we suppose given x and
prove Q(x). Again by assumption, we have P(x) and Q(x),
and hence we have Q(x).

The first sentence begins defining an implication as a function, by intro-
ducing a witness for its hypothesis:

f(P) =0 (H(x:A)P(x)) X (H(xA)Q(x))

At this point there is an implicit use of the pairing constructor to produce
an element of a product type, which is somewhat signposted in this ex-
ample by the words “first” and “second”:

f(P) = ( d :H(x:A)P(x) , 0 :H(x:A)Q(x) )

The phrase “we suppose given x and prove P(x)” now indicates defining
a dependent function in the usual way, introducing a variable for its input.
Since this is inside a pairing constructor, it is natural to write it as a A-
abstraction:

fp):= (A% (0 P(x), D Tlaa Q) ).

Now “we have P(x) and Q(x)” invokes the hypothesis, obtaining p(x) :
P(x) x Q(x), and “hence we have P(x)” implicitly applies the appropri-
ate projection:

f(p) = (Axpn(p(x) ) O T Q) ).
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The next two sentences fill the other hole in the obvious way:

f(p) = (Axpra(p(x)) , Ax.pra(p(x) ).

Of course, the English proofs we have been using as examples are much
more verbose than those that mathematicians usually use in practice;
they are more like the sort of language one uses in an “introduction to
proofs” class. The practicing mathematician has learned to fill in the
gaps, so in practice we can omit plenty of details, and we will generally
do so. The criterion of validity for proofs, however, is always that they
can be translated back into the construction of an element of the corre-
sponding type.

As a more concrete example, consider how to define inequalities of
natural numbers. One natural definition is that n < m if there exists a
k : IN such that n + k = m. (This uses again the identity types that we
will introduce in the next section, but we will not need very much about
them.) Under the propositions-as-types translation, this would yield:

(n<m):=) (n+k=m).
k:IN

The reader is invited to prove the familiar properties of < from this def-
inition. For strict inequality, there are a couple of natural choices, such
as
(n <m):=Y_ (n+succ(k) = m)
k:N
or
(n<m):=(n<m)x-(n=m).

The former is more natural in constructive mathematics, but in this case
it is actually equivalent to the latter, since IN has “decidable equality”
(see §3.4 and Theorem 7.2.6).

There is also another interpretation of the type Y (,.4) P(x). Since an
inhabitant of it is an element x : A together with a witness that P(x)
holds, instead of regarding Y_(,.4) P(x) as the proposition “there exists
an x : A such that P(x)”, we can regard it as “the type of all elements
x : A such that P(x)”, i.e. as a “subtype” of A.

We will return to this interpretation in §3.5. For now, we note that
it allows us to incorporate axioms into the definition of types as math-
ematical structures which we discussed in §1.6. For example, suppose
we want to define a semigroup to be a type A equipped with a binary
operation m : A — A — A (that is, a magma) and such that for all
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x,y,z: Awehave m(x,m(y,z)) = m(m(x,y),z). This latter proposition
is represented by the type

[T mxm(y,z) =m(m(xy),z),

x,y,z:A

so the type of semigroups is

Semigroup := ) ) [T m(xm(yz) =m(m(xy),z),
(AU) (mA—A—A) (xy,z:A)

i.e. the subtype of Magma consisting of the semigroups. From an inhab-
itant of Semigroup we can extract the carrier A, the operation m, and a
witness of the axiom, by applying appropriate projections. We will re-
turn to this example in §2.14.

Note also that we can use the universes in type theory to represent
“higher order logic” — that is, we can quantify over all propositions or
over all predicates. For example, we can represent the proposition for all
properties P : A — U, if P(a) then P(b) as

[T P(a)— P(b)

P:A—=U

where A : U and a,b : A. However, a priori this proposition lives in
a different, higher, universe than the propositions we are quantifying
over; that is

( I1 p(a)%p(b)):uiﬂ.

P:A—U;
We will return to this issue in §3.5.

We have described here a “proof-relevant” translation of proposi-
tions, where the proofs of disjunctions and existential statements carry
some information. For instance, if we have an inhabitant of A + B, re-
garded as a witness of “A or B”, then we know whether it came from A
or from B. Similarly, if we have an inhabitant of }-(,.4) P(x), regarded as
a witness of “there exists x : A such that P(x)”, then we know what the
element x is (it is the first projection of the given inhabitant).

As a consequence of the proof-relevant nature of this logic, we may
have “A if and only if B” (which, recall, means (A — B) x (B — A)), and
yet the types A and B exhibit different behavior. For instance, it is easy
to verify that “IN if and only if 17, and yet clearly IN and 1 differ in im-
portant ways. The statement “IN if and only if 1” tells us only that when
regarded as a mere proposition, the type IN represents the same proposition
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as 1 (in this case, the true proposition). We sometimes express “A if and
only if B” by saying that A and B are logically equivalent. This is to be
distinguished from the stronger notion of equivalence of types to be intro-
duced in §2.4 and Chapter 4: although IN and 1 are logically equivalent,
they are not equivalent types.

In Chapter 3 we will introduce a class of types called “mere proposi-
tions” for which equivalence and logical equivalence coincide. Using
these types, we will introduce a modification to the above-described
logic that is sometimes appropriate, in which the additional information
contained in disjunctions and existentials is discarded.

Finally, we note that the propositions-as-types correspondence can
be viewed in reverse, allowing us to regard any type A as a proposition,
which we prove by exhibiting an element of A. Sometimes we will state
this proposition as “A is inhabited”. That is, when we say that A is
inhabited, we mean that we have given a (particular) element of A, but
that we are choosing not to give a name to that element. Similarly, to
say that A is not inhabited is the same as to give an element of —A. In
particular, the empty type 0 is obviously not inhabited, since =0 = (0 —
0) is inhabited by id.'?

1.12 Identity types

While the previous constructions can be seen as generalizations of stan-
dard set theoretic constructions, our way of handling identity seems to
be specific to type theory. According to the propositions-as-types con-
ception, the proposition that two elements of the same type a,b : A are
equal must correspond to some type. Since this proposition depends on
what a and b are, these equality types or identity types must be type
families dependent on two copies of A.

We may write the family as Ild4 : A — A — U (not to be mistaken
for the identity function id4), so that Id4(a,b) is the type representing
the proposition of equality between a and b. Once we are familiar with
propositions-as-types, however, it is convenient to also use the standard
equality symbol for this; thus “a = b” will also be a notation for the fype
Id4 (a, b) corresponding to the proposition that a equals b. For clarity, we
may also write “a =4 b” to specify the type A. If we have an element of
a =4 b, wemay say that g and b are equal, or sometimes propositionally

10This should not be confused with the statement that type theory is consistent, which
is the meta-theoretic claim that it is not possible to obtain an element of 0 by following the
rules of type theory.
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equal if we want to emphasize that this is different from the judgmental
equality a = b discussed in §1.1.

Just as we remarked in §1.11 that the propositions-as-types versions
of “or” and “there exists” can include more information than just the fact
that the proposition is true, nothing prevents the type a = b from also
including more information. Indeed, this is the cornerstone of the ho-
motopical interpretation, where we regard witnesses of a = b as paths or
equivalences between a and b in the space A. Just as there can be more
than one path between two points of a space, there can be more than one
witness that two objects are equal. Put differently, we may regard a = b
as the type of identifications of a and b, and there may be many different
ways in which a and b can be identified. We will return to the interpre-
tation in Chapter 2; for now we focus on the basic rules for the identity
type. Just like all the other types considered in this chapter, it will have
rules for formation, introduction, elimination, and computation, which
behave formally in exactly the same way.

The formation rule says that given a type A : U and two elements
a,b : A, we can form the type (a =4 b) : U in the same universe. The
basic way to construct an element of 4 = b is to know that a and b are the
same. Thus, the introduction rule is a dependent function

refl : [ [ (a =4 a)
a:A
called reflexivity, which says that every element of A is equal to itself (in
a specified way). We regard refl, as being the constant path at the point
a.

In particular, this means that if 2 and b are judgmentally equal, a = b,
then we also have an element refl, : @ =4 b. This is well-typed because
a = b means that also the type a =4 b is judgmentally equal to a =4 a,
which is the type of refl,.

The induction principle (i.e. the elimination rule) for the identity types
is one of the most subtle parts of type theory, and crucial to the homotopy
interpretation. We begin by considering an important consequence of it,
the principle that “equals may be substituted for equals”, as expressed
by the following;:

Indiscernibility of identicals: For every family
C:A—-U

there is a function

fo IT II c@—=c

(xy:A) (px=ay)
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such that
f(x,x,refly) == idey)-

This says that every family of types C respects equality, in the sense that
applying C to equal elements of A also results in a function between the
resulting types. The displayed equality states that the function associ-
ated to reflexivity is the identity function (and we shall see that, in gen-
eral, the function f(x,y,p) : C(x) — C(y) is always an equivalence of
types).

Indiscernibility of identicals can be regarded as a recursion principle
for the identity type, analogous to those given for booleans and natu-
ral numbers above. Just as recy gives a specified map N — C for any
other type C of a certain sort, indiscernibility of identicals gives a spec-
ified map from x =4 y to certain other reflexive, binary relations on A,
namely those of the form C(x) — C(y) for some unary predicate C(x).
We could also formulate a more general recursion principle with respect
to reflexive relations of the more general form C(x, y). However, in order
to fully characterize the identity type, we must generalize this recursion
principle to an induction principle, which not only considers maps out
of x =4 y but also families over it. Put differently, we consider not only
allowing equals to be substituted for equals, but also taking into account
the evidence p for the equality.

1.12.1 Path induction

The induction principle for the identity type is called path induction, in
view of the homotopical interpretation to be explained in the introduc-
tion to Chapter 2. It can be seen as stating that the family of identity
types is freely generated by the elements of the form refl, : x = x.

Path induction: Given a family

C: H (x=ay)—U
XA

and a function

c: [ ] Clx, x, refly),

x:A
there is a function

f+ 1T I Cup)

(xy:A) (px=4y)
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such that
f(x, x, refly) := c(x).

Note that just like the induction principles for products, coproducts,
natural numbers, and so on, path induction allows us to define specified
functions which exhibit appropriate computational behavior. Just as we
have the function f : IN — C defined by recursion from cy : C and
¢s : N — C — C, which moreover satisfies f(0) = cp and f(succ(n)) =
cs(n, f(n)), we have the function f : [T(xy.4) [1(pix=,y) C(x, ¥, p) defined
by path induction from ¢ : [(y.4) C(x, x, refly), which moreover satisfies
f(x, x,refly) = c(x).

To understand the meaning of this principle, consider first the sim-
pler case when C does not depend on p. Thenwehave C: A — A — U,
which we may regard as a predicate depending on two elements of A.
We are interested in knowing when the proposition C(x,y) holds for
some pair of elements x,y : A. In this case, the hypothesis of path in-
duction says that we know C(x,x) holds for all x : A, i.e. that if we
evaluate C at the pair x, x, we get a true proposition — so C is a reflexive
relation. The conclusion then tells us that C(x, y) holds whenever x = y.
This is exactly the more general recursion principle for reflexive relations
mentioned above.

The general, inductive form of the rule allows C to also depend on
the witness p : x = y to the identity between x and y. In the premise,
we not only replace x,y by x,x, but also simultaneously replace p by
reflexivity: to prove a property for all elements x,y and paths p : x = y
between them, it suffices to consider all the cases where the elements
are x,x and the path is refl, : x = x. If we were viewing types just as
sets, it would be unclear what this buys us, but since there may be many
different identifications p : x = y between x and y, it makes sense to keep
track of them in considering families over the type x =4 y. In Chapter 2
we will see that this is very important to the homotopy interpretation.

If we package up path induction into a single function, it takes the
form:

ind_, : T (H(;« 1C(x,x, reflx)> —

(C:H(x,y:A)(x:Ay)_}u)
II TII c&wp)
(xy:A) (px=ay)

with the equality

ind—, (C, ¢, x, x,refly) := c(x).
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The function ind— , is traditionally called J. We will show in Lemma 2.3.1
that indiscernibility of identicals is an instance of path induction, and
also give it a new name and notation.

Given a proof p : a = b, path induction requires us to replace both
a and b with the same unknown element x; thus in order to define an
element of a family C, for all pairs of equal elements of A, it suffices to
define it on the diagonal. In some proofs, however, it is simpler to make
use of an equation p : a = b by replacing all occurrences of b with a
(or vice versa), because it is sometimes easier to do the remainder of the
proof for the specific element a mentioned in the equality than for a gen-
eral unknown x. This motivates a second induction principle for identity
types, which says that the family of types a =4 x is generated by the ele-
ment refl; : @ = a. As we show below, this second principle is equivalent
to the first; it is just sometimes a more convenient formulation.

Based path induction: Fix an element a : A, and suppose given a family

C:[Jla=ax)—U
x:A

and an element
c: C(a,refly).

Then we obtain a function

fHHCXP

(x:A) (p:a=x)

such that

fa,refly) :=c.

Here, C(x, p) is a family of types, where x is an element of A and p is
an element of the identity type a =4 x, for fixed a in A. The based path
induction principle says that to define an element of this family for all x
and p, it suffices to consider just the case where xisa and pisrefl, : a = a.

Packaged as a function, based path induction becomes:

ind_, : ] I C(a,refl,) —>H [T Cxp)

(@:4) (C:l(x.a) (a=ax)=U) 4) (pa=ax)

with the equality
ind’:A (a,C,c,a,refly) :=c.
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Below, we show that path induction and based path induction are
equivalent. Because of this, we will sometimes be sloppy and also re-
fer to based path induction simply as “path induction”, relying on the
reader to infer which principle is meant from the form of the proof.

Remark 1.12.1. Intuitively, the induction principle for the natural num-
bers expresses the fact that every natural number is either 0 or of the
form succ(n) for some natural number #, so that if we prove a property
for these cases (with induction hypothesis in the second case), then we
have proved it for all natural numbers. Similarly, the induction princi-
ple for A + B expresses the fact that every element of A + B is either of
the form inl(a) or inr(b), and so on. Applying this same reading to path
induction, we might say that path induction expresses the fact that ev-
ery path is of the form refl,, so that if we prove a property for reflexivity
paths, then we have proved it for all paths.

However, this reading is quite confusing in the context of the homo-
topy interpretation of paths, where there may be many different ways in
which two elements a and b can be identified, and therefore many dif-
ferent elements of the identity type! How can there be many different
paths, but at the same time we have an induction principle asserting that
the only path is reflexivity?

The key observation is that it is not the identity type that is induc-
tively defined, but the identity family. In particular, path induction says
that the family of types (x =4 y), as x,y vary over all elements of A, is
inductively defined by the elements of the form refl,. This means that
to give an element of any other family C(x,y, p) dependent on a generic
element (x,y, p) of the identity family, it suffices to consider the cases of
the form (x, x, refly). In the homotopy interpretation, this says that the
type of triples (x,y, p), where x and y are the endpoints of the path p (in
other words, the E-type Y, ,.4)(x = ¥)), is inductively generated by the
constant loops at each point x. As we will see in Chapter 2, in homotopy
theory the space corresponding to ¥, .4) (x = y) is the free path space
— the space of paths in A whose endpoints may vary — and it is in fact
the case that any point of this space is homotopic to the constant loop at
some point, since we can simply retract one of its endpoints along the
given path. The analogous fact is also true in type theory: we can prove
by path induction on p : x = y that (x,y, p) = ) (¥=) (x, x, refly).

Similarly, based path induction says that for a fixed a : A, the family
of types (a =4 y), as y varies over all elements of A, is inductively de-
fined by the element refl,. Thus, to give an element of any other family
C(y, p) dependent on a generic element (y, p) of this family, it suffices to
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consider the case (g, refla). Homotopically, this expresses the fact that the
space of paths starting at some chosen point (the based path space at that
point, which type-theoretically is }(,.4)(a = y)) is contractible to the
constant loop on the chosen point. Again, the corresponding fact is also
true in type theory: we can prove by based path inductiononp :a =y
that (y, p) =y (o) (=) (a, refl;). Note also that according to the interpre-

tation of X-types as subtypes mentioned in §1.11, the type ¥(,.4)(a = )
can be regarded as “the type of all elements of A which are equal toa”, a
type-theoretic version of the “singleton subset” {a}.

Neither path induction nor based path induction provides a way to
give an element of a family C(p) where p has two fixed endpoints a and
b. In particular, for a family C : (a2 =4 a) — U dependent on a loop,
we cannot apply path induction and consider only the case for C(refl,),
and consequently, we cannot prove that all loops are reflexivity. Thus,
inductively defining the identity family does not prohibit non-reflexivity
paths in specific instances of the identity type. In other words, a path
p : x = x may be not equal to reflexivity as an element of (x = x), but
the pair (x, p) will nevertheless be equal to the pair (x, refl,) as elements
of Z(y:A) (x = y)

As a topological example, consider a loop in the punctured disc

{(xy) o<+ <2}

which starts at (1,0) and goes around the hole at (0,0) once before re-
turning back to (1,0). If we hold both endpoints fixed at (1,0), this loop
cannot be deformed into a constant path while staying within the punc-
tured disc, just as a rope looped around a pole cannot be pulled in if we
keep hold of both ends. However, the loop can be contracted back to a
constant if we allow one endpoint to vary, just as we can always gather
in a rope if we only hold onto one end.

1.12.2 Equivalence of path induction and based path
induction

The two induction principles for the identity type introduced above are
equivalent. It is easy to see that path induction follows from the based
path induction principle. Indeed, let us assume the premises of path
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induction:
C: H (x=ay) = U,
XA
c: 1—[ C(x, x, refly).

x:A

Now, given an element x : A, we can instantiate both of the above, ob-
taining
C:J]x=ay) = U,
y:A
C':=C(x),
" C (x, refly),

¢ = c(x).

o

Clearly, C’' and ¢’ match the premises of based path induction and hence

we can construct
!
g: H [T Cr
(p:x=y)

with the defining equality

g(x,refly) := .
Now we observe that ¢’s codomain is equal to C(x, y, p). Thus, discharg-
ing our assumption x : A, we can derive a function

f+ IT II Cxyp)

(xy:A) (px=4y)

with the required judgmental equality f(x, x,refly) = g(x,refly) := ¢’ :=

c(x).

Another proof of this fact is to observe that any such f can be ob-
tamed as an instance of ind—,, so it suffices to define ind—, in terms of
ind_

*A

ind—, (C,c,x,y,p) := ind_  (x,C(x),c(x),y,p).

The other direction is a bit trickier; it is not clear how we can use a
particular instance of path induction to derive a particular instance of
based path induction. What we can do instead is to construct one in-
stance of path induction which shows all possible instantiations of based
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path induction at once. Define

D: 1—[ (x=avy) = U,
XA

D(x,y,p) = I C(x,refly) = C(y, p).

Ci(z:a)(x=a2)—U
Then we can construct the function
d: H D(x, x, refly),
x:A
d:=Ax. AC.A(c: C(x, refly)).c

and hence using path induction obtain

f+ II II Dxuyp)

(xy:A) (px=4y)

with f(x, x, refly) := d(x). Unfolding the definition of D, we can expand
the type of f:

f: H H H C(x, refly) — C(y, p).

(xy:A) (px=ay) (Cl1za)(x=42)—U)

Now given a : A along with x : Aand p : 4 =4 x, we can derive the
conclusion of based path induction:

f(a,x,p,C,c):C(x,p).

Notice that we also obtain the correct definitional equality.
Another proof is to observe that any use of based path induction is
an instance of ind”_ N and to define

ind’:A(a, C,cx,p) =
ind—,, (A%, y- Ap.TT(cy . ) (x=42)—u0) C (%, refle) = C(y, p)),
(Ax.AC.Ad.d),a,x,p)(C,c).

Note that the construction given above uses universes. That is, if we
want to model ind_ , with C : [T(x.a)(a =4 x) — U;, we need to use
ind—, with

D: H (x=ay) = U1
XA
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since D quantifies over all C of the given type. While this is compati-
ble with our definition of universes, it is also possible to derive ind_ y
without using universes: we can show that ind—, entails Lemmas 2.3.1
and 3.11.8, and that these two principles imply ind_ , directly. We leave
the details to the reader as Exercise 1.7.

We can use either of the foregoing formulations of identity types to
establish that equality is an equivalence relation, that every function pre-
serves equality and that every family respects equality. We leave the de-
tails to the next chapter, where this will be derived and explained in the
context of homotopy type theory.

Remark 1.12.2. We emphasize that despite having some unfamiliar fea-
tures, propositional equality is the equality of mathematics in homotopy
type theory. This distinction does not belong to judgmental equality,
which is rather a metatheoretic feature of the rules of type theory. For
instance, the associativity of addition for natural numbers proven in §1.9
is a propositional equality, not a judgmental one. The same is true of the
commutative law (Exercise 1.16). Even the very simple commutativity
n+1 = 1+ n is not a judgmental equality for a generic n (though it is
judgmental for any specific 1, e.g. 3 +1 = 1 + 3, since both are judg-
mentally equal to 4 by the computation rules defining +). We can only
prove such facts by using the identity type, since we can only apply the
induction principle for N with a type as output (not a judgment).

1.12.3 Disequality

Finally, let us also say something about disequality, which is negation of
equality:!!
(x#ay) = ~(x=ay).

If x # y, we say that x and y are unequal or not equal. Just like nega-
tion, disequality plays a less important role here than it does in classical
mathematics. For example, we cannot prove that two things are equal by
proving that they are not unequal: that would be an application of the
classical law of double negation, see §3.4.

Sometimes it is useful to phrase disequality in a positive way. For
example, in Theorem 11.2.4 we shall prove that a real number x has an
inverse if, and only if, its distance from 0 is positive, which is a stronger
requirement than x # 0.

We use “inequality” to refer to < and <. Also, note that this is negation of the proposi-
tional identity type. Of course, it makes no sense to negate judgmental equality =, because
judgments are not subject to logical operations.
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Notes

The type theory presented here is a version of Martin-L6f’s intuitionistic
type theory [ML98, ML75, ML82, ML84], which itself is based on and in-
fluenced by the foundational work of Brouwer [Bee85], Heyting [Hey66],
Scott [Sco70], de Bruijn [dB73], Howard [How80], Tait [Tai67, Tai68], and
Lawvere [Law06]. Three principal variants of Martin-L6f’s type theory
underlie the NUPRL [CAB*86], COQ [Coq12], and AGDA [Nor07] com-
puter implementations of type theory. The theory given here differs from
these formulations in a number of respects, some of which are critical to
the homotopy interpretation, while others are technical conveniences or
involve concepts that have not yet been studied in the homotopical set-
ting.

Most significantly, the type theory described here is derived from
the intensional version of Martin-Lof’s type theory [ML75], rather than
the extensional version [ML82]. Whereas the extensional theory makes
no distinction between judgmental and propositional equality, the in-
tensional theory regards judgmental equality as purely definitional, and
admits a much broader, proof-relevant interpretation of the identity type
that is central to the homotopy interpretation. From the homotopical
perspective, extensional type theory confines itself to homotopically dis-
crete sets (see §3.1), whereas the intensional theory admits types with
higher-dimensional structure. The NUPRL system [CAB"86] is exten-
sional, whereas both COQ [Coq12] and AGDA [Nor07] are intensional.
Among intensional type theories, there are a number of variants that dif-
fer in the structure of identity proofs. The most liberal interpretation,
on which we rely here, admits a proof-relevant interpretation of equality,
whereas more restricted variants impose restrictions such as unigueness
of identity proofs (UIP) [Str93], stating that any two proofs of equality are
judgmentally equal, and Axiom K [Str93], stating that the only proof of
equality is reflexivity (up to judgmental equality). These additional re-
quirements may be selectively imposed in the COQ and AGDA systems.

Another point of variation among intensional theories is the strength
of judgmental equality, particularly as regards objects of function type.
Here we include the uniqueness principle (7-conversion) f = Ax. f(x),
as a principle of judgmental equality. This principle is used, for exam-
ple, in §4.9, to show that univalence implies propositional function ex-
tensionality. Uniqueness principles are sometimes considered for other
types. For instance, the uniqueness principle for the cartesian prod-
uct A x B would be a judgmental version of the propositional equality
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uniq 4, g which we constructed in §1.5, saying that u = (pry(u), pro(u)).
This and the corresponding version for dependent pairs would be rea-
sonable choices (which we did not make), but we cannot include all such
rules, because the corresponding uniqueness principle for identity types
would trivialize all the higher homotopical structure. So we are forced to
leave it out, and the question then becomes where to draw the line. With
regards to inductive types, we discuss these points further in §5.5.

It is important for our purposes that (propositional) equality of func-
tions is taken to be extensional (in a different sense than that used above!).
This is not a consequence of the rules in this chapter; it will be expressed
by Axiom 2.9.3. This decision is significant for our purposes, because
it specifies that equality of functions is as expected in mathematics. Al-
though we include Axiom 2.9.3 as an axiom, it may be derived from the
univalence axiom and the uniqueness principle for functions (see §4.9),
as well as from the existence of an interval type (see Lemma 6.3.2).

Regarding inductive types such as products, X-types, coproducts,
natural numbers, and so on (see Chapter 5), there are additional choices
regarding the formulation of induction and recursion. We have taken in-
duction principles as basic and pattern matching as derived from them, but
one may also do the other; see Appendix A. Usually in the latter case one
allows also deep pattern matching; see [Coq92b]. There are several rea-
sons for our choice. One reason is that induction principles are what we
obtain naturally in categorical semantics. Another is that specifying the
allowable kinds of (deep) pattern matching is quite tricky; for instance,
AGDA’s pattern matching can prove Axiom K by default, although a flag
—-without-K prevents this [CDP14]. Finally, deep pattern matching is
not well-understood for higher inductive types (see Chapter 6). There-
fore, we will only use pattern matches such as those described in §1.10,
which are directly equivalent to the application of an induction principle.

Unlike the type theory of COQ, we do not include a primitive type of
propositions. Instead, as discussed in §1.11, we embrace the propositions-
as-types (PAT) principle, identifying propositions with types. This was
suggested originally by de Bruijn [dB73], Howard [How80], Tait [Tai68],
and Martin-Lof [ML98]. (Our decision is explained more fully in §§3.2
and 3.3.)

We do, however, include a full cumulative hierarchy of universes,
so that the type formation and equality judgments become instances of
the membership and equality judgments for a universe. As a conve-
nience, we regard objects of a universe as types, rather than as codes for
types; in the terminology of [ML84], this means we use “Russell-style
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universes” rather than “Tarski-style universes”. An alternative would
be to use Tarski-style universes, with an explicit coercion function re-
quired to make an element A : I of a universe into a type EI(A), and just
say that the coercion is omitted when working informally.

We also treat the universe hierarchy as cumulative, in that every type
in U; is also in U; for each j > i. There are different ways to implement
cumulativity formally: the simplest is just to include a rule that if A : I/
then A : U;. However, this has the annoying consequence that for a
type family B : A — U; we cannot conclude B : A — U}, although we
can conclude Aa.B(a) : A — U;. A more sophisticated approach that
solves this problem is to introduce a judgmental subtyping relation <:
generated by U; <: U;, but this makes the type theory more complicated
to study. Another alternative would be to include an explicit coercion
function 1: U; — U;, which could be omitted when working informally.

It is also not necessary that the universes be indexed by natural num-
bers and linearly ordered. For some purposes, it is more appropriate
to assume only that every universe is an element of some larger uni-
verse, together with a “directedness” property that any two universes
are jointly contained in some larger one. There are many other possible
variations, such as including a universe “U4,,” that contains all /; (or even
higher “large cardinal” type universes), or by internalizing the hierarchy
into a type family Ai.U;. The latter is in fact done in AGDA.

The path induction principle for identity types was formulated by
Martin-Lof [ML75]. The based path induction rule in the setting of Martin-
Lof type theory is due to Paulin-Mohring [PM93]; it can be seen as an in-
tensional generalization of the concept of “pointwise functionality” for
hypothetical judgments from NUPRL [CAB*86, Section 8.1]. The fact
that Martin-Lof’s rule implies Paulin-Mohring’s was proved by Streicher
using Axiom K (see §7.2), by Altenkirch and Goguen as in §1.12, and fi-
nally by Hofmann without universes (as in Exercise 1.7); see [Str93, §1.3
and Addendum)].

Exercises

Exercise 1.1. Given functions f : A — Band g : B — C, define their
composite go f : A — C. Show that we have ho (go f) = (hog)o f.

Exercise 1.2. Derive the recursion principle for products recy,p using
only the projections, and verify that the definitional equalities are valid.
Do the same for X-types.
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Exercise 1.3. Derive the induction principle for products ind4p, using
only the projections and the propositional uniqueness principle uniq 4 . p-
Verify that the definitional equalities are valid. Generalize uniq g to -
types, and do the same for X-types. (This requires concepts from Chapter 2.)

Exercise 1.4. Assuming as given only the iterator for natural numbers

ter: [JC—»(C—-C)-N—=C
cu

with the defining equations

iter(C, co, ¢s5,0) := co,
iter(C, c, cs, succ(n)) := cs(iter(C, co, cs, 1)),

derive a function having the type of the recursor recy. Show that the
defining equations of the recursor hold propositionally for this function,
using the induction principle for IN.

Exercise 1.5. Show that if we define A + B := ) (,.5) reca(U, A, B, x), then
we can give a definition of ind 4, g for which the definitional equalities
stated in §1.7 hold.

Exercise 1.6. Show that if we define A X B := H(x:Z) reca(U, A, B, x), then
we can give a definition of ind 4« for which the definitional equalities
stated in §1.5 hold propositionally (i.e. using equality types). (This re-
quires the function extensionality axiom, which is introduced in §2.9.)

Exercise 1.7. Give an alternative derivation of ind_ A from ind—, which
avoids the use of universes. (This is easiest using concepts from later chap-

ters.)

Exercise 1.8. Define multiplication and exponentiation using recy. Ver-
ify that (IN, 4,0, x,1) is a semiring using only indy. You will probably
also need to use symmetry and transitivity of equality, Lemmas 2.1.1
and 2.1.2.

Exercise 1.9. Define the type family Fin : N — U/ mentioned at the end of
§1.3, and the dependent function fmax : [](,.) Fin(n + 1) mentioned in
§1.4.

Exercise 1.10. Show that the Ackermann function ack : N — IN — IN is
definable using only recyy satisfying the following equations:
ack(0,n) = succ(n),
ack(succ(m),0) = ack(m, 1),
ack(succ(m), succ(n)) = ack(m, ack(succ(m),n)).
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Exercise 1.11. Show that for any type A, we have -——A — —A.

Exercise 1.12. Using the propositions as types interpretation, derive the
following tautologies.

(i) If A, then (if B then A).
(ii) If A, then not (not A).
(iii) If (not A or not B), then not (A and B).

Exercise 1.13. Using propositions-as-types, derive the double negation of
the principle of excluded middle, i.e. prove not (not (P or not P)).

Exercise 1.14. Why do the induction principles for identity types not al-
low us to construct a function f : [T(y.4) [T(pix=x)(p = refly) with the
defining equation

f(x, refly) := refleq,

Exercise 1.15. Show that indiscernibility of identicals follows from path
induction.

Exercise 1.16. Show that addition of natural numbers is commutative:

[y (4] =7+1).



Chapter 2
Homotopy type theory

The central new idea in homotopy type theory is that types can be re-
garded as spaces in homotopy theory, or higher-dimensional groupoids
in category theory.

We begin with a brief summary of the connection between homo-
topy theory and higher-dimensional category theory. In classical ho-
motopy theory, a space X is a set of points equipped with a topology,
and a path between points x and y is represented by a continuous map
p :[0,1] — X, where p(0) = x and p(1) = y. This function can be
thought of as giving a point in X at each “moment in time”. For many
purposes, strict equality of paths (meaning, pointwise equal functions)
is too fine a notion. For example, one can define operations of path con-
catenation (if p is a path from x to y and g is a path from y to z, then the
concatenation p * g is a path from x to z) and inverses (p ! is a path from
y to x). However, there are natural equations between these operations
that do not hold for strict equality: for example, the path p* p~! (which
walks from x to y, and then back along the same route, as time goes from
0 to 1) is not strictly equal to the identity path (which stays still at x at all
times).

The remedy is to consider a coarser notion of equality of paths called
homotopy. A homotopy between a pair of continuous maps f : X1 — X»
and ¢ : X3 — Xp is a continuous map H : X; x [0,1] — X, satisfying
H(x,0) = f(x) and H(x,1) = g(x). In the specific case of paths p and g
from x to y, a homotopy is a continuous map H : [0,1] x [0,1] — X such
that H(s,0) = p(s) and H(s,1) = q(s) for all s € [0,1]. In this case we
require also that H(0,t) = x and H(1,t) = y for all t € [0, 1], so that for
each f the function H(—, t) is again a path from x to y; a homotopy of this
sort is said to be endpoint-preserving or rel endpoints. In simple cases, we
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can think of the image of the square [0,1] x [0,1] under H as “filling the
space” between p and g, although for general X this doesn’t really make
sense; it is better to think of H as a continuous deformation of p into g
that doesn’t move the endpoints. Since [0, 1] x [0, 1] is 2-dimensional, we
also speak of H as a 2-dimensional path between paths.

For example, because p+ p~! walks out and back along the same
route, you know that you can continuously shrink p* p~! down to the
identity path—it won't, for example, get snagged around a hole in the
space. Homotopy is an equivalence relation, and operations such as con-
catenation, inverses, etc., respect it. Moreover, the homotopy equiva-
lence classes of loops at some point xy (where two loops p and g are
equated when there is a based homotopy between them, which is a ho-
motopy H as above that additionally satisfies H(0,t) = H(1,t) = x
for all t) form a group called the fundamental group. This group is an
algebraic invariant of a space, which can be used to investigate whether
two spaces are homotopy equivalent (there are continuous maps back and
forth whose composites are homotopic to the identity), because equiva-
lent spaces have isomorphic fundamental groups.

Because homotopies are themselves a kind of 2-dimensional path,
there is a natural notion of 3-dimensional homotopy between homotopies,
and then homotopy between homotopies between homotopies, and so on. This
infinite tower of points, paths, homotopies, homotopies between homo-
topies, ..., equipped with algebraic operations such as the fundamental
group, is an instance of an algebraic structure called a (weak) co-groupoid.
An oo-groupoid consists of a collection of objects, and then a collection of
morphisms between objects, and then morphisms between morphisms, and
so on, equipped with some complex algebraic structure; a morphism at
level k is called a k-morphism. Morphisms at each level have identity,
composition, and inverse operations, which are weak in the sense that
they satisfy the groupoid laws (associativity of composition, identity is a
unit for composition, inverses cancel) only up to morphisms at the next
level, and this weakness gives rise to further structure. For example, be-
cause associativity of composition of morphisms p=(q+r) = (p=q)*r
is itself a higher-dimensional morphism, one needs an additional opera-
tion relating various proofs of associativity: the various ways to reasso-
ciate p+(q+(r+s)) into ((p+q)*r) *s give rise to Mac Lane’s pentagon.
Weakness also creates non-trivial interactions between levels.

Every topological space X has a fundamental co-groupoid whose k-
morphisms are the k-dimensional paths in X. The weakness of the co-
groupoid corresponds directly to the fact that paths form a group only
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up to homotopy, with the (k + 1)-paths serving as the homotopies be-
tween the k-paths. Moreover, the view of a space as an co-groupoid pre-
serves enough aspects of the space to do homotopy theory: the funda-
mental co-groupoid construction is adjoint to the geometric realization
of an co-groupoid as a space, and this adjunction preserves homotopy
theory (this is called the homotopy hypothesis/theorem, because whether it
is a hypothesis or theorem depends on how you define co-groupoid).
For example, you can easily define the fundamental group of an co-
groupoid, and if you calculate the fundamental group of the fundamen-
tal co-groupoid of a space, it will agree with the classical definition of
fundamental group of that space. Because of this correspondence, ho-
motopy theory and higher-dimensional category theory are intimately
related.

Now, in homotopy type theory each type can be seen to have the
structure of an co-groupoid. Recall that for any type A, and any x,y : A,
we have an identity type x =4 y, also written Id4(x,y) or just x = y.
Logically, we may think of elements of x = y as evidence that x and y are
equal, or as identifications of x with y. Furthermore, type theory (unlike,
say, first-order logic) allows us to consider such elements of x =4 y also
as individuals which may be the subjects of further propositions. There-
fore, we can iterate the identity type: we can form the type p =( q of
identifications between identifications p, g, and the type r =

x=4Y)
(P=(x= gy 5
and so on. The structure of this tower of identity types corresponds pre-
cisely to that of the continuous paths and (higher) homotopies between
them in a space, or an co-groupoid.

Thus, we will frequently refer to an element p : x =4 y as a path
from x to y; we call x its start point and y its end point. Two paths
p,q : x =4 y with the same start and end point are said to be parallel, in
which case an element r : p =(,_ ) q can be thought of as a homotopy,
or a morphism between morphisms; we will often refer to it as a 2-path
or a 2-dimensional path. Similarly, r =, e S is the type of 3-
dimensional paths between two parallel 2-dimensional paths, and so
on. If the type A is “set-like”, such as IN, these iterated identity types
will be uninteresting (see §3.1), but in the general case they can model
non-trivial homotopy types.

An important difference between homotopy type theory and classi-
cal homotopy theory is that homotopy type theory provides a synthetic
description of spaces, in the following sense. Synthetic geometry is ge-
ometry in the style of Euclid [EucBC]: one starts from some basic no-
tions (points and lines), constructions (a line connecting any two points),
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and axioms (all right angles are equal), and deduces consequences log-
ically. This is in contrast with analytic geometry, where notions such as
points and lines are represented concretely using cartesian coordinates
in R"—lines are sets of points—and the basic constructions and axioms
are derived from this representation. While classical homotopy theory is
analytic (spaces and paths are made of points), homotopy type theory is
synthetic: points, paths, and paths between paths are basic, indivisible,
primitive notions.

Moreover, one of the amazing things about homotopy type theory is
that all of the basic constructions and axioms—all of the higher groupoid
structure—arises automatically from the induction principle for identity
types. Recall from §1.12 that this says that if

e forevery x,i : A and every p : x =4 y we have a type D(x,y,p),
and

e forevery a: A wehave an elementd(a) : D(a,a,refl;),
then

e there exists an element ind—, (D, d, x,y, p) : D(x,y, p) for every two
elements x,iy : Aand p : x =4 y, such thatind—,(D,d,a,a,refl,) =
d(a).

In other words, given dependent functions

D: ] x=

XA
d: HD a,a,refly)

there is a dependent function

ind—,(D,d): T[] I D(xuwp)
(xy:A) (p:x=y)

such that
ind—,(D,d,a,a,refl,) = d(a) (2.0.1)

for every a : A. Usually, every time we apply this induction rule we
will either not care about the specific function being defined, or we will
immediately give it a different name.

Informally, the induction principle for identity types says that if we
want to construct an object (or prove a statement) which depends on an
inhabitant p : x =4 y of an identity type, then it suffices to perform the
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construction (or the proof) in the special case when x and y are the same
(judgmentally) and p is the reflexivity element refl, : x = x (judgmen-
tally). When writing informally, we may express this with a phrase such
as “by induction, it suffices to assume...”. This reduction to the “re-
flexivity case” is analogous to the reduction to the “base case” and “in-
ductive step” in an ordinary proof by induction on the natural numbers,
and also to the “left case” and “right case” in a proof by case analysis on
a disjoint union or disjunction.

The “conversion rule” (2.0.1) is less familiar in the context of proof
by induction on natural numbers, but there is an analogous notion in the
related concept of definition by recursion. If a sequence (a,),eN is de-
fined by giving ag and specifying a1 in terms of a,, then in fact the 0th
term of the resulting sequence is the given one, and the given recurrence
relation relating a, 1 to a, holds for the resulting sequence. (This may
seem so obvious as to not be worth saying, but if we view a definition
by recursion as an algorithm for calculating values of a sequence, then
it is precisely the process of executing that algorithm.) The rule (2.0.1) is
analogous: it says that if we define an object f(p) for all p : x = y by
specifying what the value should be when p is refly : x = x, then the
value we specified is in fact the value of f(refly).

This induction principle endows each type with the structure of an
co-groupoid, and each function between two types with the structure of
an co-functor between two such groupoids. This is interesting from a
mathematical point of view, because it gives a new way to work with oco-
groupoids. It is interesting from a type-theoretic point of view, because it
reveals new operations that are associated with each type and function.
In the remainder of this chapter, we begin to explore this structure.

2.1 Types are higher groupoids

We now derive from the induction principle the beginnings of the struc-
ture of a higher groupoid. We begin with symmetry of equality, which,
in topological language, means that “paths can be reversed”.

Lemma 2.1.1. For every type A and every x,y : A there is a function

denoted p v p~1, such that refl, ™' = refl, for each x : A. We call p~ the
inverse of p.
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Since this is our first time stating something as a “Lemma” or “The-
orem”, let us pause to consider what that means. Recall that proposi-
tions (statements susceptible to proof) are identified with types, whereas
lemmas and theorems (statements that have been proven) are identified
with inhabited types. Thus, the statement of a lemma or theorem should
be translated into a type, as in §1.11, and its proof translated into an in-
habitant of that type. According to the interpretation of the universal
quantifier “for every”, the type corresponding to Lemma 2.1.1 is

IT Il =9 = (v=x).

(AU) (xy:A)

The proof of Lemma 2.1.1 will consist of constructing an element of this
type, i.e. deriving the judgment f : [T a4/) [T(xy:n)(x = ¥) = (y = x)
for some f. We then introduce the notation (—)71 for this element f, in
which the arguments A, x, and y are omitted and inferred from context.
(As remarked in §1.1, the secondary statement “refl 1 = refl, for each
x : A” should be regarded as a separate judgment.)

First proof. Assume given A : U, and let D : H(x,y:A)(x =vy) — Ube
the type family defined by D(x,y, p) := (y = x). In other words, D is a
function assigning to any x,y : A and p : x = y a type, namely the type
y = x. Then we have an element

d:= Ax.refl : [ D(x, x, refl,).
x:A

Thus, the induction principle for identity types gives us an element

ind—, (D, d,x,y,p) : (y = x)

for each p : (x = y). We can now define the desired function (-)"

to be Ap.ind—,(D,d, x,y,p), i.e. we set p~! := ind—,(D,d, x,y,p). The
conversion rule (2.0.1) gives refl L= refly, as required. O

We have written out this proof in a very formal style, which may be
helpful while the induction rule on identity types is unfamiliar. To be
even more formal, we could say that Lemma 2.1.1 and its proof together
consist of the judgment

AAAx Ay Ap.ind—, (Ax. Ay. Ap. (y = x)), (Ax.refly), x,y, p)

X
IT II] G=y)=W=x

(AU) (xy:A)
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(along with an additional equality judgment). However, eventually we
prefer to use more natural language, such as in the following equivalent
proof.

Second proof. We want to construct, for each x,y : Aand p : x = y, an
element p~! : y = x. By induction, it suffices to do this in the case when y
is x and p is refl,. But in this case, the type x = y of p and the type y = x
in which we are trying to construct p~! are both simply x = x. Thus,
in the “reflexivity case”, we can define refl, ! to be simply refly. The
general case then follows by the induction principle, and the conversion
rule refl, ! = refl, is precisely the proof in the reflexivity case that we

gave. 0

We will write out the next few proofs in both styles, to help the reader
become accustomed to the latter one. Next we prove the transitivity of
equality, or equivalently we “concatenate paths”.

Lemma 2.1.2. For every type A and every x,y,z : A there is a function

written p — q — p=q, such that refl, = refl, = refly for any x : A. We call
p = q the concatenation or composite of p and q.

Note that we choose to notate path concatenation in the opposite or-
der from function composition: from p : x = yand q : y = z we get
p*q:x =z, whereasfrom f: A - Bandg: B - Cwegetgof: A—C
(see Exercise 1.1).

First proof. The desired function has type [1(y,,..4)(x =y) = (y =2) —
(x = z). We will instead define a function with the equivalent type
[xy:a)(x = y) = Iza)(y = z) = (x = z), which allows us to ap-
ply path induction twice. Let D : []x,.4)(x = y) — U be the type

family
yp)=T1 IT (
(z:4) (gy= Z)

Note that D(x, x, refly) = IT(;.a) [1(:x=z) (x = z). Thus, in order to apply
the induction principle for identity types to this D, we need a function of
type

[ D(x, x, refly) (2.1.3)

x:A
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which is to say, of type

HH

(x,z:A) (q:x=z)

Now let E : [](xz.a) [1(g:x=z) U be the type family E(x,z,q) := (x = z).
Note that E(x, x, refl,) = (x = x). Thus, we have the function

e(x) :=refly : E(x, x, refly).

By the induction principle for identity types applied to E, we obtain a

function
H H E(x,z,q).

(x,z:A) (q:x=z)

But E(x,z,q) = (x = z), so the type of d is (2.1.3). Thus, we can use this
function d and apply the induction principle for identity types to D, to
obtain our desired function of type

[T (X=y)—>l;1(y=2)—>(x=2)

xy:A

and hence [Ty, ..4)(y = z) = (x = y) = (x = z). The conversion
rules for the two induction principles give us refly = refl, = refl, for any
x: A O

Second proof. We want to construct, for every x,y,z: Aand every p : x =
yand g : y = z, an element of x = z. By induction on p, it suffices to
assume that y is x and p is refly. In this case, the typey =z of gis x = z.
Now by induction on g, it suffices to assume also that z is x and 4 is refl,.
But in this case, x = z is x = x, and we have refl, : (x = x). O

The reader may well feel that we have given an overly convoluted
proof of this lemma. In fact, we could stop after the induction on p, since
at that point what we want to produce is an equality x = z, and we
already have such an equality, namely 4. Why do we go on to do another
induction on 4?

The answer is that, as described in the introduction, we are doing
proof-relevant mathematics. When we prove a lemma, we are defining
an inhabitant of some type, and it can matter what specific element we
defined in the course of the proof, not merely the type inhabited by that
element (that is, the statement of the lemma). Lemma 2.1.2 has three obvi-
ous proofs: we could do induction over p, induction over g, or induction
over both of them. If we proved it three different ways, we would have
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three different elements of the same type. It's not hard to show that these
three elements are equal (see Exercise 2.1), but as they are not definition-
ally equal, there can still be reasons to prefer one over another.

In the case of Lemma 2.1.2, the difference hinges on the computa-
tion rule. If we proved the lemma using a single induction over p, then
we would end up with a computation rule of the form refl, *g = q. If
we proved it with a single induction over g4, we would have instead
p * refl, = p, while proving it with a double induction (as we did) gives
only refly « refl,y = refly.

The asymmetrical computation rules can sometimes be convenient
when doing formalized mathematics, as they allow the computer to sim-
plify more things automatically. However, in informal mathematics, and
arguably even in the formalized case, it can be confusing to have a con-
catenation operation which behaves asymmetrically and to have to re-
member which side is the “special” one. Treating both sides symmetri-
cally makes for more robust proofs; this is why we have given the proof
that we did. (However, this is admittedly a stylistic choice.)

The table below summarizes the “equality”, “homotopical”, and “higher-
groupoid” points of view on what we have done so far.

Equality Homotopy oo-Groupoid
reflexivity constant path identity morphism
symmetry inversion of paths inverse morphism

transitivity =~ concatenation of paths composition of morphisms

In practice, transitivity is often applied to prove an equality by a
chain of intermediate steps. We will use the common notation for this
such asa = b = ¢ = d. If the intermediate expressions are long, or we
want to specify the witness of each equality, we may write

a=>b (by p)
=c (by q)
=d (by 7).

In either case, the notation indicates construction of the element (p+g) *
r: (a = d). (We choose left-associativity for concreteness, although in
view of Lemma 2.1.4(iv) below it makes little difference.) If it should
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happen that b and ¢, say, are judgmentally equal, then we may write

b (by p)

a

C
=d (by 1)

to indicate construction of p+r : (a = d). We also follow common mathe-
matical practice in not requiring the justifications in this notation (“by p”
and “by r”) to supply the exact witness needed; instead we allow them
to simply mention the most important (or least obvious) ingredient in
constructing that witness. For instance, if “Lemma A” states that for all x
and y we have f(x) = g(y), then we may write “by Lemma A” as a jus-
tification for the step f(a) = g(b), trusting the reader to deduce that we
apply Lemma A with x := a and y := b. We may also omit a justification
entirely if we trust the reader to be able to guess it.

Now, because of proof-relevance, we can’t stop after proving “sym-
metry” and “transitivity” of equality: we need to know that these opera-
tions on equalities are well-behaved. (This issue is invisible in set theory,
where symmetry and transitivity are mere properties of equality, rather
than structure on paths.) From the homotopy-theoretic point of view,
concatenation and inversion are just the “first level” of higher groupoid
structure — we also need coherence laws on these operations, and anal-
ogous operations at higher dimensions. For instance, we need to know
that concatenation is associative, and that inversion provides inverses with
respect to concatenation.

Lemma 2.1.4. Suppose A : U, that x,y,z,w : A and that p : x = y and
q:y=zandr:z=w. We have the following:

(i) p=prreflyand p = refly * p.

(i) p~lep = refly and p+ p~ 1 = refly.
Gi) (p 1) =p.
(@) pr(q=r)=(p=q)-r

Note, in particular, that (i)—(iv) are themselves propositional equali-
ties, living in the identity types of identity types, such as p =y—, g for
p,q : x = y. Topologically, they are paths of paths, i.e. homotopies. It
is a familiar fact in topology that when we concatenate a path p with
the reversed path p~!, we don’t literally obtain a constant path (which
corresponds to the equality refl in type theory) — instead we have a ho-
motopy, or higher path, from p* p~! to the constant path.
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Proof of Lemma 2.1.4. All the proofs use the induction principle for equal-
ities.

(i) First proof: let D : [Ty .4) (x = y) — U be the type family given by
D(x,y,p) := (p = p=refly).

Then D(x, x, refly) is refly = refly = refly. Since refly = refl, = refly, it
follows that D(x, x, refl,) = (refl, = refly). Thus, there is a function

d:=Ax.reflen, - [ | D(x, x, refly).
x:A

Now the induction principle for identity types gives an element
ind=,(D,d,x,y,p) : (p = prrefly) for each p : x = y. The other
equality is proven similarly.

Second proof: by induction on p, it suffices to assume that y is x and

that p is refly. But in this case, we have refly = refl, = refly.
(i) First proof: let D : [1(xy.4)(x = y) — U be the type family given by

D(x,y,p) := (pfl p = refly).

Then D(x, x, refly) is refl, ~! = refl, = refl,. Since refl, "1 = refl, and
refly = refly = refl,, we get that D(x, x, refly) = (refly = refly). Hence
we find the function

d:= Ax.reflen, - [ D(x, x, refly).
x:A

Now path induction gives an element ind—, (D,d,x,y,p) : p~ '+

p = refly for each p : x = y in A. The other equality is similar.

Second proof: by induction, it suffices to assume p is refly. But in this
case, we have p_l p= refl, 1« refl, = refly.
(ili) First proof: let D : T](y,.a)(x =y) — U be the type family given by

D(x,y,p)=((p ") =p)

Then D(x, x, refly ) is the type ((reflx’lf1 = refl,). Butsince refl, ! =

refl, for each x : A, we have (reflx_l)_1 = refl, ! = refl,, and thus
D(x, x, refly) = (refl, = refly). Hence we find the function

d:= Ax.refl e : H D(x, x, refly).
x:A
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Now path induction gives an elementind—, (D,d, x,y,p) : (p~1) !
pforeachp:x =y.

Second proof: by induction, it suffices to assume p is refly. But in this
-1 -1 _ -1 -1 —
case, we have (p7') =~ = (refly ™) = refly.
(iv) First proof: let Dy : T(x,.4)(x = y) — U be the type family given

by

xy,-HHH =(p=q)r).

(zw:A) (qy=2z) (r:z=w)

Then D1 (x, x, refly) is

IT TII TII (refie=( = (refly=q)-r).

(zw:A) (q:x=2z) (r:z=w)

To construct an element of this type, let D : [](y..4)(x = 2z) = U
be the type family

D2 X, z, q H 1_[ reﬂx (reﬂx ‘7) )

) (riz=w)

Then Dj(x, x, refl )1

IT T1 (reflas(refly=r) = (refly=refly) - 7).

(w:A) (rix=w)

To construct an element of this type, let D3 : [Ty w0y (x = w) = U
be the type family

Ds(x,w,r) := (refly » (refly = 7) = (refly * refly) = 7).
Then D3(x, x, refly) is
(refly = (refly = refly) = (refly = refly) = refly)

which is definitionally equal to the type (refl, = refl;), and is there-
fore inhabited by refl,eqi . Applying the path induction rule three
times, therefore, we obtain an element of the overall desired type.

Second proof: by induction, it suffices to assume p, g, and r are all
refl,. But in this case, we have

pr(qr) = refly = (refly = refly)
= refly
= (refly = refly) = refl,
=(p-q)r
Thus, we have reflq inhabiting this type. O
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Remark 2.1.5. There are other ways to define these higher paths. For
instance, in Lemma 2.1.4(iv) we might do induction only over one or two
paths rather than all three. Each possibility will produce a definitionally
different proof, but they will all be equal to each other. Such an equality
between any two particular proofs can, again, be proven by induction,
reducing all the paths in question to reflexivities and then observing that
both proofs reduce themselves to reflexivities.

In view of Lemma 2.1.4(iv), we will often write p=g+r for (p=q) 7,
and similarly p=g+r=-s for ((p+q)+r)+s and so on. We choose left-
associativity for definiteness, but it makes no real difference. We gener-
ally trust the reader to insert instances of Lemma 2.1.4(iv) to reassociate
such expressions as necessary.

We are still not really done with the higher groupoid structure: the
paths (i)-(iv) must also satisfy their own higher coherence laws, which
are themselves higher paths, and so on “all the way up to infinity” (this
can be made precise using e.g. the notion of a globular operad). How-
ever, for most purposes it is unnecessary to make the whole infinite-
dimensional structure explicit. One of the nice things about homotopy
type theory is that all of this structure can be proven starting from only
the inductive property of identity types, so we can make explicit as much
or as little of it as we need.

In particular, in this book we will not need any of the complicated
combinatorics involved in making precise notions such as “coherent struc-
ture at all higher levels”. In addition to ordinary paths, we will use paths
of paths (i.e. elements of a type p =x—,y q), which as remarked pre-
viously we call 2-paths or 2-dimensional paths, and perhaps occasionally
paths of paths of paths (i.e. elements of a type r =,—,_ 4 s), which we
call 3-paths or 3-dimensional paths. It is possible to define a general notion
of n-dimensional path (see Exercise 2.4), but we will not need it.

We will, however, use one particularly important and simple case of
higher paths, which is when the start and end points are the same. In set
theory, the proposition a = a is entirely uninteresting, but in homotopy
theory, paths from a point to itself are called loops and carry lots of in-
teresting higher structure. Thus, given a type A with a point a : A, we
define its loop space Q)(A, a) to be the type a =4 a. We may sometimes
write simply QA if the point a is understood from context.

Since any two elements of (QA are paths with the same start and
end points, they can be concatenated; thus we have an operation QA x
QA — QA. More generally, the higher groupoid structure of A gives
QA the analogous structure of a “higher group”.
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It can also be useful to consider the loop space of the loop space of
A, which is the space of 2-dimensional loops on the identity loop at
a. This is written O?(A,a) and represented in type theory by the type
refly =(;—,q) reflo. While 0?(A,a), as a loop space, is again a “higher
group”, it now also has some additional structure resulting from the fact
that its elements are 2-dimensional loops between 1-dimensional loops.

Theorem 2.1.6 (Eckmann-Hilton). The composition operation on the second
loop space
O%(A) x P (A) = O*(A)

is commutative: a* B = B w, forany «, B : Q*(A).

Proof. First, observe that the composition of 1-loops QA x QA — QA
induces an operation

*x: O (A) x O (A) = Q*(A)

as follows: consider elements a,b,c : A and 1- and 2-paths,

p:a=b, r:b=c
ta=2», s:b=c¢
p=4q, B:r=s

as depicted in the following diagram (with paths drawn as arrows).

/\/\
\/\/

Composing the upper and lower 1-paths, respectively, we get two paths
p*1, g*s:a = c,and there is then a “horizontal composition”

axB:iprr=gq-s

between them, defined as follows. First, we definea 7 : p*r = g-r by
path induction on r, so that

aryrefl, = rup_1 Totrug
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where ruy, : p = prrefl, is the right unit law from Lemma 2.1.4(i). We
could similarly define *, by induction on «, or on all paths in sight, re-
sulting in different judgmental equalities, but for present purposes the
definition by induction on r will make things simpler. Similarly, we de-
fine g+ B :q-r = gq+sbyinduction on g, so that

refly B = lu, "1 = B=lug

where lu, denotes the left unit law. The operations +| and +, are called
whiskering. Next, since a * r and g * B are composable 2-paths, we can
define the horizontal composition by:

axB = (arr):(qp)
Now suppose that a = b = ¢, so that all the 1-paths p, g, r, and s are
elements of ()(A, a), and assume moreover that p = g = r = s = refl,, so
that « : refl, = refl, and B : refl, = refl, are composable in both orders. In
that case, we have
ax B = (a=refly) « (refl, = B)
= rureﬂai1 "OTUpef|, |Ureﬂail - :B - IureﬂLz
= reflen, 1t o reflien, reflen, "t B refleq,

=a-p.

(Recall that ruyeq, = luyeq, = reflen,, by the computation rule for path
induction.) On the other hand, we can define another horizontal compo-
sition analogously by

ax' B = (prip)(ars)
and we similarly learn that
ax' B =pra

But, in general, the two ways of defining horizontal composition agree,
a* B = a*' B, as we can see by induction on « and p and then on the two
remaining 1-paths, to reduce everything to reflexivity. Thus we have

aB=axB=axB=pB O

The foregoing fact, which is known as the Eckmann—Hilton argument,
comes from classical homotopy theory, and indeed it is used in Chapter 8
below to show that the higher homotopy groups of a type are always
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abelian groups. The whiskering and horizontal composition operations
defined in the proof are also a general part of the co-groupoid structure
of types. They satisfy their own laws (up to higher homotopy), such as

ar (prg) = (a*p)rqg

and so on. From now on, we trust the reader to apply path induction
whenever needed to define further operations of this sort and verify their
properties.

As this example suggests, the algebra of higher path types is much
more intricate than just the groupoid-like structure at each level; the lev-
els interact to give many further operations and laws, as in the study of
iterated loop spaces in homotopy theory. Indeed, as in classical homo-
topy theory, we can make the following general definitions:

Definition 2.1.7. A pointed type (A, 4a) is a type A : U together with a
point a : A, called its basepoint. We write Us := }(4.) A for the type of
pointed types in the universe /.

Definition 2.1.8. Given a pointed type (A, a), we define the loop space
of (A, a) to be the following pointed type:

Q(A,a) .= ((a =4 a),refly).

An element of it will be called a loop at a. For # : IN, the n-fold iterated
loop space ()" (A, a) of a pointed type (A, a) is defined recursively by:

O%A,a) := (A,a)
O"(A,a) .= Q" (Q(A,a)).
An element of it will be called an n-loop or an n-dimensional loop at 4.

We will return to iterated loop spaces in Chapters 6 to 8.

2.2 Functions are functors

Now we wish to establish that functions f : A — B behave functorially
on paths. In traditional type theory, this is equivalently the statement
that functions respect equality. Topologically, this corresponds to saying
that every function is “continuous”, i.e. preserves paths.

Lemma 2.2.1. Suppose that f : A — B is a function. Then for any x,y : A
there is an operation

aps: (x =ay) = (f(x) =8 f(¥)):
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Moreover, for each x : A we have ap(refly) = refl¢(,).

The notation ap; can be read either as the application of f to a path,
or as the action on paths of f.

First proof. Let D : [1(x.)(x = y) — U be the type family defined by

D(x,y,p) = (f(x) = f(¥))-

Then we have
d = Ax.reflgy H D(x, x, refly)

By path induction, we obtain apf : [Ty ,.4)(x = y) = (f(x) = f(y))-
The computation rule implies aps(refly) = refl f(x) foreach x : A. O

Second proof. To define ap(p) forall p : x = y, it suffices, by induction, to
assume p is refl,. In this case, we may define aps(p) := reflg(,) @ f(x) =

f(x).

We will often write apf(p) as simply f(p). This is strictly speaking
ambiguous, but generally no confusion arises. It matches the common
convention in category theory of using the same symbol for the applica-
tion of a functor to objects and to morphisms.

We note that ap behaves functorially, in all the ways that one might
expect.

Lemma 2.2.2. For functions f : A — Band g: B — Candpaths p: x =4 y
and q : y =4 z, we have:

(i) apg(p=q) = aps(p)* apf( )-
(ii) aps(p~") = aps(p) "

(iii) apg(apf(P)) apgof( )-
(iv) apig,(p) =
Proof. Left to the reader. O

As was the case for the equalities in Lemma 2.1.4, those in Lemma 2.2.2
are themselves paths, which satisfy their own coherence laws (which can
be proved in the same way), and so on.
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2.3 Type families are fibrations

Since dependently typed functions are essential in type theory, we will also
need a version of Lemma 2.2.1 for these. However, this is not quite so
simple to state, because if f : [](,.4) B(x) and p : x =y, then f(x) : B(x)
and f(y) : B(y) are elements of distinct types, so that a priori we cannot
even ask whether they are equal. The missing ingredient is that p itself
gives us a way to relate the types B(x) and B(y).

We have already seen this in section 1.12, where we called it “indis-
cernibility of identicals”. We now introduce a different name and nota-
tion for it that we will use from now on.

Lemma 2.3.1 (Transport). Suppose that P is a type family over A and that
p: x =4 y. Then there is a function p, : P(x) — P(y).

First proof. Let D : [1(xy.4)(x = y) — U be the type family defined by

D(x,y,p) := P(x) = P(y).
Then we have the function

d:= Ax.idpry) - [ [ D(x, x, refly),
x:A

so that the induction principle gives usind—, (D, d, x,y,p) : P(x) — P(y)
for p : x = y, which we define to be p.. O

Second proof. By induction, it suffices to assume p is refl,. Butin this case,
we can take (refly), : P(x) — P(x) to be the identity function. O

Sometimes, it is necessary to notate the type family P in which the
transport operation happens. In this case, we may write

transport” (p, =) : P(x) — P(y).

Recall that a type family P over a type A can be seen as a property
of elements of A, which holds at x in A if P(x) is inhabited. Then the
transportation lemma says that P respects equality, in the sense that if x
is equal to y, then P(x) holds if and only if P(y) holds. In fact, we will
see later on that if x = y then actually P(x) and P(y) are equivalent.

Topologically, the transportation lemma can be viewed as a “path lift-
ing” operation in a fibration. We think of a type family P : A — U as
a fibration with base space A, with P(x) being the fiber over x, and with
Y(x:4) P(x) being the total space of the fibration, with first projection
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Y(x:a)(P(x)) — A. The defining property of a fibration is that given a
path p : x = y in the base space A and a point u : P(x) in the fiber over x,
we may lift the path p to a path in the total space starting at u (and this
lifting can be done continuously). The point p,(u) can be thought of as
the other endpoint of this lifted path. We can also define the path itself
in type theory:

Lemma 2.3.2 (Path lifting property). Let P : A — U be a type family over
A and assume we have u : P(x) for some x : A. Then for any p : x = y, we
have

lift(u, p) = (x,u) = (v, pe(u))
in Y x.a) P(x), such that pry(lift(u, p)) = p.

Proof. Left to the reader. We will prove a more general theorem in §2.7.
O

In classical homotopy theory, a fibration is defined as a map for which
there exist liftings of paths; while in contrast, we have just shown that in
type theory, every type family comes with a specified “path-lifting func-
tion”. This accords with the philosophy of constructive mathematics,
according to which we cannot show that something exists except by ex-
hibiting it. It also ensures automatically that the path liftings are chosen
“continuously”, since as we have seen, all functions in type theory are
“continuous”.

Remark 2.3.3. Although we may think of a type family P : A — U as like
a fibration, it is generally not a good idea to say things like “the fibration
P: A — U”, since this sounds like we are talking about a fibration with
base U/ and total space A. To repeat, when a type family P : A — U is
regarded as a fibration, the base is A and the total space is ¥ (,.4) P(x).
We may also occasionally use other topological terminology when
speaking about type families. For instance, we may refer to a depen-
dent function f : [(y.4) P(x) as a section of the fibration P, and we may
say that something happens fiberwise if it happens for each P(x). For
instance, a section f : [(y.4) P(x) shows that P is “fiberwise inhabited”.

Now we can prove the dependent version of Lemma 2.2.1. The topo-
logical intuition is that given f : [](y.4) P(x) and a path p : x =4 y, we
ought to be able to apply f to p and obtain a path in the total space of P
which “lies over” p, as shown below.
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We can obtain such a thing from Lemma 2.2.1. Given f : [](y.4) P(x),
we can define a non-dependent function f' : A — Y_(,.4) P(x) by setting
f'(x) := (x, f(x)), and then consider f'(p) : f'(x) = f'(y). Since pry o
f' = ida, by Lemma 2.2.2 we have pr(f'(p)) = p; thus f'(p) does “lie
over” p in this sense. However, it is not obvious from the type of f'(p)
that it lies over any specific path in A (in this case, p), which is sometimes
important.

The solution is to use the transport lemma. By Lemma 2.3.2 we have a
canonical path lift(u, p) from (x, u) to (y, p«(u)) which lies over p. Thus,
any path from u : P(x) to v : P(y) lying over p should factor through
lift(u, p), essentially uniquely, by a path from p. (1) to v lying entirely in
the fiber P(y). Thus, up to equivalence, it makes sense to define “a path

from u to v lying over p : x = y” to mean a path p.(u) = vin P(y). And,
indeed, we can show that dependent functions produce such paths.

Lemma 2.3.4 (Dependent map). Suppose f : [(y.a) P(x); then we have a
map

apds: [T (p«(f(x)) =p(y) f(¥))-

px=y

First proof. Let D : [(y,.4)(x = y) — U be the type family defined by

D(x,y,p) = p«(f(x)) = f(y)-

Then D(x, x, refly) is (refly), (f(x)) = f(x). But since (refly),(f(x)) =
f(x), we get that D(x, x, refly) = (f(x) = f(x)). Thus, we find the func-
tion
d:= Ax.reflgy H D(x, x, refly)
x:A

and now path induction gives us apd¢(p) : p«(f(x)) = f(y) for each
p:x=y. O
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Second proof. By induction, it suffices to assume p is refl,. But in this case,
the desired equation is (refly), (f(x)) = f(x), which holds judgmentally.
O

We will refer generally to paths which “lie over other paths” in this
sense as dependent paths. They will play an increasingly important role
starting in Chapter 6. In §2.5 we will see that for a few particular kinds
of type families, there are equivalent ways to represent the notion of de-
pendent paths that are sometimes more convenient.

Now recall from §1.4 that a non-dependently typed function f : A —
B is just the special case of a dependently typed function f : [T(y.4) P(x)
when P is a constant type family, P(x) := B. In this case, apds and apy
are closely related, because of the following lemma:

Lemma 2.3.5. If P : A — U is defined by P(x) := B for a fixed B : U, then
forany x,y: Aand p : x = yand b : B we have a path

transportconstg(b) : transport” (p, b) = b.

First proof. Fix a b : B, and let D : [](y,.4)(x = y) — U be the type
family defined by

D(x,y, p) := (transport” (p,b) = b).

Then D(x, x, refly) is (transportp(reflx,b) = b), which is judgmentally
equal to (b = b) by the computation rule for transporting. Thus, we
have the function

d:= Ax.refly : [ [ D(x, x, refly).
x:A
Now path induction gives us an element of
IT 11 (transport” (p,b) = b),
(xy:A) (px=y)
as desired. O
Second proof. By induction, it suffices to assume y is x and p is refl,. But

transportP(refIx, b) = b, so in this case what we have to prove is b = b,
and we have refly, for this. O

Thus, forany x,y : Aandp : x = yand f : A — B, by concate-

nating with transportconst, (f(x)) and its inverse, respectively, we obtain
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functions

(f(x) = f(y) = (p«(f(x)) = f(y))  and (2.3.6)
(p+(f(x)) = fF(¥) = (f(x) = f(y))- (2.37)

In fact, these functions are inverse equivalences (in the sense to be intro-
duced in §2.4), and they relate ap¢(p) to apd(p).

Lemma 2.3.8. For f : A — Band p : x =4 y, we have

apds(p) = transportconstg(f(x)) *aps(p).

First proof. Let D : [1(y,.4)(x = y) — U be the type family defined by

D(x,y, p) := (apdy(p) = transportconst? (£(x)) - ap(p)).
Thus, we have

D(x, x, refly) = (apd(refly) = tra nsportconst?eﬂx (f(x)) = aps(refly)).
But by definition, all three paths appearing in this type are refl¢(, ), so we
have

reflreﬂf(x) s D(x, x, refly).

Thus, path induction gives us an element of [Ty . 4) [1(p:x—y) D(x, ¥, p),
which is what we wanted. O

Second proof. By induction, it suffices to assume y is x and p is refly. In
this case, what we have to prove is refl = refl¢, = refl(,), which is
true judgmentally.

Because the types of apdy and apy are different, it is often clearer to
use different notations for them.

At this point, we hope the reader is starting to get a feel for proofs by
induction on identity types. From now on we stop giving both styles of
proofs, allowing ourselves to use whatever is most clear and convenient
(and often the second, more concise one). Here are a few other useful
lemmas about transport; we leave it to the reader to give the proofs (in
either style).

Lemma 2.3.9. Given P : A — U withp : x =5 yand q : y =4 z while
u : P(x), we have

g«(pe (1)) = (pq).(u).
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Lemma 2.3.10. For a function f : A — B and a type family P : B — U, and
any p:x =4 yand u : P(f(x)), we have

transport”*f (p,u) = transportP(apf(p),u).

Lemma2.3.11. For P,Q : A — U and a family of functions f : T](y.a) P(x) —
Q(x),andany p : x =4 y and u : P(x), we have

transport® (p, f (1)) = fy(transportp(p,u)).

2.4 Homotopies and equivalences

So far, we have seen how the identity type x =4 v can be regarded as a
type of identifications, paths, or equivalences between two elements x and y
of a type A. Now we investigate the appropriate notions of “identifi-
cation” or “sameness” between functions and between types. In §§2.9
and 2.10, we will see that homotopy type theory allows us to identify
these with instances of the identity type, but before we can do that we
need to understand them in their own right.

Traditionally, we regard two functions as the same if they take equal
values on all inputs. Under the propositions-as-types interpretation, this
suggests that two functions f and g (perhaps dependently typed) should
be the same if the type [],.4)(f(x) = g(x)) is inhabited. Under the ho-
motopical interpretation, this dependent function type consists of con-
tinuous paths or functorial equivalences, and thus may be regarded as the
type of homotopies or of natural isomorphisms. We will adopt the topologi-
cal terminology for this.

Definition 2.4.1. Let f, g : [1(x.a) P(x) be two sections of a type family
P: A — U. A homotopy from f to g is a dependent function of type

(f~8)=[](f(x) =g(x)).

x:A

Note that a homotopy is not the same as an identification (f = g).
However, in §2.9 we will introduce an axiom making homotopies and
identifications “equivalent”.

The following proofs are left to the reader.
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Lemma 2.4.2. Homotopy is an equivalence relation on each dependent function
type I1(x:.a) P(x). That is, we have elements of the types

[T ~5
f:H(x:A) P(x)
[1T (U~g—=@&~f)
f:8 T (x.a) P(x)

(f ~8) = (g~h) = (f ~h).
f:8MTT(x:a) P(x)

Just as functions in type theory are automatically “functors”, homo-
topies are automatically “natural transformations”. We will state and
prove this only for non-dependent functions f,g : A — B; in Exer-
cise 2.18 we ask the reader to generalize it to dependent functions.

Recall that for f : A — Band p : x =4 y, we may write f(p) to mean

an(P)~

Lemma 2.4.3. Suppose H : f ~ g is a homotopy between functions f,g :
A — Bandlet p: x =4 y. Then we have

We may also draw this as a commutative diagram:

f(p)

f(x)

Proof. By induction, we may assume p is refl,. Since apy and ap, compute
on reflexivity, in this case what we must show is

H(x) . reflg(x) = reflf(x) . H(X)
But this follows since both sides are equal to H(x). O

Corollary 2.4.4. Let H : f ~ id4 be a homotopy, with f : A — A. Then for
any x : A we have

Here f(x) denotes the ordinary application of f to x, while f(H(x)) de-
notes aps(H(x)).
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Proof. By naturality of H, the following diagram of paths commutes:

fx L

H(fx) Hx

fx g

That is, f(Hx)* Hx = H(fx) - Hx. We can now whisker by (Hx) ' to
cancel Hx, obtaining

f(Hx) = f(Hx)+Hx«(Hx)"' = H(fx)*Hx* (Hx)"' = H(fx)
as desired (with some associativity paths suppressed). O

Of course, like the functoriality of functions (Lemma 2.2.2), the equal-
ity in Lemma 2.4.3 is a path which satisfies its own coherence laws, and
SO on.

Moving on to types, from a traditional perspective one may say that a
function f : A — B is an isomorphism if there is a function g : B — A such
that both composites f o g and g o f are pointwise equal to the identity,
i.e. such that fo g ~ idg and go f ~ id4q. A homotopical perspective
suggests that this should be called a homotopy equivalence, and from a
categorical one, it should be called an equivalence of (higher) groupoids.
However, when doing proof-relevant mathematics, the corresponding
type

2 ((fogn~idg) x (gof ~idy)) (2.4.5)

gB—A

is poorly behaved. For instance, for a single function f : A — B there
may be multiple unequal inhabitants of (2.4.5). (This is closely related
to the observation in higher category theory that often one needs to con-
sider adjoint equivalences rather than plain equivalences.) For this rea-
son, we give (2.4.5) the following historically accurate, but slightly de-
rogatory-sounding name instead.

Definition 2.4.6. For a function f : A — B, a quasi-inverse of f is a triple
(g,, B) consisting of a function § : B — A and homotopies a : fo g ~

idgand B: go f ~idy.

Thus, (2.4.5) is the type of quasi-inverses of f; we may denote it by
qinv(f).
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Example 2.4.7. The identity function id4 : A — A has a quasi-inverse
given by id, itself, together with homotopies defined by a(y) := refl,
and B(x) := refly.

Example 2.4.8. Forany p: x =4 y and z : A, the functions

(pr-):(y=az) = (x=42z) and
(=*p):(z=ax) = (z=4y)

-1

have quasi-inverses given by (p~!+-) and (- p~!), respectively; see

Exercise 2.6.

Example 2.4.9. Forany p:x =4 yand P : A — U, the function
transport” (p, =) : P(x) — P(y)

has a quasi-inverse given by transport” (p~1, -); this follows from
Lemma 2.3.9.

In general, we will only use the word isomorphism (and similar words
such as bijection, and the associated notation A = B) in the special case
when the types A and B “behave like sets” (see §3.1). In this case, the
type (2.4.5) is unproblematic. We will reserve the word equivalence for an
improved notion isequiv( f) with the following properties:

(i) Foreach f: A — B there is a function qinv(f) — isequiv(f).
(ii) Similarly, for each f we have isequiv(f) — qinv(f); thus the two are
logically equivalent (see §1.11).
(iii) For any two inhabitants eq, e; : isequiv(f) we have e; = e;.

In Chapter 4 we will see that there are many different definitions of
isequiv(f) which satisfy these three properties, but that all of them are
equivalent. For now, to convince the reader that such things exist, we
mention only the easiest such definition:

isequiv(f) = ( ) (fogwidB)) ><( ) (hofwidA)). (2.4.10)

gB—A h:B—A

We can show (i) and (ii) for this definition now. A function qinv(f) —
isequiv(f) is easy to define by taking (g, «, B) to (g,«, ¢, B). In the other
direction, given (g, a, 1, B), let y be the composite homotopy

ghnofoghn,
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meaning that y(x) := B(g(x)) "+ h(a(x)). Now define B : go f ~ idy
by B(x) := 7(f(x)) * B(x). Then (g, B') : qinv ().

Property (iii) for this definition is not too hard to prove either, but
it requires identifying the identity types of cartesian products and de-
pendent pair types, which we will discuss in §§2.6 and 2.7. Thus, we
postpone it as well; see §4.3. At this point, the main thing to take away
is that there is a well-behaved type which we can pronounce as “f is an
equivalence”, and that we can prove f to be an equivalence by exhibiting
a quasi-inverse to it. In practice, this is the most common way to prove
that a function is an equivalence.

In accord with the proof-relevant philosophy, an equivalence from A
to B is defined to be a function f : A — B together with an inhabitant of
isequiv(f), i.e. a proof that it is an equivalence. We write (A ~ B) for the
type of equivalences from A to B, i.e. the type

(A~B):= Y isequiv(f). (2.4.11)
f:A—B

Property (iii) above will ensure that if two equivalences are equal as func-
tions (that is, the underlying elements of A — B are equal), then they
are also equal as equivalences (see §2.7). Thus, we often abuse notation
and blur the distinction between equivalences and their underlying func-
tions. For instance, if we have a function f : A — B and we know that
e : isequiv(f), we may write f : A ~ B, rather than (f, ). Or conversely,
if we have an equivalence g : A ~ B, we may write g(a) when given
a: A, rather than (prig)(a).
We conclude by observing:

Lemma 2.4.12. Type equivalence is an equivalence relation on U. More specif-
ically:

(i) Forany A, the identity function id 4 is an equivalence; hence A ~ A.
(ii) Forany f : A ~ B, we have an equivalence f ' : B ~ A.
(iii) Forany f : A~Band g: B~ C,wehavego f : A~ C.

Proof. The identity function is clearly its own quasi-inverse; hence it is
an equivalence.

If f : A — Bis an equivalence, then it has a quasi-inverse, say f ! :
B — A. Then f is also a quasi-inverse of f~!, so f~! is an equivalence
B — A.

Finally, given f : A ~ Band g : B ~ C with quasi-inverses f~! and
¢!, say, then foranya : Awehave f1¢"'¢fa = f~!fa = a,and for any
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c:Cwehave gff l¢7lc = g¢lc = c. Thus f ! 0 g~!is a quasi-inverse
to g o f, hence the latter is an equivalence. O

2.5 The higher groupoid structure of type
formers

In Chapter 1, we introduced many ways to form new types: cartesian
products, disjoint unions, dependent products, dependent sums, etc. In
§§2.1-2.3, we saw that all types in homotopy type theory behave like
spaces or higher groupoids. Our goal in the rest of the chapter is to make
explicit how this higher structure behaves in the case of the particular
types defined in Chapter 1.

It turns out that for many types A, the equality types x =4 y can be
characterized, up to equivalence, in terms of whatever data was used to
construct A. For example, if A is a cartesian product B x C,and x = (b, c)
and y = (V/, '), then we have an equivalence

((b,c) = (', ")) = ((b="V)x(c=C)). (2.5.1)

In more traditional language, two ordered pairs are equal just when their
components are equal (but the equivalence (2.5.1) says rather more than
this). The higher structure of the identity types can also be expressed in
terms of these equivalences; for instance, concatenating two equalities
between pairs corresponds to pairwise concatenation.

Similarly, when a type family P : A — U is built up fiberwise using
the type forming rules from Chapter 1, the operation transport” (p, —) can
be characterized, up to homotopy, in terms of the corresponding opera-
tions on the data that went into P. For instance, if P(x) = B(x) x C(x),
then we have

transport” (p, (b,c)) = (transport®(p, b), transport®(p, c)).

Finally, the type forming rules are also functorial, and if a function f
is built from this functoriality, then the operations ap; and apd; can be
computed based on the corresponding ones on the data going into f. For
instance, if g: B— B’ and h : C — C’ and we define f : Bx C — B’ x C’
by f(b,c) := (g(b),h(c)), then modulo the equivalence (2.5.1), we can
identify apy with “(ap,, apy,)”.

The next few sections (§§2.6-2.13) will be devoted to stating and prov-
ing theorems of this sort for all the basic type forming rules, with one
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section for each basic type former. Here we encounter a certain appar-
ent deficiency in currently available type theories; as will become clear in
later chapters, it would seem to be more convenient and intuitive if these
characterizations of identity types, transport, and so on were judgmental
equalities. However, in the theory presented in Chapter 1, the identity
types are defined uniformly for all types by their induction principle, so
we cannot “redefine” them to be different things at different types. Thus,
the characterizations for particular types to be discussed in this chapter
are, for the most part, theorems which we have to discover and prove, if
possible.

Actually, the type theory of Chapter 1 is insufficient to prove the de-
sired theorems for two of the type formers: I1-types and universes. For
this reason, we are forced to introduce axioms into our type theory, in or-
der to make those “theorems” true. Type-theoretically, an axiom (c.f. §1.1)
is an “atomic” element that is declared to inhabit some specified type,
without there being any rules governing its behavior other than those
pertaining to the type it inhabits.

The axiom for II-types (§2.9) is familiar to type theorists: it is called
function extensionality, and states (roughly) that if two functions are ho-
motopic in the sense of §2.4, then they are equal. The axiom for universes
(§2.10), however, is a new contribution of homotopy type theory due to
Voevodsky: it is called the univalence axiom, and states (roughly) that if
two types are equivalent in the sense of §2.4, then they are equal. We
have already remarked on this axiom in the introduction; it will play a
very important role in this book.!

It is important to note that not all identity types can be “determined”
by induction over the construction of types. Counterexamples include
most nontrivial higher inductive types (see Chapters 6 and 8). For in-
stance, calculating the identity types of the types 5" (see §6.4) is equiv-
alent to calculating the higher homotopy groups of spheres, a deep and
important field of research in algebraic topology.

2.6 Cartesian product types

Given types A and B, consider the cartesian product type A x B. For any
elements x,y : A x B and a path p : x =44p y, by functoriality we can

extract paths pry(p) : pry(x) =a pri(y) and pry(p) : pra(x) =g pra(y).

1We have chosen to introduce these principles as axioms, but there are potentially other
ways to formulate a type theory in which they hold. See the Notes to this chapter.



106 CHAPTER 2. HOMOTOPY TYPE THEORY

Thus, we have a function

(x =axy) = (pri(x) =a pri(y)) x (pra(x) = pra(y)).  (26.1)
Theorem 2.6.2. For any x and y, the function (2.6.1) is an equivalence.

Read logically, this says that two pairs are equal just if they are equal
componentwise. Read category-theoretically, this says that the morphisms
in a product groupoid are pairs of morphisms. Read homotopy-theoretically,
this says that the paths in a product space are pairs of paths.

Proof. We need a function in the other direction:

(pri(x) =a pri(y)) x (pra(x) =p pra(y)) = (x =axB ¥)- (2.6.3)

By the induction rule for cartesian products, we may assume that x and
y are both pairs, i.e. x = (a,b) and y = (a',V’) for some 4,4’ : A and
b,V : B. In this case, what we want is a function

(a=pd)x(b=pb")— ((a,b) =axp (a',1)).

Now by induction for the cartesian product in its domain, we may as-
sume given p : a = a’ and ¢ : b = b'. And by two path inductions, we
may assume that 2 = 4’ and b = b’ and both p and g are reflexivity. But
in this case, we have (a,b) = (a/,b’) and so we can take the output to
also be reflexivity.

It remains to prove that (2.6.3) is quasi-inverse to (2.6.1). This is a sim-
ple sequence of inductions, but they have to be done in the right order.

In one direction, let us start with ¥ : x =45 y. We first do a path
induction on r in order to assume that x = y and r is reflexivity. In this
case, since aPpr, and appy, are defined by path induction, (2.6.1) takes
r = refl, to the pair (reflpr,x, reflpr,x). Now by induction on x, we may
assume x = (a,b), so that this is (refl,, refl,). Thus, (2.6.3) takes it by
definition to refl , ;), which (under our current assumptions) is .

In the other direction, if we start with s : (pri(x) =4 pri(y)) X
(pra(x) =g pra(y)), then we first do induction on x and y to assume
that they are pairs (a,b) and (a’,0’), and then induction on's : (2 =4
a’) x (b =p V') to reduce it to a pair (p,q) wherep:a =a"andg: b =10’
Now by induction on p and g, we may assume they are reflexivities refl,
and refl,, in which case (2.6.3) yields refl, ;) and then (2.6.1) returns us to
(refly, refly) = (p,q) = s. O
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In particular, we have shown that (2.6.1) has an inverse (2.6.3), which
we may denote by

pair— : (pri(x) = pri(y)) x (pra(x) = pra(y)) = (x = ).

Note that a special case of this yields the propositional uniqueness prin-
ciple for products: z = (pry(z), pra(2)).

It can be helpful to view pair™ as a constructor or introduction rule for
x = y, analogous to the “pairing” constructor of A x B itself, which
introduces the pair (4,b) givena : A and b : B. From this perspective,
the two components of (2.6.1):

appr, + (x = y) = (pri(x) =
aPpr, + (x = y) = (pr2(¥)

Pri
pra(y))
are elimination rules. Similarly, the two homotopies which witness (2.6.3)

as quasi-inverse to (2.6.1) consist, respectively, of propositional computa-
tion rules:

appr, (Pair—(p,q)) = p
appr, (Pair(p,q)) = ¢
for p : prix = pryy and g : prpx = proy, and a propositional uniqueness
principle:
r = pair~ (apgy, (), appr, (7)) forr:x =axp Y.
We can also characterize the reflexivity, inverses, and composition of
paths in A x B componentwise:

refl(;. 4.y = pair™ (reflpr,z, reflpr,z)
p~! = pair=(appy, (p) ', appr, (p) )
ptq= pair:(apprl(p) * aPpr, (Q)/ apprz(P) * aPpr, (q))

Or, written differently:

appr, (refl ;.4 p)y) = reflrz (i=1,2)
pair(p~',q7") = pair(p,q) "
pair=(p+q,p"+q') = pair(p, p') * pair—(q,q).
All of these equations can be derived by using path induction on the
given paths and then returning reflexivity. The same is true for the rest
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of the higher groupoid structure considered in §2.1, although it begins to
get tedious to insert enough other coherence paths to yield an equation
that will typecheck. For instance, if we denote the inverse of the path
in Lemma 2.1.4(iv) by assoc(p,q,r) and the last path displayed above
by pair’ (p,q,p',q'), then for any u,v,z,w : A x Band p,q,1,p',q,1" of
appropriate types we have

pair” (pq,r,p'q',7")
* (pair” (p,q, ', q") * pair=(r, "))
» assoc(pair=(p, p’), pair=(q,q’), pair=(r,7"))
= appair= (pair~(assoc(p, q,7),assoc(p’, 4, 7'
spair’ (p,q 1, v, q ")
* (pair=(p, p') v pair* (q,7,4',1")).

)

Fortunately, we will never have to use any such higher-dimensional co-
herences.

We now consider transport in a pointwise product of type families.
Given type families A,B : Z — U, we abusively write A X B : Z — U
for the type family defined by (A x B)(z) := A(z) x B(z). Now given
p:z=z wand x : A(z) x B(z), we can transport x along p to obtain an
element of A(w) X B(w).

Theorem 2.6.4. In the above situation, we have

transport*B(

P, X) = A(w)xB(w) (tra nsport? (p, pryx), transport® (p, pryx)).
Proof. By path induction, we may assume p is reflexivity, in which case
we have

transport 5 (

p,xX)=x
transport(p, pryx) = pryx

transport?(p, prox) = prox.

Thus, it remains to show x = (pryx, prox). But this is the propositional
uniqueness principle for product types, which, as we remarked above,
follows from Theorem 2.6.2. O

Finally, we consider the functoriality of ap under cartesian products.
Suppose given types A, B, A’, B’ and functionsg: A — A’ and h : B —
B’; then we can define a function f : A x B — A’ x B’ by f(x) :=

(8(prix), h(prax)).
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Theorem 2.6.5. [n the above situation, given x,y : A X Band p : pryx = pryy
and q : prox = pryy, we have

f(pair=(p,q)) =(r(x)=f(y)) Pair—(8(p), h(q))-

Proof. Note first that the above equation is well-typed. On the one hand,
since pair—(p,q) : x = y we have f(pair—(p,q)) : f(x) = f(y). On the
other hand, since pr; (f(x)) = g(prx) and pry(f(x)) = h(pry), we also
have pair~(g(p), h(q)) : f(x) = f(y).

Now, by induction, we may assume x = (a,b) and y = (a',1'), in
which case we have p : 4 = 4’ and g : b = b’. Thus, by path induction,
we may assume p and g are reflexivity, in which case the desired equation
holds judgmentally. O

2.7 X-types

Let A be atypeand P : A — U a type family. Recall that the Z-type,
or dependent pair type, }(y.4) P(x) is a generalization of the cartesian
product type. Thus, we expect its higher groupoid structure to also be
a generalization of the previous section. In particular, its paths should
be pairs of paths, but it takes a little thought to give the correct types of
these paths.

Suppose that we have a path p : w = @’ in Y (;.4) P(x). Then we
get pri(p) : pri(w) = pri(w'). However, we cannot directly ask whether
pr, (w) is identical to pr, (w’) since they don’t have to be in the same type.
But we can transport pr,(w) along the path pry(p), and this does give us
an element of the same type as prp(w’). By path induction, we do in fact
obtain a path pri(p), (pra(w)) = prp(w’).

Recall from the discussion preceding Lemma 2.3.4 that

pri(p). (pr2(w)) = pra(w')

can be regarded as the type of paths from pr,(w) to prp(w’) which lie over
the path pr;(p) in A. Thus, we are saying that a path w = w’ in the total
space determines (and is determined by) a path p : pry(w) = prq(@') in
A together with a path from pr, (w) to pr,(w’) lying over p, which seems
sensible.

Remark 2.7.1. Note that if we have x : A and u,v : P(x) such that
(x,u) = (x,v), it does not follow that # = v. All we can conclude is
that there exists p : x = x such that p.(u) = v. This is a well-known
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source of confusion for newcomers to type theory, but it makes sense
from a topological viewpoint: the existence of a path (x,u) = (x,v) in
the total space of a fibration between two points that happen to lie in the
same fiber does not imply the existence of a path u = v lying entirely
within that fiber.

The next theorem states that we can also reverse this process. Since it

is a direct generalization of Theorem 2.6.2, we will be more concise.

Theorem 2.7.2. Suppose that P : A — U is a type family over a type A and
let w,w" : Y y.a) P(x). Then there is an equivalence

(w=uw') ~ )3 ps(pra(w)) = pra(w').

(p:pry(w)=pry(w'))

Proof. We define a function

fo I (w=w)-— ) ps(pra(w)) = pry(')

W'Yy 4) P(x) (pzpri(w)=pry(w'))

by path induction, with

f(w, w, reflw) = (reﬂpr] (w)r reﬂprz(w))'

We want to show that f is an equivalence.
In the reverse direction, we define

g 1 (X plon@) =pn@)) =

WL (. p) P(x) pipra () =pry ()

(w=w')

by firstinducting on w and w’, which splits them into (w1, w,) and (w}, w})
respectively, so it suffices to show

Y pelwa) = wh) = ((wy,wp) = (0], wh).

. JE—
pw=w]

Next, given a pair Z(p:wlza/l ) p«(wy) = wh, we can use X-induction to
getp : wp = w) and g : p.(wp) = w). Inducting on p, we have q :
(refly, ), (w2) = w), and it suffices to show (w1, w;) = (wy, wh). But
(refly, ), (w2) = woy, so inducting on g reduces the goal to (wy,wy) =

(w1, ws,), which we can prove with refl(wth).
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Next we show that f(g(r)) = r for all w, w’ and r, where r has type

Z (ps(pra(w)) = prp(w')).

(p:pry(w)=pry(w'))

First, we break apart the pairs w, w’, and r by pair induction, as in the
definition of g, and then use two path inductions to reduce both com-
ponents of r to refl. Then it suffices to show that f(g(refly,,refly,)) =
(refly,, refly, ), which is true by definition.

Similarly, to show that ¢(f(p)) = p forall w, w’, and p : w = w', we
can do path induction on p, and then pair induction to split w, at which
point it suffices to show that g(f(refl(, ,))) = refly, «,), which is true
by definition.

Thus, f has a quasi-inverse, and is therefore an equivalence. O

As we did in the case of cartesian products, we can deduce a propo-
sitional uniqueness principle as a special case.

Corollary 2.7.3. For z : ¥ (,.a) P(x), we have z = (pr{(z), pra(z)).

Proof. Wehaverefly, () : pri(z) = pri(pry(z), pra(2)), so by Theorem 2.7.2
it will suffice to exhibit a path (refl,, (;))_(pr2(z)) = pra(pri(2), pra(z))-
But both sides are judgmentally equal to pry(z). O

Like with binary cartesian products, we can think of the backward
direction of Theorem 2.7.2 as an introduction form (pair™), the forward
direction as elimination forms (ap,,, and apy,), and the equivalence as
giving a propositional computation rule and uniqueness principle for
these.

Note that the lifted path lift(u, p) of p : x = y at u : P(x) defined in
Lemma 2.3.2 may be identified with the special case of the introduction
form

pair™ (p,refl, (1)) * (x,10) = (3, pe(u)).
This appears in the statement of action of transport on X-types, which is
also a generalization of the action for binary cartesian products:

Theorem 2.7.4. Suppose we have type families

P:A—U and Q: (ZP(x))—N/{.
x:A

Then we can construct the type family over A defined by
x— Y Qxu).

u:P(x)
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Forany path p : x = y and any (u,z) : ¥ ,.p(x)) Q(x, u) we have

px(u,2) = (p«(u), pair=(p, refl, ) (2))-

Proof. Immediate by path induction. O

We leave it to the reader to state and prove a generalization of Theo-
rem 2.6.5 (see Exercise 2.7), and to characterize the reflexivity, inverses,
and composition of X-types componentwise.

2.8 The unit type

Trivial cases are sometimes important, so we mention briefly the case of
the unit type 1.

Theorem 2.8.1. Forany x,y : 1, we have (x = y) ~ 1.

It may be tempting to begin this proof by 1-induction on x and y,
reducing the problem to (x = x) ~ 1. However, at this point we would
be stuck, since we would be unable to perform a path induction on p :
* = *. Thus, we instead work with a general x and y as much as possible,
reducing them to x by induction only at the last moment.

Proof. A function (x = y) — 1 1is easy to define by sending everything
to x. Conversely, for any x,y : 1 we may assume by induction that x =
* = y. In this case we have refl, : x = y, yielding a constant function
1— (x=y).

To show that these are inverses, consider first an element u : 1. We
may assume that u = «, but this is also the result of the composite 1 —
(x=y)—1.

On the other hand, suppose given p : x = y. By path induction, we
may assume x = y and p is refly. We may then assume that x is *, in
which case the composite (x = y) - 1 — (x = y) takes p to refly, i.e.
top. O

In particular, any two elements of 1 are equal. We leave it to the
reader to formulate this equivalence in terms of introduction, elimina-
tion, computation, and uniqueness rules. The transport lemma for 1 is
simply the transport lemma for constant type families (Lemma 2.3.5).
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2.9 [Il-types and the function extensionality
axiom

Given a type A and a type family B : A — U, consider the dependent
function type [](x.) B(x). We expect the type f = g of paths from f to g
in [(x.4) B(x) to be equivalent to the type of pointwise paths:

(f=2 = (TTUE) =5 &()- (29.1)
xA
From a traditional perspective, this would say that two functions which
are equal at each point are equal as functions. From a topological per-
spective, it would say that a path in a function space is the same as a
continuous homotopy. And from a categorical perspective, it would say
that an isomorphism in a functor category is a natural family of isomor-
phisms.
Unlike the case in the previous sections, however, the basic type the-
ory presented in Chapter 1 is insufficient to prove (2.9.1). All we can say
is that there is a certain function

happly : (f = &) — F/! (f(x) =p(x) 8(x)) (2.9.2)

which is easily defined by path induction. For the moment, therefore,
we will assume:

Axiom 2.9.3 (Function extensionality). For any A, B, f, and g, the func-
tion (2.9.2) is an equivalence.

We will see in later chapters that this axiom follows both from univa-
lence (see §§2.10 and 4.9) and from an interval type (see §6.3 and Exer-
cise 6.10).

In particular, Axiom 2.9.3 implies that (2.9.2) has a quasi-inverse

funext : (TT(f(x) = g(x))) = (f = 8)-
x:A
This function is also referred to as “function extensionality”. As we did
with pair™ in §2.6, we can regard funext as an introduction rule for the
type f = g. From this point of view, happly is the elimination rule, while
the homotopies witnessing funext as quasi-inverse to happly become a
propositional computation rule

happly(funext(h), x) = h(x) for b : I—AI(f(x) = g(x))
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and a propositional uniqueness principle:
p = funext(x — happly(p, x)) forp: f=g.

We can also compute the identity, inverses, and composition in I1-
types; they are simply given by pointwise operations:

refly = funext(x — refl¢(y))
o' = funext(x — happly(x, x) 1)
a = B = funext(x — happly(a, x) = happly(B, x)).

The first of these equalities follows from the definition of happly, while
the second and third are easy path inductions.

Since the non-dependent function type A — B is a special case of the
dependent function type [](,.4) B(x) when B is independent of x, every-
thing we have said above applies in non-dependent cases as well. The
rules for transport, however, are somewhat simpler in the non-dependent
case. Given a type X, a path p : x; =x xo, type families A,B : X — U,
and a function f : A(x1) — B(x7), we have

transport 7B (p, f) = (x — transportB(p,f(transportA(pfl,x))))
(2.9.4)

where A — B denotes abusively the type family X — U/ defined by
(A — B)(x) := (A(x) — B(x)).

In other words, when we transport a function f : A(x1) — B(x;) along a
path p : x; = x2, we obtain the function A(x;) — B(x) which transports
its argument backwards along p (in the type family A), applies f, and
then transports the result forwards along p (in the type family B). This
can be proven easily by path induction.

Transporting dependent functions is similar, but more complicated.
Suppose given X and p as before, type families A : X — U/ and B :
[T(x:x)(A(x) — U), and also a dependent function f : [T(4.4(x,)) B(x1,4).
Then for a : A(x;), we have

transportHA(B) (p. f)(a) =

transportg((pair:(pfl,reflpfl (a)))il, f(transportA(pfl,a)))

*
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where I, (B) and B denote respectively the type families

HA<B/)\ = (x HH(a:A(x))B(x/a)) s X—=U
B (w = B(prlw/ pI’ZZU)) : (Z(X:X) A(.X)) —U.
(2.9.5)

If these formulas look a bit intimidating, don’t worry about the details.
The basic idea is just the same as for the non-dependent function type:
we transport the argument backwards, apply the function, and then trans-
port the result forwards again.

Now recall that for a general type family P : X — U, in §2.2 we
defined the type of dependent paths over p : x =x y from u : P(x) to

P(y) to be p.(u) =p(,) v. When P is a family of function types, there
is an equivalent way to represent this which is often more convenient.

Lemma 2.9.6. Given type families A,B : X — U and p : x =x y, and also
f:A(x) = B(x)and g : A(y) — B(y), we have an equivalence

(p«(f)=8) = TT (p-(f(2)) =8(p«(a))).

a:A(x)

Moreover, if q : p«(f) = g corresponds under this equivalence to g, then for
a: A(x), the path

happly(q, p«(a)) : (p«(f))(p«(a)) = g(p«(a))

is equal to the concatenated path i+ j* k, where

i (P*(f))(P*( )) = p«(f(p~".(p«(a)))) comes from (2.9.4),
° j: ;*(f( L(p«(a)))) = p«(f(a)) comes from Lemmas 2.1.4 and 2.3.9,
an

¢ k:p«(f(a)) = g(p«(a)) is §(a).

Proof. By path induction, we may assume p is reflexivity, in which case
the desired equivalence reduces to function extensionality. The second
statement then follows by the computation rule for function extension-
ality. O

In general, it happens quite frequently that we want to consider a
concatenation of paths each of which arises from some previously proven
lemmas or hypothesized objects, and it can be rather tedious to describe
this by giving a name to each path in the concatenation as we did in the
second statement above. Thus, we adopt a convention of writing such
concatenations in the familiar mathematical style of “chains of equalities
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with reasons”, and allow ourselves to omit reasons that the reader can
easily fill in. For instance, the path i*j*k from Lemma 2.9.6 would be
written like this:

(P+())(p(@)) = P (f(p~"(p+(a)))) (by (2.9.4))
= p«(f(a))
= g(ps(a)). (by §)

In ordinary mathematics, such a chain of equalities would be merely
proving that two things are equal. We are enhancing this by using it
to describe a particular path between them.

As usual, there is a version of Lemma 2.9.6 for dependent functions
that is similar, but more complicated.

Lemma 2.9.7. Given type families A : X — U and B : []x.x) A(x) = U

and p : x =x y, and also f : [1(g:a(x)) B(x,a) and g : T1(a:a(y)) B(y, a), we
have an equivalence

(p<(f) =g) ~ ( I transportg(pair:(p, refl,, (), f(a)) = g(p*(a)))

a:A(x)
with B as in (2.9.5).

We leave it to the reader to prove this and to formulate a suitable
computation rule.

2.10 Universes and the univalence axiom

Given two types A and B, we may consider them as elements of some
universe type U/, and thereby form the identity type A =;; B. As men-
tioned in the introduction, univalence is the identification of A =;; B with
the type (A ~ B) of equivalences from A to B, which we described in
§2.4. We perform this identification by way of the following canonical
function.

Lemma 2.10.1. For types A, B : U, there is a certain function,
idtoeqv : (A =y B) - (A~ B), (2.10.2)
defined in the proof.

Proof. We could construct this directly by induction on equality, but the
following description is more convenient. Note that the identity function
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idy : U — U may be regarded as a type family indexed by the universe
U; it assigns to each type X : U the type X itself. (When regarded as
a fibration, its total space is the type } (44/) A of “pointed types”; see
also §4.8.) Thus, given a path p : A =;; B, we have a transport function
ps« : A — B. We claim that p. is an equivalence. But by induction, it
suffices to assume that p is refl4, in which case p. = id4, which is an
equivalence by Example 2.4.7. Thus, we can define idtoeqv(p) to be p.
(together with the above proof that it is an equivalence). O

We would like to say that idtoeqv is an equivalence. However, as
with happly for function types, the type theory described in Chapter 1 is
insufficient to guarantee this. Thus, as we did for function extensionality,
we formulate this property as an axiom: Voevodsky’s univalence axiom.

Axiom 2.10.3 (Univalence). For any A,B : U, the function (2.10.2) is an
equivalence.

In particular, therefore, we have
(A =y B) ~ (A ~B).

Technically, the univalence axiom is a statement about a particular
universe type . If a universe U satisfies this axiom, we say that it is
univalent. Except when otherwise noted (e.g. in §4.9) we will assume
that all universes are univalent.

Remark 2.10.4. It is important for the univalence axiom that we defined
A ~ B using a “good” version of isequiv as described in §2.4, rather than

(say) as ¥(r.a—p) dinv(f). See Exercise 4.6.

In particular, univalence means that equivalent types may be identified.
As we did in previous sections, it is useful to break this equivalence into:

¢ An introduction rule for (A =; B), denoted ua for “univalence
axiom”:
ua: (A~ B)— (A=y B).
¢ The elimination rule, which is idtoeqv,
idtoeqv = transportX "X : (A =;; B) — (A ~ B).

¢ The propositional computation rule,

transport® X (ua(f), x) = f(x).
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¢ The propositional uniqueness principle: forany p: A = B,

p = ua(transportX X (p)).

We can also identify the reflexivity, concatenation, and inverses of equal-
ities in the universe with the corresponding operations on equivalences:

reflg = ua(id,)
ua(f)+ua(g) = uva(go f)
ua(f) "' = wa(f ).
The first of these follows because id4 = idtoeqv(refl4) by definition of
idtoeqv, and ua is the inverse of idtoeqv. For the second, if we define
p :=ua(f) and g := ua(g), then we have
ua(g o f) = ua(idtoeqv(q) o idtoeqv(p)) = ua(idtoeqv(p+q)) = p+q

using Lemma 2.3.9 and the definition of idtoeqv. The third is similar.
The following observation, which is a special case of Lemma 2.3.10,
is often useful when applying the univalence axiom.

Lemma 2.10.5. For any type family B : A — U and x,y : A with a path
p:x =yandu: B(x), we have
transport® (p, u) = transport* X (apg(p), 1)

= idtoeqv(apg(p))(u).

2.11 Identity type

Just as the type a =4 a’ is characterized up to isomorphism, with a sep-
arate “definition” for each A, there is no simple characterization of the
type p =,—,« q of paths between paths p,q : a =4 a’. However, our
other general classes of theorems do extend to identity types, such as the
fact that they respect equivalence.

Theorem 2.11.1. If f : A — B is an equivalence, then for all a,a’ : A, so is
apy: (a=44a') = (f(a) =p f(a)).
Proof. Let f~! be a quasi-inverse of f, with homotopies

o g(f(fﬁl(b)) =b) and B l_}(fﬁl(f(a)) =a).
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The quasi-inverse of apy is, essentially,

app1: (f(a) = f(a) = (F 1 (f(@) = fH(f(a)).
However, in order to obtain an element of 2 =, 4’ from ap;-1(q), we
must concatenate with the paths 8, ' and B, on either side. To show

that this gives a quasi-inverse of apy, on one hand we must show that for
any p :a =4 a’ we have

Ba~'+appi(app(p)) - B = p-
This follows from the functoriality of ap and the naturality of homo-
topies, Lemmas 2.2.2 and 2.4.3. On the other hand, we must show that
forany q: f(a) =p f(a’) we have

aps(Ba ' *app1(q) " Bur) = 4.

The proof of this is a little more involved, but each step is again an ap-
plication of Lemmas 2.2.2 and 2.4.3 (or simply canceling inverse paths):

aps(Ba ' *apr1(q) * Bar)

= g apa) aps (B rappa (9) * Bur) dpany Tty

= (o) rapg(apr1(app(Ba rappi ()t Br))) e

(
= ap(a)  rapg(BarBa ' rapp(q)* Burt B )'“f(a')
(

-1

= &f(g) ~"apy apf%(ﬂ)) T&f(al)
= q' D

Thus, if for some type A we have a full characterization of a =4 a/,
the type p =, ,» q is determined as well. For example:

e Paths p = g, where p,q : w =« W, are equivalent to pairs of
paths

apprlp ~pryw=apryw’ appflq and apprzp = pryw=ppryw’ apprzq'

e Paths p = g, where p,q : f =1 (va) B(x) & are equivalent to homo-
topies
]}(happly(P)(X) = (x)=g(x) happly(q) (x)).
X:
Next we consider transport in families of paths, i.e. transport in C :
A — U where each C(x) is an identity type. The simplest case is when
C(x) is a type of paths in A itself, perhaps with one endpoint fixed.
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Lemma 2.11.2. Forany Aand a : A, with p : x; = xo, we have

transport™ (=% (p,q) = g+ p forq:a=x,
transport™ (=% (p,q) = p~1 =g forg:x; =a,
transport™ (=% (p, g) = p~Leg-p forq:x1 = x1.

Proof. Path induction on p, followed by the unit laws for composition.
O

In other words, transporting with x — ¢ = x is post-composition, and
transporting with x — x = ¢ is contravariant pre-composition. These
may be familiar as the functorial actions of the covariant and contravari-
ant hom-functors hom(c, —) and hom(-, ¢) in category theory.

Similarly, we can prove the following more general form of Lemma 2.11.2
which is related to Lemma 2.3.10.

Theorem 2.11.3. For f,g: A — B, withp :a =4 a' and q : f(a) =p g(a),
we have

transport™/ 88 (p,q) = () g(u (3psp) 9" 3pgP.

Because ap(,,, ) is the identity function and ap ) (where cis a con-
stant) is p ~ refl,, Lemma 2.11.2 is a special case. A yet more general
version is when B can be a family of types indexed on A:

Theorem 2.11.4. Let B: A — U and f,g : [1ix.2) B(x), withp :a =5
and q : f(a) =p(q) g(a). Then we have

transport™

=003 (1, 9) = (apd(p)) " * 2P (transportsp) (4) * 2pdg (p).

Finally, as in §2.9, for families of identity types there is another equiv-
alent characterization of dependent paths.

Theorem 2.11.5. Forp:a =4 a' withq:a=aandr :a’ = a', we have

(transport™ =) (p q) =7) ~ (q-p=p-7r).
Proof. Path induction on p, followed by the fact that composing with the
unit equalities g+ 1 = g and r = 1-r is an equivalence. O

There are more general equivalences involving the application of func-
tions, akin to Theorems 2.11.3 and 2.11.4.
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2.12 Coproducts

So far, most of the type formers we have considered have been what are
called negative. Intuitively, this means that their elements are determined
by their behavior under the elimination rules: a (dependent) pair is de-
termined by its projections, and a (dependent) function is determined
by its values. The identity types of negative types can almost always
be characterized straightforwardly, along with all of their higher struc-
ture, as we have done in §§2.6-2.9. The universe is not exactly a negative
type, but its identity types behave similarly: we have a straightforward
characterization (univalence) and a description of the higher structure.
Identity types themselves, of course, are a special case.

We now consider our first example of a positive type former. Again in-
formally, a positive type is one which is “presented” by certain construc-
tors, with the universal property of a presentation being expressed by its
elimination rule. (Categorically speaking, a positive type has a “map-
ping out” universal property, while a negative type has a “mapping in”
universal property.) Because computing with presentations is, in gen-
eral, an uncomputable problem, for positive types we cannot always ex-
pect a straightforward characterization of the identity type. However, in
many particular cases, a characterization or partial characterization does
exist, and can be obtained by the general method that we introduce with
this example.

(Technically, our chosen presentation of cartesian products and X-
types is also positive. However, because these types also admit a neg-
ative presentation which differs only slightly, their identity types have a
direct characterization that does not require the method to be described
here.)

Consider the coproduct type A + B, which is “presented” by the in-
jectionsinl : A =+ A+ Band inr: B — A + B. Intuitively, we expect that
A + B contains exact copies of A and B disjointly, so that we should have

(inl(ay) =inl(ay)) ~ (a1 = ap) (2.12.1)
(inr(by) = ( n)) >~ (b = by) (2.12.2)
(inl(a) = inr(b)) ~ 0. (2.12.3)

We prove this as follows. Fix an element ag : A; we will characterize the
type family
(x> (inl(gg) =x)) : A+ B = U. (2.12.4)

A similar argument would characterize the analogous family x — (x =
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inr(bg)) for any by : B. Together, these characterizations imply (2.12.1)-
(2.12.3).

In order to characterize (2.12.4), we will define a type family code :
A+ B — U and show that [T(x.a4p)((inl(ag) = x) =~ code(x)). Since
we want to conclude (2.12.1) from this, we should have code(inl(a)) =
(ag = a), and since we also want to conclude (2.12.3), we should have
code(inr(b)) = 0. The essential insight is that we can use the recursion
principle of A + B to define code : A+ B — U by these two equations:

code(inl(a)) := (ag = a),
0.

code(inr(b)) :=

This is a very simple example of a proof technique that is used quite a
bit when doing homotopy theory in homotopy type theory; see e.g. §§8.1
and 8.9. We can now show:

Theorem 2.12.5. Forall x : A + B we have (inl(ag) = x) ~ code(x).

Proof. The key to the following proof is that we do it for all points x
together, enabling us to use the elimination principle for the coproduct.
We first define a function

encode: [ [  code(x)

(x:A+B) (p:inl(ag)=x)
by transporting reflexivity along p:

code(

encode(x, p) := transport p,refly,).

Note that refl,, : code(inl(ap)), since code(inl(ag)) = (a9 = ag) by defini-
tion of code. Next, we define a function

decode: [] [T (inl(ao) = x).

(x:A+B) (c:code(x))

To define decode(x, ¢), we may first use the elimination principle of A + B
to divide into cases based on whether x is of the form inl(a) or the form
inr(b).

In the first case, where x = inl(a), then code(x) = (a9 = a), so that c
is an identification between gy and a. Thus, ap;(¢) : (inl(ag) = inl(a)) so
we can define this to be decode(inl(a), ¢).

In the second case, where x = inr(b), then code(x) = 0, so that ¢
inhabits the empty type. Thus, the elimination rule of 0 yields a value
for decode(inr(b),c).
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This completes the definition of decode; we now show that encode(x, —)
and decode(x, —) are quasi-inverses for all x. On the one hand, suppose
givenx : A+ Band p : inl(ap) = x; we want to show

decode(x, encode(x, p)) = p.

But now by (based) path induction, it suffices to consider x = inl(ag) and
p= reflin|(ao):

decode(x, encode(x, p)) = decode(inl(ag), encode(inl(ap), reflini(4y)))
= decode(inl uo),transportmde(reflim(ao), refla,))

= decode(inl(ag), refly,)

(
(
(
= apjni(refly, )
= reflini(q)
=p.
On the other hand, let x : A+ B and ¢ : code(x); we want to show
encode(x, decode(x,c)) = c. We may again divide into cases based on x.
If x = inl(a), then ¢ : a4y = a and decode(x, c) = ap;,(c), so that

encode(x, decode(x, ¢)) = transport®9®(ap;(c), refly, )

= transport® (%0=2) (c,reflgy) (by Lemma 2.3.10)
= reflg, = c (by Lemma 2.11.2)
=c.

Finally, if x = inr(b), then ¢ : 0, so we may conclude anything we wish.
O

Of course, there is a corresponding theorem if we fix by : B instead of
ap - A.

In particular, Theorem 2.12.5 implies that for any a : A and b : B there
are functions

encode(inl(a), -) : (inl(ag) = inl(a)) — (ag = a)

and
encode(inr(b), -) : (inl(ag) = inr(b)) — 0.

The second of these states “inl(ag) is not equal to inr(b)”, i.e. the images
of inl and inr are disjoint. The traditional reading of the first one, where
identity types are viewed as propositions, is just injectivity of inl. The full
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homotopical statement of Theorem 2.12.5 gives more information: the
types inl(ag) = inl(a) and ay = a are actually equivalent, as are inr(by) =
inr(b) and by = b.

Remark 2.12.6. In particular, since the two-element type 2 is equivalent
to1+ 1, we have 05 # 1,.

This proof illustrates a general method for describing path spaces,
which we will use often. To characterize a path space, the first step is
to define a comparison fibration “code” that provides a more explicit de-
scription of the paths. There are several different methods for proving
that such a comparison fibration is equivalent to the paths (we show
a few different proofs of the same result in §8.1). The one we have
used here is called the encode-decode method: the key idea is to de-
fine decode generally for all instances of the fibration (i.e. as a function
[T(x:a+B) code(x) — (inl(ag) = x)), so that path induction can be used to
analyze decode(x, encode(x, p)).

As usual, we can also characterize the action of transport in coprod-
uct types. Given a type X, a path p : x; =x X2, and type families
A,B: X — U, wehave

transport ™8 (p,inl(a)) = inl(transport” (p, a)),
transportA 8 (p, inr(b)) = inr(transport® (p, b)),

where as usual, A + B in the superscript denotes abusively the type fam-
ily x — A(x) 4+ B(x). The proof is an easy path induction.

2.13 Natural numbers

We use the encode-decode method to characterize the path space of the
natural numbers, which are also a positive type. In this case, rather than
fixing one endpoint, we characterize the two-sided path space all at once.
Thus, the codes for identities are a type family

code:IN — N — U,

defined by double recursion over IN as follows:

code(0,0) :=1

code(succ(m),0) :=0

code(0, succ(n)) :==0
code(succ(m), succ(n)) := code(m, n).
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We also define by recursion a dependent function r : [],.xn) code(n, n),
with

r(0) 1= x

r(succ(n)) := r(n).
Theorem 2.13.1. Forall m,n : N we have (m = n) ~ code(m, n).

Proof. We define

encode: || (m=n)— code(m,n)
m,n:IN

by transporting, encode (11, 1, p) := transport®de(™:=) (p, r(m)). (We could
also define encode directly by path induction, but the definition in terms
of transport often makes subsequent computations easier.) And we de-
fine
decode: [] code(m,n) — (m =n)
m,n:IN

by double induction on m, n. When m and n are both 0, we need a func-
tion1 — (0 = 0), which we define to send everything to refly). When m
is a successor and 7 is 0 or vice versa, the domain code(m, 1) is 0, so the
eliminator for 0 suffices. And when both are successors, we can define
decode(succ(m), succ(n)) to be the composite

code(succ(m),succ(n)) = code(m, n) decode(m,n)

(m=n) 2Psuce, (succ(m) = succ(n)).
Next we show that encode(m, n) and decode(m, n) are quasi-inverses for
all m, n.
On one hand, if we start with p : m = n, then by induction on p it
suffices to show

decode(n, n, encode(n, n, refl,)) = refl,.

Butencode(n, n, refl,) = r(n), so it suffices to show that decode(n, n,r(n)) =
refl,,. We can prove this by induction on n. If n = 0, then decode(0,0,7(0)) =
refly by definition of decode. And in the case of a successor, by the in-
ductive hypothesis we have decode(n,n,r(n)) = refl,, so it suffices to
observe that apg,cc (refly) = reflgycc(n)-

On the other hand, if we start with ¢ : code(m, ), then we proceed by
double induction on m and n. If both are 0, then decode(0,0,c) = refly,
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while encode(0, 0, refly) = 7(0) = . Thus, it suffices to recall from §2.8
that every inhabitant of 1 is equal to x. If m is 0 but # is a successor, or
vice versa, then ¢ : 0, so we are done. And in the case of two successors,
we have

encode(succ(m), succ(n), decode(succ(m), succ(n),c))
= encode(succ(m), succ(n), apgycc(decode(m, n,c)))

code(succ(m),-) (

= transport apsycc (decode(m, n, c)), r(succ(m)))

= transportcode(suce(m)suce(=)) (decode(m, n, c), r(succ(m)))
= transport®4("™~) (decode(m, n, c), r(m))

= encode(m, n, decode(m, n,¢))

=c

using the inductive hypothesis. (In fact this proof is longer than neces-
sary; see Exercise 3.24.) O

In particular, we have
encode(succ(m),0) : (succ(m) =0) — 0 (2.13.2)

which shows that “0 is not the successor of any natural number”. We
also have the composite

(succ(m) = succ(n)) encode,

code(succ(m), succ(n)) = code(m, n) decode, (m=mn) (213.3)

which shows that the function succ is injective.

We will study more general positive types in Chapters 5 and 6. In
Chapter 8, we will see that the same technique used here to character-
ize the identity types of coproducts and IN can also be used to calculate
homotopy groups of spheres.

2.14 Example: equality of structures

We now consider one example to illustrate the interaction between the
groupoid structure on a type and the type formers. In the introduction
we remarked that one of the advantages of univalence is that two iso-
morphic things are interchangeable, in the sense that every property or
construction involving one also applies to the other. Common “abuses
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of notation” become formally true. Univalence itself says that equivalent
types are equal, and therefore interchangeable, which includes e.g. the
common practice of identifying isomorphic sets. Moreover, when we de-
fine other mathematical objects as sets, or even general types, equipped
with structure or properties, we can derive the correct notion of equality
for them from univalence. We will illustrate this point with a significant
example in Chapter 9, where we define the basic notions of category the-
ory in such a way that equality of categories is equivalence, equality of
functors is natural isomorphism, etc. See in particular §9.8. In this sec-
tion, we describe a very simple example, coming from algebra.

For simplicity, we use semigroups as our example, where a semigroup
is a type equipped with an associative “multiplication” operation. The
same ideas apply to other algebraic structures, such as monoids, groups,
and rings. Recall from §§1.6 and 1.11 that the definition of a kind of
mathematical structure should be interpreted as defining the type of
such structures as a certain iterated X-type. In the case of semigroups
this yields the following.

Definition 2.14.1. Given a type A, the type SemigroupStr(A) of semi-
group structures with carrier A is defined by

SemigroupStr(A) := Y [T m(x,m(y,z) =m(@m(xy),z).
(m:A—A—A) (xy,z:A)

A semigroup is a type together with such a structure:

Semigroup := ) _ SemigroupStr(A)
AU
In the next two subsections, we describe two ways in which univalence
makes it easier to work with such semigroups.

2.14.1 Lifting equivalences

When working loosely, one might say that a bijection between sets A
and B “obviously” induces an isomorphism between semigroup struc-
tures on A and semigroup structures on B. With univalence, this is in-
deed obvious, because given an equivalence between types A and B, we
can automatically derive a semigroup structure on B from one on A, and
moreover show that this derivation is an equivalence of semigroup struc-
tures. The reason is that SemigroupStr is a family of types, and therefore
has an action on paths between types given by transport:

transport S Mi8UPS (115 () : SemigroupStr(A) — SemigroupStr(B).
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Moreover, this map is an equivalence, because transport® (a) is always an
equivalence with inverse transport®(a~!), see Lemmas 2.1.4 and 2.3.9.

While the univalence axiom ensures that this map exists, we need
to use facts about transport proven in the preceding sections to calculate
what it actually does. Let (m,a) be a semigroup structure on A, and we
investigate the induced semigroup structure on B given by

transport>SMBOUPS (15 (¢) (1, a)).
First, because SemigroupStr(X) is defined to be a -type, by Theorem 2.7.4,
transport>eMEOUPSY (43 (¢ (m,a)) = (m',a’)
where m’ is an induced multiplication operation on B

m':B—B—B

m' (b1, by) := transportX > X=>X=X) (ya(e), m) (by, by)

and 4’ an induced proof that m’ is associative. We have, again by Theo-
rem2.7.4,

a' : Assoc(B,m")
(2.14.2)

a' := transport(X/m)Assoc(X,m) ((

pair~— (ua(e), refl,)), a),

where Assoc(X, m) is the type [Tx y .x) m(x, m(y,z)) = m(m(x,y),z). By
function extensionality, it suffices to investigate the behavior of m’ when
applied to arguments by, by : B. By applying (2.9.4) twice, we have that
m'(by, by) is equal to

transportX7 X (ua(e),

m(transportX X (ua(e) !, by), transportX X (ua(e) 1, by))).
Then, because ua is quasi-inverse to transportX X, this is equal to
e(m(e (br),e7 (b2))).

Thus, given two elements of B, the induced multiplication m'’ sends them
to A using the equivalence e, multiplies them in A, and then brings the
result back to B by e, just as one would expect.

Moreover, though we do not show the proof, one can calculate that
the induced proof that m' is associative (see (2.14.2)) is equal to a function
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sending by, by, b3 : B to a path given by the following steps:

m' (m' (b, ba), bs) = e(m(e™" (m' (b, ba)), e~ (b3)))
= e(m(e™ (e(m(e™" (br),e™" (b2)))), e (b3)))
= e(m(m(e”" (br),e™" (b)), e (b3)))
= e(m(e™" (by),m(e™" (b2), e (b3)))) (2.14.3)
= e(m( e (13))))))

= e(m(e” ! (by),e” " (m' (b2, b3))))
(b2, b3)).

These steps use the proof a that m is associative and the inverse laws for e.
From an algebra perspective, it may seem strange to investigate the iden-
tity of a proof that an operation is associative, but this makes sense if we
think of A and B as general spaces, with non-trivial homotopies between
paths. In Chapter 3, we will introduce the notion of a set, which is a type
with only trivial homotopies, and if we consider semigroup structures
on sets, then any two such associativity proofs are automatically equal.

(
e 1(br), e (e(m(e™" (ba),
(

=m (bl/

2.14.2 Equality of semigroups

Using the equations for path spaces discussed in the previous sections,
we can investigate when two semigroups are equal. Given semigroups
(A,m,a) and (B,m’,a’), by Theorem 2.7.2, the type of paths

(A/ m, {1) —Semigroup (B/ m// a/)
is equal to the type of pairs

p1: A=y B and

py : transport>eMgOUPSt (5. (1 a)) = (', a’).

By univalence, p; is ua(e) for some equivalence e. By Theorem 2.7.2,
function extensionality, and the above analysis of transport in the type
family SemigroupStr, p; is equivalent to a pair of proofs, the first of which
shows that

[T etme (), e 7 (v2))) = ' (y1,v2) (2.14.4)

yl/yZ:B

and the second of which shows that 4’ is equal to the induced associativ-
ity proof constructed from a in (2.14.3). But by cancellation of inverses
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(2.14.4) is equivalent to

H e(m(x1,x2)) = m'(e(x1), e(x2))-
X1,%2:A
This says that e commutes with the binary operation, in the sense that it
takes multiplication in A (i.e. m) to multiplication in B (i.e. m’). A similar
rearrangement is possible for the equation relating 2 and a’. Thus, an
equality of semigroups consists exactly of an equivalence on the carrier
types that commutes with the semigroup structure.

For general types, the proof of associativity is thought of as part of the
structure of a semigroup. However, if we restrict to set-like types (again,
see Chapter 3), the equation relating a and 4’ is trivially true. Moreover,
in this case, an equivalence between sets is exactly a bijection. Thus,
we have arrived at a standard definition of a semigroup isomorphism: a
bijection on the carrier sets that preserves the multiplication operation. It
is also possible to use the category-theoretic definition of isomorphism,
by defining a semigroup homomorphism to be a map that preserves the
multiplication, and arrive at the conclusion that equality of semigroups
is the same as two mutually inverse homomorphisms; but we will not
show the details here; see §9.8.

The conclusion is that, thanks to univalence, semigroups are equal
precisely when they are isomorphic as algebraic structures. As we will
see in §9.8, the conclusion applies more generally: in homotopy type the-
ory, all constructions of mathematical structures automatically respect
isomorphisms, without any tedious proofs or abuse of notation.

2.15 Universal properties

By combining the path computation rules described in the preceding sec-
tions, we can show that various type forming operations satisfy the ex-
pected universal properties, interpreted in a homotopical way as equiv-
alences. For instance, given types X, A, B, we have a function

(X AXxB) = (X— A)x(X—B) (2.15.1)
defined by f — (pryo f,pry o f).
Theorem 2.15.2. (2.15.1) is an equivalence.

Proof. We define the quasi-inverse by sending (g, %) to Ax. (g(x), h(x)).
(Technically, we have used the induction principle for the cartesian prod-
uct (X — A) x (X — B), to reduce to the case of a pair. From now on
we will often apply this principle without explicit mention.)
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Now given f : X — A X B, the round-trip composite yields the func-
tion
Ax. (pri(f(x)), pra(f(x)))- (2.15.3)
By Theorem 2.6.2, for any x : X we have (pri(f(x)),pra(f(x))) = f(x).
Thus, by function extensionality, the function (2.15.3) is equal to f.
On the other hand, given (g, ), the round-trip composite yields the
pair (Ax.g(x),Ax.h(x)). By the uniqueness principle for functions, this
is (judgmentally) equal to (g, ). O

In fact, we also have a dependently typed version of this universal
property. Suppose given a type X and type families A, B : X — U. Then
we have a function

(H (A(x) x B(x))) = (]1 A(x)) x (I‘X[ B(x)) (2.15.4)

x:X
defined as before by f — (pry o f,pry o f).
Theorem 2.15.5. (2.15.4) is an equivalence.
Proof. Left to the reader. O

Just as Z-types are a generalization of cartesian products, they satisfy
a generalized version of this universal property. Jumping right to the
dependently typed version, suppose we have a type X and type families
A:X —Uand P:[],.x) A(x) — U. Then we have a function

(H Z P(x/ﬂ))%( ) Hng ) (2.15.6)
X (a:A (8T T(x:x) A(x)) (x

Note that if we have P(x,a) := B(x) for some B : X — U, then (2.15.6)
reduces to (2.15.4).

Theorem 2.15.7. (2.15.6) is an equivalence.

Proof. As before, we define a quasi-inverse to send (g, /1) to the function

Ax.(g(x),h(x)). Now given f : [(x.x) L(a:a(x)) P(x,a), the round-trip
composite yields the function

Ax. (pri (f(x)), pra(f (x)))- (215.8)
Now for any x : X, by Corollary 2.7.3 (the uniqueness principle for X-

types) we have
(pri(f(x)), pra(f(x))) = f(x).
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Thus, by function extensionality, (2.15.8) is equal to f. On the other hand,
given (g, h), the round-trip composite yields (Ax. g(x), Ax.h(x)), which
is judgmentally equal to (g, h) as before. O

This is noteworthy because the propositions-as-types interpretation
of (2.15.6) is “the axiom of choice”. If we read X as “there exists” and I1
(sometimes) as “for all”, we can pronounce:

* ITxx) La:a(x)) P(x,a) as “for all x : X there exists an a : A(x) such
that P(x,a)”, and

* LT A Txx) P(x,g(x)) as “there exists a choice function g :
[T(x:x) A(x) such that for all x : X we have P(x, g(x))".

Thus, Theorem 2.15.7 says that not only is the axiom of choice “true”,
its antecedent is actually equivalent to its conclusion. (On the other
hand, the classical mathematician may find that (2.15.6) does not carry
the usual meaning of the axiom of choice, since we have already spec-
ified the values of g, and there are no choices left to be made. We will
return to this point in §3.8.)

The above universal property for pair types is for “mapping in”, which
is familiar from the category-theoretic notion of products. However, pair
types also have a universal property for “mapping out”, which may look
less familiar. In the case of cartesian products, the non-dependent ver-
sion simply expresses the cartesian closure adjunction:

((AxB) = C) ~ (A— (B—Q)).

The dependent version of this is formulated for a type family C : A x

B—U:

( I C(w)) ~ ( IT 11 C(x,y)).
w:AxB (x:A) (y:B)

Here the right-to-left function is simply the induction principle for A x B,

while the left-to-right is evaluation at a pair. We leave it to the reader to

prove that these are quasi-inverses. There is also a version for X-types:

( T C(w)) ~ ((g) (yl;[m C(x,y)). (2.15.9)

W:Z(X:A) B(x)

Again, the right-to-left function is the induction principle.
Some other induction principles are also part of universal properties
of this sort. For instance, path induction is the right-to-left direction of
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an equivalence as follows:

(H IT Bxp ) >~ B(a,refly) (2.15.10)

(p:a=x)

for any a : A and type family B : []y.4)(a = x) — U. However, in-
ductive types with recursion, such as the natural numbers, have more
complicated universal properties; see Chapter 5.

Since Theorem 2.15.2 expresses the usual universal property of a carte-
sian product (in an appropriate homotopy-theoretic sense), the categori-
cally inclined reader may well wonder about other limits and colimits of
types. In Exercise 2.9 we ask the reader to show that the coproduct type
A + B also has the expected universal property, and the nullary cases of
1 (the terminal object) and 0 (the initial object) are easy.

For pullbacks, the expected explicit construction works: given f :
A — Cand g: B — C, we define

AxcB:= Y Y (f b)). (2.15.11)

(a:A) (b:B)

In Exercise 2.11 we ask the reader to verify this. Some more general
homotopy limits can be constructed in a similar way, but for colimits we
will need a new ingredient; see Chapter 6.

Notes

The definition of identity types, with their induction principle, is due to
Martin-Lof [ML75]. As mentioned in the notes to Chapter 1, our iden-
tity types are those that belong to intensional type theory, rather than
extensional type theory. In general, a notion of equality is said to be “in-
tensional” if it distinguishes objects based on their particular definitions,
and “extensional” if it does not distinguish between objects that have
the same “extension” or “observable behavior”. In the terminology of
Frege, an intensional equality compares sense, while an extensional one
compares only reference. We may also speak of one equality being “more”
or “less” extensional than another, meaning that it takes account of fewer
or more intensional aspects of objects, respectively.

Intensional type theory is so named because its judgmental equality,
x =y, is a very intensional equality: it says essentially that x and y “have
the same definition”, after we expand the defining equations of func-
tions. By contrast, the propositional equality type x = y is more exten-
sional, even in the axiom-free intensional type theory of Chapter 1: for
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instance, we can prove by induction that n +m = m +n forall m,n : [N,
but we cannot say that n +m = m + n for all m,n : IN, since the defi-
nition of addition treats its arguments asymmetrically. We can make the
identity type of intensional type theory even more extensional by adding
axioms such as function extensionality (two functions are equal if they
have the same behavior on all inputs, regardless of how they are defined)
and univalence (which can be regarded as an extensionality property for
the universe: two types are equal if they behave the same in all contexts).
The axioms of function extensionality, and univalence in the special case
of mere propositions (“propositional extensionality”), appeared already
in the first type theories of Russell and Church.

As mentioned before, extensional type theory includes also a “reflec-
tion rule” saying that if p : x = y, then in fact x = y. Thus extensional
type theory is so named because it does not admit any purely intensional
equality: the reflection rule forces the judgmental equality to coincide
with the more extensional identity type. Moreover, from the reflection
rule one may deduce function extensionality (at least in the presence
of a judgmental uniqueness principle for functions). However, the re-
flection rule also implies that all the higher groupoid structure collapses
(see Exercise 2.14), and hence is inconsistent with the univalence axiom
(see Example 3.1.9). Therefore, regarding univalence as an extensional-
ity property, one may say that intensional type theory permits identity
types that are “more extensional” than extensional type theory does.

The proofs of symmetry (inversion) and transitivity (concatenation)
for equalities are well-known in type theory. The fact that these make
each type into a 1-groupoid (up to homotopy) was exploited in [HS98]
to give the first “homotopy” style semantics for type theory.

The actual homotopical interpretation, with identity types as path
spaces, and type families as fibrations, is due to [AW09], who used the
formalism of Quillen model categories. An interpretation in (strict) co-
groupoids was also given in the thesis [War08]. For a construction of all
the higher operations and coherences of an co-groupoid in type theory,
see [Lum10] and [vdBG11].

Operations such as transport” (p, —) and ap ¢, and one good notion of
equivalence, were first studied extensively in type theory by Voevodsky,
using the proof assistant COQ. Subsequently, many other equivalent def-
initions of equivalence have been found, which are compared in Chap-
ter 4.

The “computational” interpretation of identity types, transport, and
so on described in §2.5 has been emphasized by [LH12]. They also de-
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scribed a “1-truncated” type theory (see Chapter 7) in which these rules
are judgmental equalities. The possibility of extending this to the full
untruncated theory is a subject of current research.

The naive form of function extensionality which says that “if two
functions are pointwise equal, then they are equal” is a common axiom
in type theory, going all the way back to [WR27]. Some stronger forms of
function extensionality were considered in [Gar09]. The version we have
used, which identifies the identity types of function types up to equiva-
lence, was first studied by Voevodsky, who also proved that it is implied
by the naive version (and by univalence; see §4.9).

The univalence axiom is also due to Voevodsky. It was originally mo-
tivated by semantic considerations in the simplicial set model; see [KLV12].
A similar axiom motivated by the groupoid model was proposed by Hof-
mann and Streicher [HS98] under the name “universe extensionality”. It
used quasi-inverses (2.4.5) rather than a good notion of “equivalence”,
and hence is correct (and equivalent to univalence) only for a universe
of 1-types (see Definition 3.1.7).

In the type theory we are using in this book, function extensional-
ity and univalence have to be assumed as axioms, i.e. elements asserted
to belong to some type but not constructed according to the rules for
that type. While serviceable, this has a few drawbacks. For instance,
type theory is formally better-behaved if we can base it entirely on rules
rather than asserting axioms. It is also sometimes inconvenient that the
theorems of §§2.6-2.13 are only propositional equalities (paths) or equiv-
alences, since then we must explicitly mention whenever we pass back
and forth across them. One direction of current research in homotopy
type theory is to describe a type system in which these rules are judg-
mental equalities, solving both of these problems at once. So far this has
only been done in some simple cases, although preliminary results such
as [LH12] are promising. There are also other potential ways to intro-
duce univalence and function extensionality into a type theory, such as
having a sufficiently powerful notion of “higher quotients” or “higher
inductive-recursive types”.

The simple conclusions in §§2.12-2.13 such as “inl and inr are injective
and disjoint” are well-known in type theory, and the construction of the
function encode is the usual way to prove them. The more refined ap-
proach we have described, which characterizes the entire identity type
of a positive type (up to equivalence), is a more recent development; see
e.g. [LS13].

The type-theoretic axiom of choice (2.15.6) was noticed in William
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Howard’s original paper [How80] on the propositions-as-types corre-
spondence, and was studied further by Martin-Lof with the introduction
of his dependent type theory. It is mentioned as a “distributivity law” in
Bourbaki’s set theory [Bou68].

For a more comprehensive (and formalized) discussion of pullbacks
and more general homotopy limits in homotopy type theory, see [AKL13].
Limits of diagrams over directed graphs are the easiest general sort of
limit to formalize; the problem with diagrams over categories (or more
generally (oo, 1)-categories) is that in general, infinitely many coherence
conditions are involved in the notion of (homotopy coherent) diagram.
Resolving this problem is an important open question in homotopy type
theory.

Exercises

Exercise 2.1. Show that the three obvious proofs of Lemma 2.1.2 are pair-
wise equal.

Exercise 2.2. Show that the three equalities of proofs constructed in the
previous exercise form a commutative triangle. In other words, if the
three definitions of concatenation are denoted by (p =+ q), (p =2 ¢q), and
(p+3q), then the concatenated equality

(p1q)=(p=2q9) =(r=39)

is equal to the equality (p*19) = (p*39)-
Exercise 2.3. Give a fourth, different, proof of Lemma 2.1.2, and prove
that it is equal to the others.

Exercise 2.4. Define, by induction on n, a general notion of n-dimensional
path in a type A, simultaneously with the type of boundaries for such
paths.

Exercise 2.5. Prove that the functions (2.3.6) and (2.3.7) are inverse equiv-
alences.

Exercise 2.6. Prove that if p : x = y, then the function (p*-): (y =z) —
(x = z) is an equivalence.
Exercise2.7. State and prove a generalization of Theorem 2.6.5 from carte-
sian products to X-types.

Exercise 2.8. State and prove an analogue of Theorem 2.6.5 for coprod-
ucts.
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Exercise 2.9. Prove that coproducts have the expected universal property,
(A+B— X)~(A— X)x(B—X).

Can you generalize this to an equivalence involving dependent func-

tions?

Exercise 2.10. Prove that X-types are “associative”, in that for any A : U
and families B: A — U and C : (¥(r.4) B(x)) — U, we have

(<x:ZA) (y:BZ(;m ) = ( B cr)

p:i(x:a) B(x)
Exercise 2.11. A (homotopy) commutative square

#A

P
|
B——C
g

consists of functions f, g, h, and k as shown, together with a path foh =
g o k. Note that this is exactly an element of the pullback (P — A) xp_,c
(P — B) as defined in (2.15.11). A commutative square is called a (ho-
motopy) pullback square if for any X, the induced map

(X = P) = (X— A) X(xc) (X — B)
is an equivalence. Prove that the pullback P := A X B defined in (2.15.11)

is the corner of a pullback square.

Exercise 2.12. Suppose given two commutative squares

A——C——E

L]

B——D——F

and suppose that the right-hand square is a pullback square. Prove that
the left-hand square is a pullback square if and only if the outer rectangle
is a pullback square.

Exercise 2.13. Show that (2 o~ 2) ~ 2.

Exercise 2.14. Suppose we add to type theory the equality reflection rule
which says that if there is an element p : x = y, then in fact x = y. Prove
that for any p : x = x we have p = refl,. (This implies that every type is
a set in the sense to be introduced in §3.1; see §7.2.)
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Exercise 2.15. Show that Lemma 2.10.5 can be strengthened to

transport® (p, -) =B(x)—B(y) idtoeqv(app(p))

without using function extensionality. (In this and other similar cases,
the apparently weaker formulation has been chosen for readability and
consistency.)

Exercise 2.16. Suppose that rather than function extensionality (Axiom 2.9.3),
we suppose only the existence of an element

funext : H H H (f~g) —(f=¢g)

(AU) (B:A—=U) (f.&T1(x:n)B(x))

(with no relationship to happly assumed). Prove that in fact, this is suf-
ficient to imply the whole function extensionality axiom (that happly is
an equivalence). This is due to Voevodsky; its proof is tricky and may
require concepts from later chapters.

Exercise 2.17.

(i) Show thatif A ~ A’ and B ~ B/, then (A x B) ~ (A’ x B').
(ii) Give two proofs of this fact, one using univalence and one not us-
ing it, and show that the two proofs are equal.

(iii) Formulate and prove analogous results for the other type formers:
Y, —, 11, and +.

Exercise 2.18. State and prove a version of Lemma 2.4.3 for dependent
functions.



Chapter 3
Sets and logic

Type theory, formal or informal, is a collection of rules for manipulat-
ing types and their elements. But when writing mathematics informally
in natural language, we generally use familiar words, particularly logi-
cal connectives such as “and” and “or”, and logical quantifiers such as
“for all” and “there exists”. In contrast to set theory, type theory offers
us more than one way to regard these English phrases as operations on
types. This potential ambiguity needs to be resolved, by setting out lo-
cal or global conventions, by introducing new annotations to informal
mathematics, or both. This requires some getting used to, but is offset
by the fact that because type theory permits this finer analysis of logic,
we can represent mathematics more faithfully, with fewer “abuses of lan-
guage” than in set-theoretic foundations. In this chapter we will explain
the issues involved, and justify the choices we have made.

3.1 Sets and n-types

In order to explain the connection between the logic of type theory and
the logic of set theory, it is helpful to have a notion of set in type the-
ory. While types in general behave like spaces or higher groupoids,
there is a subclass of them that behave more like the sets in a traditional
set-theoretic system. Categorically, we may consider discrete groupoids,
which are determined by a set of objects and only identity morphisms
as higher morphisms; while topologically, we may consider spaces hav-
ing the discrete topology. More generally, we may consider groupoids or
spaces that are equivalent to ones of this sort; since everything we do in
type theory is up to homotopy, we can’t expect to tell the difference.
Intuitively, we would expect a type to “be a set” in this sense if it has
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no higher homotopical information: any two parallel paths are equal (up
to homotopy), and similarly for parallel higher paths at all dimensions.
Fortunately, because everything in homotopy type theory is automati-
cally functorial / continuous, it turns out to be sufficient to ask this at the
bottom level.

Definition 3.1.1. A type Aisasetifforallx,y: Aandallp,q:x =y,
we have p = g.

More precisely, the proposition isSet(A) is defined to be the type

isSet(A):= [ I (p=49)-

(xy:A) (pgx=y)

As mentioned in §1.1, the sets in homotopy type theory are not like
the sets in ZF set theory, in that there is no global “membership predi-
cate” €. They are more like the sets used in structural mathematics and
in category theory, whose elements are “abstract points” to which we
give structure with functions and relations. This is all we need in order
to use them as a foundational system for most set-based mathematics;
we will see some examples in Chapter 10.

Which types are sets? In Chapter 7 we will study a more general
form of this question in depth, but for now we can observe some easy
examples.

Example 3.1.2. The type 1 is a set. For by Theorem 2.8.1, for any x,y : 1
the type (x = ) is equivalent to 1. Since any two elements of 1 are equal,
this implies that any two elements of x = y are equal.

Example 3.1.3. The type 0 is a set, for given any x,y : 0 we may deduce
anything we like, by the induction principle of 0.

Example 3.1.4. The type IN of natural numbers is also a set. This follows
from Theorem 2.13.1, since all equality types x = y are equivalent to
either 1 or 0, and any two inhabitants of 1 or 0 are equal. We will see
another proof of this fact in Chapter 7.

Most of the type forming operations we have considered so far also
preserve sets.

Example 3.1.5. If A and B are sets, then sois A x B. For givenx,y : A X B
and p,q : x =y, by Theorem 2.6.2 we have p = pair~ (apyy, (p), aPpr, (P))
and g = pair~ (apyy, (7),2Ppr, (7))- But ap,,, (p) = appy, (q) since A is a set,
and app,, (p) = appr, (9) since B is a set; hence p = g.

Similarly, if A is a setand B : A — U is such that each B(x) is a set,
then Y- (,.4) B(x) is a set.
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Example 3.1.6. If A is any type and B : A — U is such that each B(x) is a
set, then the type [](;.4) B(x) is a set. For suppose f, ¢ : [(x.4) B(x) and
p,q: f = g. By function extensionality, we have

p = funext(x — happly(p,x)) and g = funext(x — happly(g, x)).

But for any x : A, we have

happly(p,x) : f(x) =g(x) ~ and  happly(q,x) : f(x) = g(x),

so since B(x) is a set we have happly(p,x) = happly(g, x). Now using
function extensionality again, the dependent functions (x — happly(p, x))
and (x — happly(g, x)) are equal, and hence (applying aps,next) SO are p
and g.

For more examples, see Exercises 3.2 and 3.3. For a more systematic
investigation of the subsystem (category) of all sets in homotopy type
theory, see Chapter 10.

Sets are just the first rung on a ladder of what are called homotopy
n-types. The next rung consists of 1-types, which are analogous to 1-
groupoids in category theory. The defining property of a set (which we
may also call a 0-type) is that it has no non-trivial paths. Similarly, the
defining property of a 1-type is that it has no non-trivial paths between
paths:

Definition 3.1.7. A type Aisa 1-typeif forallx,y: Aandp,g:x =y
andr,s:p =g, wehaver =s.

Similarly, we can define 2-types, 3-types, and so on. We will define
the general notion of n-type inductively in Chapter 7, and study the re-
lationships between n-types for different values of #.

However, for now it is useful to have two facts in mind. First, the
levels are upward-closed: if A is an n-type then A is an (1 + 1)-type. For
example:

Lemma 3.1.8. If A is a set (that is, isSet(A) is inhabited), then A is a 1-type.

Proof. Suppose f : isSet(A); then forany x,y: Aand p,q : x = y we have
f(x,y,p,9) : p = q. Fixx, y, and p, and define g : H(q:x:y)(p = q) by
8(q) == f(x,y,p,q). Thenforanyr : g = q', we have apd,(r) : .(g(q)) =
¢(q"). By Lemma 2.11.2, therefore, we have ¢(q) *r = g(q').

In particular, suppose given x,y,p,q and r,s : p = g, as in Defini-
tion 3.1.7, and define g as above. Then g(p) *r = g(g) and also g(p) *s =
<(q), hence by cancellation r = s. O
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Second, this stratification of types by level is not degenerate, in the
sense that not all types are sets:

Example 3.1.9. The universe U is not a set. To prove this, it suffices to
exhibit a type A and a path p : A = A which is not equal to refl4. Take
A =2 andlet f : A — A be defined by f(02) := 12 and f(12) :=
02. Then f(f(x)) = x for all x (by an easy case analysis), so f is an
equivalence. Hence, by univalence, f givesrisetoapathp: A = A.

If p were equal to refl 4, then (again by univalence) f would equal the
identity function of A. But this would imply that 0, = 1,, contradicting
Remark 2.12.6.

In Chapters 6 and 8 we will show that for any #, there are types which
are not n-types.

Note that A is a 1-type exactly when for any x,y : A, the identity type
x =4 yis a set. (Thus, Lemma 3.1.8 could equivalently be read as saying
that the identity types of a set are also sets.) This will be the basis of the
recursive definition of n-types we will give in Chapter 7.

We can also extend this characterization “downwards” from sets. That
is, a type A is a set just when for any x,y : A, any two elementsof x =4 v
are equal. Since sets are equivalently O-types, it is natural to call a type a
(—1)-type if it has this latter property (any two elements of it are equal).
Such types may be regarded as propositions in a narrow sense, and their
study is just what is usually called “logic”; it will occupy us for the rest
of this chapter.

3.2 Propositions as types?

Until now, we have been following the straightforward “propositions as
types” philosophy described in §1.11, according to which English phrases
such as “there exists an x : A such that P(x)” are interpreted by corre-
sponding types such as }_(,.4) P(x), with the proof of a statement being
regarded as judging some specific element to inhabit that type. How-
ever, we have also seen some ways in which the “logic” resulting from
this reading seems unfamiliar to a classical mathematician. For instance,
in Theorem 2.15.7 we saw that the statement

“If for all x : X there exists an a : A(x) such that P(x,a),
then there exists a function g : [(,.x) A(x) such that forall ~ (3.2.1)
x : X we have P(x, ¢(x))”,

which looks like the classical axiom of choice, is always true under this
reading. This is a noteworthy, and often useful, feature of the propositions-
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as-types logic, but it also illustrates how significantly it differs from the
classical interpretation of logic, under which the axiom of choice is not a
logical truth, but an additional “axiom”.

On the other hand, we can now also show that corresponding state-
ments looking like the classical law of double negation and law of excluded
middle are incompatible with the univalence axiom.

Theorem 3.2.2. [t is not the case that for all A : U we have -(=A) — A.

Proof. Recall that ~A = (A — 0). We also read “it is not the case that
...” as the operator —. Thus, in order to prove this statement, it suffices
to assume given some f : [T a4¢)(=7A — A) and construct an element
of 0.

The idea of the following proof is to observe that f, like any func-
tion in type theory, is “continuous”. By univalence, this implies that f
is natural with respect to equivalences of types. From this, and a fixed-
point-free autoequivalence, we will be able to extract a contradiction.

Let e : 2 ~ 2 be the equivalence defined by e(12) := 0, and e(02) :=
12, as in Example 3.1.9. Let p : 2 = 2 be the path corresponding to e by
univalence, i.e. p := ua(e). Then we have f(2) : ==2 — 2 and

apdg(p)  transport (0747 A) (p, £(2)) = f(2).

Hence, for any u : =2, we have

happly(apd; (p), u) : transport™ (A4 (p, £(2)) (u) = £(2)(u).

Now by (2.9.4), transporting f(2) : =—2 — 2 along p in the type
family A — (-—A — A) is equal to the function which transports its
argument along p~! in the type family A — ——A, applies f(2), then
transports the result along p in the type family A — A:

transport ' (A= A) (p, £(2)) (u) =
transport4 (p, £(2) (transport™ "4 (p~1, u))).
However, any two points u, v : =—2 are equal by function extensionality,
since for any x : =2 we have u(x) : 0 and thus we can derive any conclu-

sion, in particular u(x) = v(x). Thus, we have transport=""4(p~1,u) =
u, and so from happly(apds(p), u) we obtain an equality

transport 4 (p, £(2)(u)) = £(2)(u).
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Finally, as discussed in §2.10, transporting in the type family A — A
along the path p = ua(e) is equivalent to applying the equivalence e;
thus we have

e(f(2)(u)) = f(2)(u). (323)
However, we can also prove that
1;[ —(e(x) = x). (3.2.4)

This follows from a case analysis on x: both cases are immediate from
the definition of e and the fact that 0, # 1, (Remark 2.12.6). Thus, apply-
ing (3.2.4) to f(2)(u) and (3.2.3), we obtain an element of 0. O

Remark 3.2.5. In particular, this implies that there can be no Hilbert-style
“choice operator” which selects an element of every nonempty type.
The point is that no such operator can be natural, and under the univa-
lence axiom, all functions acting on types must be natural with respect
to equivalences.

Remark 3.2.6. It is, however, still the case that -——=—A — —A for any A;
see Exercise 1.11.

Corollary 3.2.7. It is not the case that for all A : U we have A + (—A).

Proof. Suppose we had g : [T(a4/)(A + (—A)). We will show that then
[T(a)(m—A — A), so that we can apply Theorem 3.2.2. Thus, suppose
A :U and u : =——A; we want to construct an element of A.

Now g(A) : A+ (—A), so by case analysis, we may assume either
g(A) = inl(a) for some a : A, or g(A) = inr(w) for some w : —~A. In the
first case, we have a : A, while in the second case we have u(w) : 0 and
so we can obtain anything we wish (such as A). Thus, in both cases we
have an element of A, as desired. O

Thus, if we want to assume the univalence axiom (which, of course,
we do) and still leave ourselves the option of classical reasoning (which
is also desirable), we cannot use the unmodified propositions-as-types
principle to interpret all informal mathematical statements into type the-
ory, since then the law of excluded middle would be false. However,
neither do we want to discard propositions-as-types entirely, because of
its many good properties (such as simplicity, constructivity, and com-
putability). We now discuss a modification of propositions-as-types which
resolves these problems; in §3.10 we will return to the question of which
logic to use when.
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3.3 Mere propositions

We have seen that the propositions-as-types logic has both good and bad
properties. Both have a common cause: when types are viewed as propo-
sitions, they can contain more information than mere truth or falsity, and
all “logical” constructions on them must respect this additional informa-
tion. This suggests that we could obtain a more conventional logic by
restricting attention to types that do not contain any more information
than a truth value, and only regarding these as logical propositions.

Such a type A will be “true” if it is inhabited, and “false” if its inhab-
itation yields a contradiction (i.e. if =A = (A — 0) is inhabited). What
we want to avoid, in order to obtain a more traditional sort of logic, is
treating as logical propositions those types for which giving an element
of them gives more information than simply knowing that the type is
inhabited. For instance, if we are given an element of 2, then we re-
ceive more information than the mere fact that 2 contains some element.
Indeed, we receive exactly one bit more information: we know which el-
ement of 2 we were given. By contrast, if we are given an element of 1,
then we receive no more information than the mere fact that 1 contains
an element, since any two elements of 1 are equal to each other. This
suggests the following definition.

Definition 3.3.1. A type P is a mere proposition if for all x, y : P we have
x=1y.

Note that since we are still doing mathematics in type theory, this is
a definition in type theory, which means it is a type — or, rather, a type
family. Specifically, for any P : U, the type isProp(P) is defined to be

isProp(P) := [ (x=1y).

x,y:P

Thus, to assert that “P is a mere proposition” means to exhibit an in-
habitant of isProp(P), which is a dependent function connecting any two
elements of P by a path. The continuity/naturality of this function im-
plies that not only are any two elements of P equal, but P contains no
higher homotopy either.

Lemma 3.3.2. If P is a mere proposition and xq : P, then P ~ 1.

Proof. Define f : P — 1by f(x) := x,and g : 1 — P by g(u) := x¢. The
claim follows from the next lemma, and the observation that 1 is a mere
proposition by Theorem 2.8.1. O
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Lemma 3.3.3. If P and Q are mere propositions such that P — Qand Q — P,
then P ~ Q.

Proof. Suppose given f : P - Qand g : Q — P. Then for any x : P,
we have g(f(x)) = x since P is a mere proposition. Similarly, for any
y : Q we have f(g(y)) = y since Q is a mere proposition; thus f and g
are quasi-inverses. O

That is, as promised in §1.11, if two mere propositions are logically
equivalent, then they are equivalent.

In homotopy theory, a space that is homotopy equivalent to 1 is said
to be contractible. Thus, any mere proposition which is inhabited is con-
tractible (see also §3.11). On the other hand, the uninhabited type 0 is
also (vacuously) a mere proposition. In classical mathematics, at least,
these are the only two possibilities.

Mere propositions are also called subterminal objects (if thinking cat-
egorically), subsingletons (if thinking set-theoretically), or h-propositions.
The discussion in §3.1 suggests we should also call them (—1)-types; we
will return to this in Chapter 7. The adjective “mere” emphasizes that
although any type may be regarded as a proposition (which we prove by
giving an inhabitant of it), a type that is a mere proposition cannot use-
fully be regarded as any more than a proposition: there is no additional
information contained in a witness of its truth.

Note that a type A is a set if and only if for all x,y : A, the identity
type x =4 y is a mere proposition. On the other hand, by copying and
simplifying the proof of Lemma 3.1.8, we have:

Lemma 3.3.4. Every mere proposition is a set.

Proof. Suppose f : isProp(A); thus for all x,y : A we have f(x,y) : x = y.
Fix x : A and define ¢(y) := f(x,y). Thenforany y,z: Aand p : y =z
we have apd,(p) : p«(g(y)) = g(z). Hence by Lemma 2.11.2, we have

g(y)*p = g(z), which is to say that p = g(y)71 * ¢(z). Thus, for any
p,q:x:y,wehavep:g(x)*l-g(y):q, 0
In particular, this implies:

Lemma 3.3.5. For any type A, the types isProp(A) and isSet(A) are mere
propositions.

Proof. Suppose f,g : isProp(A). By function extensionality, to show f =
g it suffices to show f(x,y) = g(x,y) for any x,y : A. But f(x,y) and
¢(x,y) are both paths in A, and hence are equal because, by either f or g,
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we have that A is a mere proposition, and hence by Lemma 3.3.4 is a set.
Similarly, suppose f, g : isSet(A), which is to say that for all a,b : A and
p,q:a=Db,wehave f(a,b,p,q): p=gqand g(ab,pq):p =4q. Butby
then since A is a set (by either f or g), and hence a 1-type, it follows that
f(a,b,p,q) =g(a,b,p,q); hence f = g by function extensionality. O

We have seen one other example so far: condition (iii) in §2.4 asserts
that for any function f, the type isequiv(f) should be a mere proposition.

3.4 Classical vs. intuitionistic logic

With the notion of mere proposition in hand, we can now give the proper
formulation of the law of excluded middle in homotopy type theory:

LEM = [] (isProp(A) — (A+ﬁA)). (3.4.1)
AU

Similarly, the law of double negation is

I1 (isProp(A) = (7mA— A)). (34.2)
AU

The two are also easily seen to be equivalent to each other—see Exer-
cise 3.18—so from now on we will generally speak only of LEM.

This formulation of LEM avoids the “paradoxes” of Theorem 3.2.2
and Corollary 3.2.7, since 2 is not a mere proposition. In order to dis-
tinguish it from the more general propositions-as-types formulation, we
rename the latter:

LEMs := [ [ (A4 —A).
AU
For emphasis, the proper version (3.4.1) may be denoted LEM_j; see also
Exercise 7.7. Although LEM is not a consequence of the basic type the-
ory described in Chapter 1, it may be consistently assumed as an axiom
(unlike its co-counterpart). For instance, we will assume it in §10.4.

However, it can be surprising how far we can get without using LEM.
Quite often, a simple reformulation of a definition or theorem enables us
to avoid invoking excluded middle. While this takes a little getting used
to sometimes, it is often worth the hassle, resulting in more elegant and
more general proofs. We discussed some of the benefits of this in the
introduction.

For instance, in classical mathematics, double negations are frequently
used unnecessarily. A very simple example is the common assumption
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that a set A is “nonempty”, which literally means it is not the case that A
contains no elements. Almost always what is really meant is the positive
assertion that A does contain at least one element, and by removing the
double negation we make the statement less dependent on LEM. Recall
that we say that a type A is inhabited when we assert A itself as a propo-
sition (i.e. we construct an element of A, usually unnamed). Thus, often
when translating a classical proof into constructive logic, we replace the
word “nonempty” by “inhabited” (although sometimes we must replace
it instead by “merely inhabited”; see §3.7).

Similarly, it is not uncommon in classical mathematics to find unnec-
essary proofs by contradiction. Of course, the classical form of proof by
contradiction proceeds by way of the law of double negation: we as-
sume —A and derive a contradiction, thereby deducing =—A, and thus
by double negation we obtain A. However, often the derivation of a con-
tradiction from —A can be rephrased slightly so as to yield a direct proof
of A, avoiding the need for LEM.

It is also important to note that if the goal is to prove a negation, then
“proof by contradiction” does not involve LEM. In fact, since —A is by
definition the type A — 0, by definition to prove —A is to prove a con-
tradiction (0) under the assumption of A. Similarly, the law of double
negation does hold for negated propositions: -~——A — —A. With prac-
tice, one learns to distinguish more carefully between negated and non-
negated propositions and to notice when LEM is being used and when it
is not.

Thus, contrary to how it may appear on the surface, doing mathe-
matics “constructively” does not usually involve giving up important
theorems, but rather finding the best way to state the definitions so as
to make the important theorems constructively provable. That is, we
may freely use the LEM when first investigating a subject, but once that
subject is better understood, we can hope to refine its definitions and
proofs so as to avoid that axiom. This sort of observation is even more
pronounced in homotopy type theory, where the powerful tools of univa-
lence and higher inductive types allow us to constructively attack many
problems that traditionally would require classical reasoning. We will
see several examples of this in Part II.

It is also worth mentioning that even in constructive mathematics,
the law of excluded middle can hold for some propositions. The name
traditionally given to such propositions is decidable.

Definition 3.4.3.
(i) A type Ais called decidable if A + —A.
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(ii) Similarly, a type family B : A — U{ is decidable if
H (B(a) + —B(a)).

a:A

(iii) In particular, A has decidable equality if

H ((a=b)+-(a=0D)).

a,b:A

Thus, LEM is exactly the statement that all mere propositions are de-
cidable, and hence so are all families of mere propositions. In particular,
LEM implies that all sets (in the sense of §3.1) have decidable equality.
Having decidable equality in this sense is very strong; see Theorem 7.2.5.

3.5 Subsets and propositional resizing

As another example of the usefulness of mere propositions, we discuss
subsets (and more generally subtypes). Suppose P : A — U is a type
family, with each type P(x) regarded as a proposition. Then P itself is a
predicate on A, or a property of elements of A.

In set theory, whenever we have a predicate P on a set A, we may
form the subset { x € A | P(x) }. As mentioned briefly in §1.11, the ob-
vious analogue in type theory is the X-type }_(,.4) P(x). An inhabitant
of }(x.a) P(x) is, of course, a pair (x, p) where x : A and p is a proof of
P(x). However, for general P, an element 4 : A might give rise to more
than one distinct element of Y. 4y P(x), if the proposition P(a) has more
than one distinct proof. This is counter to the usual intuition of a subset.
But if P is a mere proposition, then this cannot happen.

Lemma 3.5.1. Suppose P : A — U is a type family such that P(x) is a mere
proposition for all x : A. If u,v : Y (y.4) P(x) are such that pry(u) = pri(v),
then u = v.

Proof. Suppose p : pri(u) = pri(v). By Theorem 2.7.2, to show u = v
it suffices to show p. (pro(u )) = pry(v). But p«(pra(u)) and pry(v) are
both elements of P(prq(v)), which is a mere proposition; hence they are
equal. O

For instance, recall that in §2.4 we defined

(A~B) := Y  isequiv(f),

f:A—B
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where each type isequiv(f) was supposed to be a mere proposition. It
follows that if two equivalences have equal underlying functions, then
they are equal as equivalences.

Henceforth, if P : A — U is a family of mere propositions (i.e. each
P(x) is a mere proposition), we may write

{x:A|P(x)} (3.5.2)

as an alternative notation for },.4) P(x). (There is no technical reason
not to use this notation for arbitrary P as well, but such usage could be
confusing due to unintended connotations.) If A is a set, we call (3.5.2) a
subset of A; for general A we might call it a subtype. We may also refer
to P itself as a subset or subtype of A; this is actually more correct, since
the type (3.5.2) in isolation doesn’t remember its relationship to A.

Givensucha Pand a : A, we may writea € Pora € {x: A|P(x) }
to refer to the mere proposition P(a). If it holds, we may say that a is
a member of P.  Similarly, if { x: A | Q(x) } is another subset of A,
then we say that P is contained in Q, and write P C Q, if we have
[T(x:a)(P(x) = Q(x)).

As further examples of subtypes, we may define the “subuniverses”
of sets and of mere propositions in a universe U:

Setyy :={A:U |isSet(A) },
Propy := { A:U | isProp(A) }.

An element of Sety, is a type A : U together with evidence s : isSet(A),
and similarly for Prop;,. Lemma 3.5.1 implies that (A,s) =g, (B,t) is
equivalent to A =;; B (and hence to A ~ B). Thus, we will frequently
abuse notation and write simply A : Set;; instead of (A,s) : Sety. We
may also drop the subscript I/ if there is no need to specify the universe
in question.

Recall that for any two universes U; and U;, 1, if A : U; then also
A : Uiy1. Thus, for any (4,s) : Sety, we also have (A4,s) : Sety,,,, and
similarly for Propy,, giving natural maps

Setui — Setul.H, (3.5.3)
Propy, — Propy, . (3.54)

The map (3.5.3) cannot be an equivalence, since then we could reproduce
the paradoxes of self-reference that are familiar from Cantorian set the-
ory. However, although (3.5.4) is not automatically an equivalence in the
type theory we have presented so far, it is consistent to suppose that it is.
That is, we may consider adding to type theory the following axiom.
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Axiom 3.5.5 (Propositional resizing). The map Propy, — Propy,,, is an
equivalence.

We refer to this axiom as propositional resizing, since it means that
any mere proposition in the universe U, 1 can be “resized” to an equiv-
alent one in the smaller universe U;. It follows automatically if /;; sat-
isfies LEM (see Exercise 3.10). We will not assume this axiom in general,
although in some places we will use it as an explicit hypothesis. It is a
form of impredicativity for mere propositions, and by avoiding its use, the
type theory is said to remain predicative.

In practice, what we want most frequently is a slightly different state-
ment: that a universe U/ under consideration contains a type which “clas-
sifies all mere propositions”. In other words, we want a type Q) : U to-
gether with an ()-indexed family of mere propositions, which contains
every mere proposition up to equivalence. This statement follows from
propositional resizing as stated above if I/ is not the smallest universe
Uy, since then we can define () := Propy, -

One use for impredicativity is to define power sets. It is natural to
define the power set of a set A to be A — Prop;; but in the absence of
impredicativity, this definition depends (even up to equivalence) on the
choice of the universe {{. But with propositional resizing, we can define
the power set to be

P(A):=(A—Q),

which is then independent of 4. See also §10.1.4.

3.6 The logic of mere propositions

We mentioned in §1.1 that in contrast to type theory, which has only one
basic notion (types), set-theoretic foundations have two basic notions:
sets and propositions. Thus, a classical mathematician is accustomed to
manipulating these two kinds of objects separately.

It is possible to recover a similar dichotomy in type theory, with the
role of the set-theoretic propositions being played by the types (and type
families) that are mere propositions. In many cases, the logical connec-
tives and quantifiers can be represented in this logic by simply restrict-
ing the corresponding type-former to the mere propositions. Of course,
this requires knowing that the type-former in question preserves mere
propositions.

Example 3.6.1. If A and B are mere propositions, so is A x B. This is
easy to show using the characterization of paths in products, just like
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Example 3.1.5 but simpler. Thus, the connective “and” preserves mere
propositions.

Example 3.6.2. If Aisany typeand B : A — U issuch that forall x : A, the
type B(x) is a mere proposition, then [Tx:.4) B(x) is a mere proposition.
The proof is just like Example 3.1.6 but simpler: given f, g : [(x.4) B(x),
for any x : A we have f(x) = g(x) since B(x) is a mere proposition. But
then by function extensionality, we have f = g.

In particular, if B is a mere proposition, then so is A — B regardless
of what A is. In even more particular, since 0 is a mere proposition, so
is A = (A — 0). Thus, the connectives “implies” and “not” preserve
mere propositions, as does the quantifier “for all”.

On the other hand, some type formers do not preserve mere proposi-
tions. Even if A and B are mere propositions, A 4+ B will not in general
be. For instance, 1 is a mere proposition, but 2 = 1 + 1 is not. Logically
speaking, A 4 B is a “purely constructive” sort of “or”: a witness of it
contains the additional information of which disjunct is true. Sometimes
this is very useful, but if we want a more classical sort of “or” that pre-
serves mere propositions, we need a way to “truncate” this type into a
mere proposition by forgetting this additional information.

The same issue arises with the X-type }(y.4) P(x). This is a purely
constructive interpretation of “there exists an x : A such that P(x)”
which remembers the witness x, and hence is not generally a mere propo-
sition even if each type P(x) is. (Recall that we observed in §3.5 that
Y(x:a) P(x) can also be regarded as “the subset of those x : A such that
P(x)".)

3.7 Propositional truncation

The propositional truncation, also called the (—1)-truncation, bracket type,
or squash type, is an additional type former which “squashes” or “trun-
cates” a type down to a mere proposition, forgetting all information con-
tained in inhabitants of that type other than their existence.

More precisely, for any type A, there is a type ||A]|. It has two con-
structors:

e Foranya: A wehave |a] : ||A]l.
e Forany x,y: ||A|, we have x = y.
The first constructor means that if A is inhabited, so is ||A||. The second

ensures that || A|| is a mere proposition; usually we leave the witness of
this fact nameless.



3.7 PROPOSITIONAL TRUNCATION 153

The recursion principle of ||A|| says that:

e If B is a mere proposition and we have f : A — B, then there is an
induced g : ||A|| — B such that g(|a|) = f(a) foralla : A.

In other words, any mere proposition which follows from (the inhabited-
ness of) A already follows from ||A||. Thus, ||A||, as a mere proposition,
contains no more information than the inhabitedness of A. (There is also
an induction principle for ||A||, but it is not especially useful; see Exer-
cise 3.17.)

In Exercises 3.14 and 3.15 and §6.9 we will describe some ways to con-
struct || A in terms of more general things. For now, we simply assume
it as an additional rule alongside those of Chapter 1.

With the propositional truncation, we can extend the “logic of mere
propositions” to cover disjunction and the existential quantifier. Specif-
ically, ||A + B|| is a mere propositional version of “A or B”, which does
not “remember” the information of which disjunct is true.

The recursion principle of truncation implies that we can still do a
case analysis on | A + B|| when attempting to prove a mere proposition. That
is, suppose we have an assumption u : |A + B|| and we are trying to
prove a mere proposition Q. In other words, we are trying to define an
element of ||A + B|| — Q. Since Q is a mere proposition, by the recursion
principle for propositional truncation, it suffices to construct a function
A+ B — Q. But now we can use case analysis on A + B.

Similarly, for a type family P : A — U, we can consider || ¥y.4) P(x)||,
which is a mere propositional version of “there exists an x : A such that
P(x)”. As for disjunction, by combining the induction principles of trun-
cation and X-types, if we have an assumption of type HZ(XI ) P(x)||, we
may introduce new assumptions x : A and y : P(x) when attempting to
prove a mere proposition. In other words, if we know that there exists some
x : A such that P(x), but we don’t have a particular such x in hand, then
we are free to make use of such an x as long as we aren’t trying to con-
struct anything which might depend on the particular value of x. Requir-
ing the codomain to be a mere proposition expresses this independence
of the result on the witness, since all possible inhabitants of such a type
must be equal.

For the purposes of set-level mathematics in Chapters 10 and 11,
where we deal mostly with sets and mere propositions, it is convenient
to use the traditional logical notations to refer only to “propositionally
truncated logic”.
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Definition 3.7.1. We define traditional logical notation using truncation
as follows, where P and Q denote mere propositions (or families thereof):

T:=1

1L:=0
PANQ :=PxQ
P=Q:=P—Q
P&Q:=P=Q

-P:=P—=0
PVQ = [P+Q]

V(x:A).P(x) := 1;1 P(x)

gl

The notations A and V are also used in homotopy theory for the
smash product and the wedge of pointed spaces, which we will intro-
duce in Chapter 6. This technically creates a potential for conflict, but no
confusion will generally arise.

Similarly, when discussing subsets as in §3.5, we may use the tradi-
tional notation for intersections, unions, and complements:

I(x: A).P(x)

{x:A|P(x)}n{x:A|Q(x)}:={x:A|P(x)AQ(x)},
{x:A]P(x)}U{x:A|Q(x)}:={x:A|P(x)VQ(x)},
A\{x:A|P(x)}:={x:A|-P(x)}.

Of course, in the absence of LEM, the latter are not “complements” in the
usual sense: we may not have BU (A \ B) = A for every subset B of A.
3.8 The axiom of choice

We can now properly formulate the axiom of choice in homotopy type
theory. Assume a type X and type families

A:X—=U and P:[JARx) —U
: X

and moreover that

e Xisaset,
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e A(x)isasetforall x: X, and
* P(x,a) is a mere proposition for all x : X and a : A(x).

The axiom of choice AC asserts that under these assumptions,
(]‘[H y P(x,a)H) N H Y TI P(x,g(x))H. (3.8.1)
X Ca:A(x) (& T(xx) A(x)) (x:X)

Of course, this is a direct translation of (3.2.1) where we read “there exists
x : A such that B(x)” as HZ(X:A) B(x)||, so we could have written the
statement in the familiar logical notation as

(V(x :X).3(a: A(x)).P(x,a)) =

(El(g : HX A(x)).V(x : X).P(x,g(x))).

In particular, note that the propositional truncation appears twice. The
truncation in the domain means we assume that for every x there exists
some a : A(x) such that P(x,a), but that these values are not chosen
or specified in any known way. The truncation in the codomain means
we conclude that there exists some function g, but this function is not
determined or specified in any known way.

In fact, because of Theorem 2.15.7, this axiom can also be expressed
in a simpler form.

Lemma 3.8.2. The axiom of choice (3.8.1) is equivalent to the statement that
for any set X and any Y : X — U such that each Y (x) is a set, we have

@HY(")H) - Hl_){ Y(x)|| (38.3)

This corresponds to a well-known equivalent form of the classical
axiom of choice, namely “the cartesian product of a family of nonempty
sets is nonempty”.

Proof. By Theorem 2.15.7, the codomain of (3.8.1) is equivalent to
I el
(x:X) (a:A(x))

Thus, (3.8.1) is equivalent to the instance of (3.8.3) where

Y(x):= ) P(xa).

a:A(x)
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(This is a set by Example 3.1.5 and Lemma 3.3.4.) Conversely, (3.8.3) is
equivalent to the instance of (3.8.1) where A(x) := Y(x) and P(x,a) := 1.
Thus, the two are logically equivalent. Since both are mere propositions,
by Lemma 3.3.3 they are equivalent types. O

As with LEM, the equivalent forms (3.8.1) and (3.8.3) are not a conse-
quence of our basic type theory, but they may consistently be assumed
as axioms.

Remark 3.8.4. It is easy to show that the right side of (3.8.3) always im-
plies the left. Since both are mere propositions, by Lemma 3.3.3 the ax-
iom of choice is also equivalent to asking for an equivalence

([1@]) =~ [Ie]

This illustrates a common pitfall: although dependent function types
preserve mere propositions (Example 3.6.2), they do not commute with
truncation: ||[T(y.4) P(x)]|| is not generally equivalent to [T(y.4) | P(x)]|-
The axiom of choice, if we assume it, says that this is true for sets; as we
will see below, it fails in general.

The restriction in the axiom of choice to types that are sets can be re-
laxed to a certain extent. For instance, we may allow A and P in (3.8.1),
or Y in (3.8.3), to be arbitrary type families; this results in a seemingly
stronger statement that is equally consistent. We may also replace the
propositional truncation by the more general n-truncations to be con-
sidered in Chapter 7, obtaining a spectrum of axioms AC,, interpolating
between (3.8.1), which we call simply AC (or AC_; for emphasis), and
Theorem 2.15.7, which we shall call AC. See also Exercises 7.8 and 7.10.
However, observe that we cannot relax the requirement that X be a set.

Lemma 3.8.5. There exists a type X and a family Y : X — U such that each
Y(x) is a set, but such that (3.8.3) is false.

Proof. Define X := Y (44 /|2 = A||, and let xo := (2, |refl|) : X. Then
by the identification of paths in X-types, the fact that [|A = 2| is a mere
proposition, and univalence, for any (A, p), (B,q) : X wehave ((4,p) =x
(B,q)) ~ (A ~ B). In particular, (xo =x xo) =~ (2 ~ 2), so as in Exam-
ple 3.1.9, X is not a set.

On the other hand, if (A, p) : X, then A is a set; this follows by in-
duction on truncation for p : ||2 = A|| and the fact that 2 is a set. Since
A ~ Bis a set whenever A and B are, it follows that x; =x x» is a set for
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any x1, X2 : X, i.e. X is a I-type. In particular, if we define Y : X — U by
Y(x) := (xp = x), then each Y(x) is a set.

Now by definition, for any (A, p) : X we have ||2 = A||, and hence
[xo = (A, p)|l. Thus, we have [T(,.x)[[Y(x)|[. If (3.8.3) held for this X
and Y, then we would also have HH(x:X) Y(x)||. Since we are trying to
derive a contradiction (0), which is a mere proposition, we may assume
[T(x:x) Y(x), i.e. that [](,.x)(xo = x). But this implies X is a mere propo-
sition, and hence a set, which is a contradiction. O

3.9 The principle of unique choice

The following observation is trivial, but very useful.
Lemma 3.9.1. If P is a mere proposition, then P ~ || P||.

Proof. Of course, we have P — ||P|| by definition. And since P is a mere
proposition, the universal property of || P|| applied to idp : P — P yields
||IP|| — P. These functions are quasi-inverses by Lemma 3.3.3. O

Among its important consequences is the following.

Corollary 3.9.2 (The principle of unique choice). Suppose a type family
P: A — U such that

(i) For each x, the type P(x) is a mere proposition, and
(ii) For each x we have |P(x)||.

Then we have [y 4y P(x).

Proof. Immediate from the two assumptions and the previous lemma.
O

The corollary also encapsulates a very useful technique of reasoning.
Namely, suppose we know that ||A||, and we want to use this to con-
struct an element of some other type B. We would like to use an element
of A in our construction of an element of B, but this is allowed only if B is
a mere proposition, so that we can apply the induction principle for the
propositional truncation || A||; the most we could hope to do in general is
to show ||B||. Instead, we can extend B with additional data which char-
acterizes uniquely the object we wish to construct. Specifically, we define
a predicate Q : B — U such that },.p) Q(x) is a mere proposition. Then
from an element of A we construct an element b : B such that Q(b), hence
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from || A]| we can construct ||¥(y.5) Q(x) ||, and because || (y.5) Q(x)|| is
equivalent to }(,.p) Q(x) an element of B may be projected from it. An
example can be found in Exercise 3.19.

A similar issue arises in set-theoretic mathematics, although it mani-
fests slightly differently. If we are trying to define a function f : A — B,
and depending on an element 4 : A we are able to prove mere existence
of some b : B, we are not done yet because we need to actually pinpoint
an element of B, not just prove its existence. One option is of course to
refine the argument to unique existence of b : B, as we did in type the-
ory. But in set theory the problem can often be avoided more simply by
an application of the axiom of choice, which picks the required elements
for us. In homotopy type theory, however, quite apart from any desire
to avoid choice, the available forms of choice are simply less applicable,
since they require that the domain of choice be a set. Thus, if A is not a
set (such as perhaps a universe Uf), there is no consistent form of choice
that will allow us to simply pick an element of B for each a : A to use in
defining f(a).

3.10 When are propositions truncated?

At first glance, it may seem that the truncated versions of + and X are
actually closer to the informal mathematical meaning of “or” and “there
exists” than the untruncated ones. Certainly, they are closer to the precise
meaning of “or” and “there exists” in the first-order logic which under-
lies formal set theory, since the latter makes no attempt to remember any
witnesses to the truth of propositions. However, it may come as a sur-
prise to realize that the practice of informal mathematics is often more
accurately described by the untruncated forms.

For example, consider a statement like “every prime number is either
2 or odd”. The working mathematician feels no compunction about us-
ing this fact not only to prove theorems about prime numbers, but also to
perform constructions on prime numbers, perhaps doing one thing in the
case of 2 and another in the case of an odd prime. The end result of the
construction is not merely the truth of some statement, but a piece of data
which may depend on the parity of the prime number. Thus, from a type-
theoretic perspective, such a construction is naturally phrased using the
induction principle for the coproduct type “(p = 2) + (p is odd)”, not its
propositional truncation.

Admittedly, this is not an ideal example, since “p = 2” and “p is
odd” are mutually exclusive, so that (p = 2) + (pis odd) is in fact al-
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ready a mere proposition and hence equivalent to its truncation (see Ex-
ercise 3.7). More compelling examples come from the existential quanti-
fier. It is not uncommon to prove a theorem of the form “there exists an x
such that...” and then refer later on to “the x constructed in Theorem Y”
(note the definite article). Moreover, when deriving further properties of
this x, one may use phrases such as “by the construction of x in the proof
of Theorem Y”.

A very common example is “A is isomorphic to B”, which strictly
speaking means only that there exists some isomorphism between A and B.
But almost invariably, when proving such a statement, one exhibits a
specific isomorphism or proves that some previously known map is an
isomorphism, and it often matters later on what particular isomorphism
was given.

Set-theoretically trained mathematicians often feel a twinge of guilt
at such “abuses of language”. We may attempt to apologize for them,
expunge them from final drafts, or weasel out of them with vague words
like “canonical”. The problem is exacerbated by the fact that in formal-
ized set theory, there is technically no way to “construct” objects at all —
we can only prove that an object with certain properties exists. Untrun-
cated logic in type theory thus captures some common practices of infor-
mal mathematics that the set theoretic reconstruction obscures. (This is
similar to how the univalence axiom validates the common, but formally
unjustified, practice of identifying isomorphic objects.)

On the other hand, sometimes truncated logic is essential. We have
seen this in the statements of LEM and AC; some other examples will
appear later on in the book. Thus, we are faced with the problem: when
writing informal type theory, what should we mean by the words “or”
and “there exists” (along with common synonyms such as “there is” and
“we have”)?

A universal consensus may not be possible. Perhaps depending on
the sort of mathematics being done, one convention or the other may be
more useful — or, perhaps, the choice of convention may be irrelevant. In
this case, a remark at the beginning of a mathematical paper may suffice
to inform the reader of the linguistic conventions in use therein. How-
ever, even after one overall convention is chosen, the other sort of logic
will usually arise at least occasionally, so we need a way to refer to it.
More generally, one may consider replacing the propositional truncation
with another operation on types that behaves similarly, such as the dou-
ble negation operation A — ——A, or the n-truncations to be considered
in Chapter 7. As an experiment in exposition, in what follows we will
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occasionally use adverbs to denote the application of such “modalities”
as propositional truncation.

For instance, if untruncated logic is the default convention, we may
use the adverb merely to denote propositional truncation. Thus the
phrase

“there merely exists an x : A such that P(x)”

indicates the type ||¥(y.4) P(x)||. Similarly, we will say that a type A
is merely inhabited to mean that its propositional truncation || A|| is in-
habited (i.e. that we have an unnamed element of it). Note that this is a
definition of the adverb “merely” as it is to be used in our informal math-
ematical English, in the same way that we define nouns like “group”
and “ring”, and adjectives like “regular” and “normal”, to have precise
mathematical meanings. We are not claiming that the dictionary defini-
tion of “merely” refers to propositional truncation; the choice of word is
meant only to remind the mathematician reader that a mere proposition
contains “merely” the information of a truth value and nothing more.

On the other hand, if truncated logic is the current default conven-
tion, we may use an adverb such as purely or constructively to indicate
its absence, so that

“there purely exists an x : A such that P(x)”

would denote the type ) (,. 4) P(x). We may also use “purely” or “actu-
ally” just to emphasize the absence of truncation, even when that is the
default convention.

In this book we will continue using untruncated logic as the default
convention, for a number of reasons.

(1) We want to encourage the newcomer to experiment with it, rather
than sticking to truncated logic simply because it is more familiar.

(2) Using truncated logic as the default in type theory suffers from the
same sort of “abuse of language” problems as set-theoretic founda-
tions, which untruncated logic avoids. For instance, our definition
of “A ~ B” as the type of equivalences between A and B, rather
than its propositional truncation, means that to prove a theorem of
the form “A ~ B” is literally to construct a particular such equiva-
lence. This specific equivalence can then be referred to later on.

(3) We want to emphasize that the notion of “mere proposition” is not
a fundamental part of type theory. As we will see in Chapter 7,
mere propositions are just the second rung on an infinite ladder,
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and there are also many other modalities not lying on this ladder
at all.

(4) Many statements that classically are mere propositions are no longer
so in homotopy type theory. Of course, foremost among these is
equality.

(5) On the other hand, one of the most interesting observations of ho-
motopy type theory is that a surprising number of types are au-
tomatically mere propositions, or can be slightly modified to be-
come so, without the need for any truncation. (See Lemma 3.3.5
and Chapters 4, 7, 9 and 10.) Thus, although these types contain no
data beyond a truth value, we can nevertheless use them to con-
struct untruncated objects, since there is no need to use the induc-
tion principle of propositional truncation. This useful fact is more
clumsy to express if propositional truncation is applied to all state-
ments by default.

(6) Finally, truncations are not very useful for most of the mathemat-
ics we will be doing in this book, so it is simpler to notate them
explicitly when they occur.

3.11 Contractibility

In Lemma 3.3.2 we observed that a mere proposition which is inhabited
must be equivalent to 1, and it is not hard to see that the converse also
holds. A type with this property is called contractible. Another equivalent
definition of contractibility, which is also sometimes convenient, is the
following.

Definition 3.11.1. A type A is contractible, or a singleton, if there is
a : A, called the center of contraction, such that a = x for all x : A. We
denote the specified path a = x by contry.

In other words, the type isContr(A) is defined to be

isContr 2 H

(a:A) (x:A)

Note that under the usual propositions-as-types reading, we can pro-
nounce isContr(A) as “A contains exactly one element”, or more pre-
cisely “A contains an element, and every element of A is equal to that
element”.
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Remark 3.11.2. We can also pronounce isContr(A) more topologically as
“there is a point a : A such that for all x : A there exists a path from a
to x”. Note that to a classical ear, this sounds like a definition of connect-
edness rather than contractibility. The point is that the meaning of “there
exists” in this sentence is a continuous/natural one.

Abetter way to express connectedness would be Y. ) [T(x:4) la = x||.
This is indeed correct if A is assumed to be pointed — see the remark
after Lemma 7.5.11 — but in general a type can be connected without
being pointed. In §7.5 we will define connectedness as the n = 0 case
of a general notion of n-connectedness, and in Exercise 7.6 the reader is
asked to show that this definition is equivalent to having both || A|| and

[Ty lx =yl
Lemma 3.11.3. For a type A, the following are logically equivalent.

(i) A is contractible in the sense of Definition 3.11.1.
(ii) A is a mere proposition, and there is a point a : A.
(iii) A is equivalent to 1.

Proof. If A is contractible, then it certainly has a point a : A (the center
of contraction), while for any x,y : A wehavex = a = y; thus Aisa
mere proposition. Conversely, if we have a : A and A is a mere propo-
sition, then for any x : A we have x = a; thus A is contractible. And
we showed (ii)=-(iii) in Lemma 3.3.2, while the converse follows since 1
easily has property (ii). O

Lemma 3.11.4. For any type A, the type isContr(A) is a mere proposition.

Proof. Suppose given ¢, ¢’ : isContr(A). We may assume ¢ = (4, p) and
¢ = (d,p)fora,a’: Aand p : T](x.a)(a = x) and p' : [](y.a)(a" = x).
By the characterization of paths in X-types, to show ¢ = ¢’ it suffices to
exhibit g : 2 = a’ such that g.(p) = p’. We choose g := p(a’). Now since
A is contractible (by ¢ or ¢’), by Lemma 3.11.3 it is a mere proposition.
Hence, by Lemma 3.3.4 and Example 3.6.2, 50 is [](y.a)(a' = x); thus
g«(p) = p’ is automatic. O

Corollary 3.11.5. If A is contractible, then so is isContr(A).

Proof. By Lemma 3.11.4 and Lemma 3.11.3(ii). O

Like mere propositions, contractible types are preserved by many
type constructors. For instance, we have:
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Lemma 3.11.6. If P : A — U is a type family such that each P(a) is con-
tractible, then [](x. ) P(x) is contractible.

Proof. By Example 3.6.2, [](y.4) P(x) is a mere proposition since each
P(x) is. But it also has an element, namely the function sending each
x : A to the center of contraction of P(x). Thus by Lemma 3.11.3(ii),
[T(x:a) P(x) is contractible. O

(In fact, the statement of Lemma 3.11.6 is equivalent to the function
extensionality axiom. See §4.9.)

Of course, if A is equivalent to B and A is contractible, then so is
B. More generally, it suffices for B to be a retract of A. By definition,
a retraction is a function 7 : A — B such that there exists a function
s: B — A, called its section, and a homotopy € : [(,.5)(r(s(y)) = y);
then we say that B is a retract of A.

Lemma 3.11.7. If B is a retract of A, and A is contractible, then so is B.

Proof. Let ag : A be the center of contraction. We claim that by := r(ap) :
B is a center of contraction for B. Let b : B; we need a path b = by. But
we have €, : 7(s(b)) = b and contry) : s(b) = a9, so by composition

ey = r(contryy)) : b = r(ag) = b. O

Contractible types may not seem very interesting, since they are all
equivalent to 1. One reason the notion is useful is that sometimes a
collection of individually nontrivial data will collectively form a con-
tractible type. An important example is the space of paths with one free
endpoint. As we will see in §5.8, this fact essentially encapsulates the
based path induction principle for identity types.

Lemma 3.11.8. For any A and any a : A, the type Y x.a)(a = x) is con-
tractible.

Proof. We choose as center the point (a,refl;). Now suppose (x,p) :
Y(x:a)(a = x); we must show (a, refl,) = (x, p). By the characterization
of paths in X-types, it suffices to exhibit g : a = x such that g, (refl;) = p.
But we can take g := p, in which case g.(refl;) = p follows from the
characterization of transport in path types. O

When this happens, it can allow us to simplify a complicated con-
struction up to equivalence, using the informal principle that contractible
data can be freely ignored. This principle consists of many lemmas, most
of which we leave to the reader; the following is an example.
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Lemma 3.11.9. Let P : A — U be a type family.

(i) If each P(x) is contractible, then Y. o) P(x) is equivalent to A.
(ii) If A is contractible with center a, then ). o) P(x) is equivalent to P(a).

Proof. In the situation of (i), we show that pry : Y (,.4) P(x) — Aisan
equivalence. For quasi-inverse we define g(x) := (x, ¢x) where ¢y is the
center of P(x). The composite pr; o g is obviously id 4, whereas the op-
posite composite is homotopic to the identity by using the contractions
of each P(x).

We leave the proof of (ii) to the reader (see Exercise 3.20). O

Another reason contractible types are interesting is that they extend
the ladder of n-types mentioned in §3.1 downwards one more step.

Lemma 3.11.10. A type A is a mere proposition if and only if for all x,y : A,
the type x = 4 y is contractible.

Proof. For “if”, we simply observe that any contractible type is inhabited.
For “only if”, we observed in §3.3 that every mere proposition is a set, so
that each type x =4 v is a mere proposition. But it is also inhabited (since
A is a mere proposition), and hence by Lemma 3.11.3(ii) it is contractible.

O

Thus, contractible types may also be called (—2)-types. They are the
bottom rung of the ladder of n-types, and will be the base case of the
recursive definition of n-types in Chapter 7.

Notes

The fact that it is possible to define sets, mere propositions, and con-
tractible types in type theory, with all higher homotopies automatically
taken care of as in §§3.1, 3.3 and 3.11, was first observed by Voevodsky.
In fact, he defined the entire hierarchy of n-types by induction, as we will
do in Chapter 7.

Theorem 3.2.2 and Corollary 3.2.7 rely in essence on a classical theo-
rem of Hedberg, which we will prove in §7.2. The implication that the
propositions-as-types form of LEM contradicts univalence was observed
by Martin Escard6 on the AGDA mailing list. The proof we have given
of Theorem 3.2.2 is due to Thierry Coquand.
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The propositional truncation was introduced in the extensional type
theory of NUPRL in 1983 by Constable [Con85] as an application of “sub-
set” and “quotient” types. What is here called the “propositional trun-
cation” was called “squashing” in the NUPRL type theory [CAB*86].
Rules characterizing the propositional truncation directly, still in exten-
sional type theory, were given in [AB04]. The intensional version in ho-
motopy type theory was constructed by Voevodsky using an impredica-
tive quantification, and later by Lumsdaine using higher inductive types
(see §6.9).

Voevodsky [Voel2] has proposed resizing rules of the kind consid-
ered in §3.5. These are clearly related to the notorious axiom of reducibility
proposed by Russell in his and Whitehead'’s Principia Mathematica [WR27].

The adverb “purely” as used to refer to untruncated logic is a refer-
ence to the use of monadic modalities to model effects in programming
languages; see §7.7 and the Notes to Chapter 7.

There are many different ways in which logic can be treated rela-
tive to type theory. For instance, in addition to the plain propositions-
as-types logic described in §1.11, and the alternative which uses mere
propositions only as described in §3.6, one may introduce a separate
“sort” of propositions, which behave somewhat like types but are not
identified with them. This is the approach taken in logic enriched type
theory [AG02] and in some presentations of the internal languages of
toposes and related categories (e.g. [Jac99, Joh02]), as well as in the proof
assistant COQ. Such an approach is more general, but less powerful.
For instance, the principle of unique choice (§3.9) fails in the category of
so-called setoids in COQ [Spill], in logic enriched type theory [AG02],
and in minimal type theory [MS05]. Thus, the univalence axiom makes
our type theory behave more like the internal logic of a topos; see also
Chapter 10.

Martin-Lof [ML06] provides a discussion on the history of axioms
of choice. Of course, constructive and intuitionistic mathematics has a
long and complicated history, which we will not delve into here; see for
instance [TvD88a, TvD88b].

Exercises

Exercise 3.1. Prove thatif A ~ B and A is a set, then so is B.

Exercise 3.2. Prove that if A and B are sets, then sois A + B.
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Exercise 3.3. Prove thatif Aisasetand B : A — U is a type family such
that B(x) isa set for all x : A, then }_,.4) B(x) is a set.

Exercise 3.4. Show that A is a mere proposition if and only if A — A is
contractible.

Exercise 3.5. Show that isProp(A) ~ (A — isContr(A)).

Exercise 3.6. Show that if A is a mere proposition, then so is A 4 (—A).
Thus, there is no need to insert a propositional truncation in (3.4.1).

Exercise 3.7. More generally, show that if A and B are mere propositions
and —(A x B), then A + B is also a mere proposition.

Exercise 3.8. Assuming that some type isequiv(f) satisfies conditions (i)—
(iil) of §2.4, show that the type ||qinv(f)]|| satisfies the same conditions
and is equivalent to isequiv(f).

Exercise 3.9. Show that if LEM holds, then the type Prop := Y} 4y isProp(A)
is equivalent to 2.

Exercise 3.10. Show that if {;, | satisfies LEM, then the canonical inclu-
sion Propy, — Propy,,, | is an equivalence.

Exercise 3.11. Show that it is not the case that for all A : i/ we have
|A|| = A. (However, there can be particular types for which ||A|| — A.
Exercise 3.8 implies that ginv(f) is such.)

Exercise 3.12. Show thatif LEM holds, then for all A : i/ we have ||(]|A]| —
A)||. (This property is a very simple form of the axiom of choice, which
can fail in the absence of LEM; see [KECA13].)

Exercise 3.13. We showed in Corollary 3.2.7 that the following naive form
of LEM is inconsistent with univalence:

[T(A+(=4)

AU

In the absence of univalence, this axiom is consistent. However, show
that it implies the axiom of choice (3.8.1).

Exercise 3.14. Show that assuming LEM, the double negation ~—A has
the same recursion principle as the propositional truncation ||A|| but
with a propositional computation rule rather than a judgmental one. In
other words, prove that assuming LEM, if B is a mere proposition and
we have f : A — B, then there is an induced g : =——A — B such
that ¢(|a|) = f(a) for all a : A. Deduce that (assuming LEM) we have
—=A =~ ||A||. Thus, under LEM, the propositional truncation can be de-
fined rather than taken as a separate type former.
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Exercise 3.15. Show that if we assume propositional resizing as in §3.5,
then the type
11 ((A — P) — P)
P:Prop
has the same recursion principle as || A||, with the same judgmental com-
putation rule. Thus, we can also define the propositional truncation in
this case.

Exercise 3.16. Assuming LEM, show that double negation commutes with
universal quantification of mere propositions over sets. That is, show
that if X is a set and each Y(x) is a mere proposition, then LEM implies

(g ﬁy(x)) o (ﬁﬁg Y(X))- (3.11.11)

Observe that if we assume instead that each Y (x) is a set, then (3.11.11)
becomes equivalent to the axiom of choice (3.8.3).

Exercise 3.17. Show that the rules for the propositional truncation given
in §3.7 are sufficient to imply the following induction principle: for any
type family B : ||A|| — U such that each B(x) is a mere proposition, if
for every a : A we have B(|a|), then for every x : || A|| we have B(x).

Exercise 3.18. Show that the law of excluded middle (3.4.1) and the law
of double negation (3.4.2) are logically equivalent.

Exercise 3.19. Suppose P : N — U is a decidable family (see Defini-
tion 3.4.3(ii)) of mere propositions. Prove that

HZ P(n)H — Y P(n).
n:IN n:IN

Exercise 3.20. Prove Lemma 3.11.9(ii): if A is contractible with center a,
then Y (,.4) P(x) is equivalent to P(a).

Exercise 3.21. Prove that isProp(P) ~ (P =~ ||P||).

Exercise 3.22. As in classical set theory, the finite version of the axiom of

choice is a theorem. Prove that the axiom of choice (3.8.1) holds when X
is a finite type Fin(n) (as defined in Exercise 1.9).

Exercise 3.23. Show that the conclusion of Exercise 3.19 is true if P : N —
U is any decidable family.

Exercise 3.24. Simplify the proof of Theorem 2.13.1 by first proving that
code(m, n) is a mere proposition for all m, n.
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Chapter 4

Equivalences

We now study in more detail the notion of equivalence of types that was in-
troduced briefly in §2.4. Specifically, we will give several different ways
to define a type isequiv(f) having the properties mentioned there. Recall
that we wanted isequiv(f) to have the following properties, which we
restate here:

(i) qinv(f) — isequiv(f).
(ii) isequiv(f) — qinv(f).

(iii) isequiv(f) is a mere proposition.

Here ginv(f) denotes the type of quasi-inverses to f:

Y. ((fog~idp) x (gof ~idy)).

$:B—A
By function extensionality, it follows that qinv(f) is equivalent to the type

Y. ((fog=idp) x (gof =idy)).

$:B—A

We will define three different types having properties (i)—(iii), which we
call

¢ half adjoint equivalences,
® bi-invertible maps, and
¢ contractible functions.

We will also show that all these types are equivalent. These names are
intentionally somewhat cumbersome, because after we know that they
are all equivalent and have properties (i)—(iii), we will revert to saying
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simply “equivalence” without needing to specify which particular def-
inition we choose. But for purposes of the comparisons in this chapter,
we need different names for each definition.

Before we examine the different notions of equivalence, however, we
give a little more explanation of why a different concept than quasi-
invertibility is needed.

4.1 Quasi-inverses

We have said that qinv(f) is unsatisfactory because it is not a mere propo-
sition, whereas we would rather that a given function could “be an equiv-
alence” in at most one way. However, we have given no evidence that
ginv(f) is not a mere proposition. In this section we exhibit a specific
counterexample.

Lemma 4.1.1. If f : A — B is such that qinv(f) is inhabited, then

qinv(f) ~ (H(x = x))

x:A
Proof. By assumption, f is an equivalence; that is, we have e : isequiv(f)
and so (f,e) : A ~ B. By univalence, idtoeqv : (A = B) — (A ~ B)
is an equivalence, so we may assume that (f, e) is of the form idtoeqv(p)
for some p : A = B. Then by path induction, we may assume p is refl4,
in which case f is id4. Thus we are reduced to proving qinv(idg) =~
(IT(x.a)(x = x)). Now by definition we have

qinv(ida) = ) ((g~ida) x (g ~ida)).
$A—A
By function extensionality, this is equivalent to
Y. ((g=ids) x (g =ida)).
A=A
And by Exercise 2.10, this is equivalent to

)3 (pry(h) =ida)

hzz(g:A%A) (gZIdA)

However, by Lemma 3.11.8, Y ;.4 4)(§ = id4) is contractible with cen-
ter (ida,reflg,); therefore by Lemma 3.11.9 this type is equivalent to
idg = id4. And by function extensionality, id4 = id4 is equivalent to
H(x:A) X=X O
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We remark that Exercise 4.3 asks for a proof of the above lemma which
avoids univalence.

Thus, what we need is some A which admits a nontrivial element of
[T(x:a)(x = x). Thinking of A as a higher groupoid, an inhabitant of
[T(x:a)(x = x) is a natural transformation from the identity functor of
A to itself. Such transformations are said to form the center of a cat-
egory, since the naturality axiom requires that they commute with all
morphisms. Classically, if A is simply a group regarded as a one-object
groupoid, then this yields precisely its center in the usual group-theoretic
sense. This provides some motivation for the following.

Lemma 4.1.2. Suppose we have a type A witha : A and q : a = a such that

(i) The type a = a is a set.
(ii) Forall x : A we have ||a = x]||.

(iii) Forallp:a=awehavep-q=q-p.
Then there exists f : [1(x.a)(x = x) with f(a) = gq.

Proof. Let g : [1(x.a)lla = x|| be as given by (ii). First we observe that
each type x =4 y is a set. For since being a set is a mere proposition,
we may apply the induction principle of propositional truncation, and
assume that g(x) = |p| and g(y) = |p/| forp:a=xand p’' :a =y. In
this case, composing with p and p’ - yields an equivalence (x = y) ~
(a =a). But (a = a) is a set by (i), so (x = y) is also a set.

Now, we would like to define f by assigning to each x the path g(x) -
g+ g(x), but this does not work because g(x) does not inhabit a = x but
rather ||a = x||, and the type (x = x) may not be a mere proposition, so
we cannot use induction on propositional truncation. Instead we can ap-
ply the technique mentioned in §3.9: we characterize uniquely the object
we wish to construct. Let us define, for each x : A, the type

B(x):z(z H)(r:s_l-q-s).

rix=x) (s:a=x

We claim that B(x) is a mere proposition for each x : A. Since this claim
is itself a mere proposition, we may again apply induction on truncation
and assume that g(x) = |p| for some p : 2 = x. Now suppose given
(r,h) and (+', ') in B(x); then we have

h(p) e (p) " ir =7
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It remains to show that / is identified with h’ when transported along
this equality, which by transport in identity types and function types
(8§82.9 and 2.11), reduces to showing

h(s) = h(p) ' (p) "' -1 (s)

for any s : a = x. But each side of this is an equality between elements of
(x = x), so it follows from our above observation that (x = x) is a set.
Thus, each B(x) is a mere proposition; we claim that [],.4) B(x).
Given x : A, we may now invoke the induction principle of proposi-
tional truncation to assume that g(x) = |p| for p : a = x. We define
r:= p~l+g+p; to inhabit B(x) it remains to show that for any s : a = x
we have r = s~1+4+s. Manipulating paths, this reduces to showing that
g*(p+s~1) = (p+s~!) +q. But this is just an instance of (iii). O

Theorem 4.1.3. There exist types A and B and a function f : A — B such
that qinv(f) is not a mere proposition.

Proof. Tt suffices to exhibit a type X such that [],.x)(x = x) is not a mere
proposition. Define X := }_4.)[/2 = Al|, as in the proof of Lemma 3.8.5.
It will suffice to exhibit an f : [(x.x)(x = x) which is unequal to Ax. refly.

Leta := (2,]refly|) : X, and let g : a = a be the path corresponding
to the nonidentity equivalence e : 2 ~ 2 defined by ¢(0z) := 1 and
e(1z) := 0. We would like to apply Lemma 4.1.2 to build an f. By
definition of X, equalities in subset types (§3.5), and univalence, we have
(a = a) ~ (2 =~ 2), which is a set, so (i) holds. Similarly, by definition
of X and equalities in subset types we have (ii). Finally, Exercise 2.13
implies that every equivalence 2 ~ 2 is equal to either id; or ¢, so we can
show (iii) by a four-way case analysis.

Thus, we have f : [](y.x)(x = x) such that f(a) = g. Since e is not
equal to idy, g is not equal to refl;, and thus f is not equal to Ax. refl,.
Therefore, [,.x)(x = x) is not a mere proposition. O

More generally, Lemma 4.1.2 implies that any “Eilenberg-Mac Lane
space” K(G,1), where G is a nontrivial abelian group, will provide a
counterexample; see Chapter 8. The type X we used turns out to be
equivalent to K(Z,1). In Chapter 6 we will see that the circle S! =
K(Z,1) is another easy-to-describe example.

We now move on to describing better notions of equivalence.
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4.2 Half adjoint equivalences

In §4.1 we concluded that qinv(f) is equivalent to [](,.4)(x = x) by dis-
carding a contractible type. Roughly, the type qinv(f) contains three data
g, 11, and €, of which two (g and #) could together be seen to be con-
tractible when f is an equivalence. The problem is that removing these
data left one remaining (€). In order to solve this problem, the idea is
to add one additional datum which, together with €, forms a contractible

type.

Definition 4.2.1. A function f : A — B is a half adjoint equivalence if
there are g : B - A and homotopiesy : go f ~idgande: fog ~ idp
such that there exists a homotopy

T[] f(nx) = e(fx).
x:A

Thus we have a type ishae(f), defined to be
X X Y. T fOrx) =e(fx).
(§:B—A) (:gof~ida) (e:fog~idg) (x:A)

Note that in the above definition, the coherence condition relating # and
€ only involves f. We might consider instead an analogous coherence
condition involving g:

v: [T gley) = n(gy)
y:B

and a resulting analogous definition ishae’(f).
Fortunately, it turns out each of the conditions implies the other one:

Lemma 4.2.2. For functions f : A — Band g : B — A and homotopies
7 :9of ~idgand e : fog ~ idp, the following conditions are logically
equivalent:

° H(x:A) f(ﬂx) = e(fx)

* I3 8(ey) = n(gy)

Proof. It suffices to show one direction; the other one is obtained by re-
placing A, f, and 77 by B, g, and € respectively. Let T : []x.4) f(7x) =
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€(fx). Fixy : B. Using naturality of € and applying g, we get the follow-
ing commuting diagram of paths:

8f8(ey)

sfefgy gfgy
g(e(fgy)) g(ey)
gfgyzziﬁifzzzgy

Using 7(gy) on the left side of the diagram gives us

gfgley)
gfefgy gfgy
gf(n(gy)) g(ey)
gfgyzzggjzzzgy

Using the commutativity of 7 with g o f (Corollary 2.4.4), we have

gfgley)
8f8f8y ——=28f8y
1(8f8Y) gley)
gfgy::§§§7:::gy
However, by naturality of 77 we also have
sfsley
8f8f8y ——— gf 8y
1(8f8Yy) 1(8y)
8f8y Y

Thus, canceling all but the right-hand homotopy, we have g(ey) = 1(gy)
as desired. O

However, it is important that we do not include both T and v in the
definition of ishae(f) (whence the name “half adjoint equivalence”). If
we did, then after canceling contractible types we would still have one
remaining datum — unless we added another higher coherence condi-
tion. In general, we expect to get a well-behaved type if we cut off after
an odd number of coherences.
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Of course, it is obvious that ishae(f) — qinv(f): simply forget the co-
herence datum. The other direction is a version of a standard argument
from homotopy theory and category theory.

Theorem 4.2.3. Forany f : A — B we have qinv(f) — ishae(f).

Proof. Suppose that (g, 7, €) is a quasi-inverse for f. We have to provide a
quadruple (g',7', €/, T) witnessing that f is a half adjoint equivalence. To
define ¢’ and 7', we can just make the obvious choice by setting ¢’ := g
and 7' := 5. However, in the definition of €’ we need start worrying
about the construction of T, so we cannot just follow our nose and take
€’ to be €. Instead, we take

Note first that by Corollary 2.4.4, we have n(g(f(a))) = g(f(n(a))).
Therefore, we can apply Lemma 2.4.3 to compute

f(n(8(f(a))))~e(f(a)) = f(g(f(1(a)))) -e(f(a))
= e(f(8(f(a))))* f(n(a))

from which we get the desired path 7(a). O

Combining this with Lemma 4.2.2 (or symmetrizing the proof), we
also have qinv(f) — ishae’(f).

It remains to show that ishae(f) is a mere proposition. For this, we
will need to know that the fibers of an equivalence are contractible.

Definition 4.2.4. The fiber of amap f : A — Boverapointy : Bis

fibr(y) := ) (f(x) =y).

x:A

In homotopy theory, this is what would be called the homotopy fiber of
f. The path lemmas in §2.5 yield the following characterization of paths
in fibers:

Lemma 4.2.5. Forany f : A — B,y : B, and (x,p), (x',p') : fibe(y), we

have
()= )= (T fp=p)

yix=x'
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Theorem 4.2.6. If f : A — B is a half adjoint equivalence, then for any y : B
the fiber fib¢ (y) is contractible.

Proof. Let (g,1,€,7) : ishae(f), and fix y : B. As our center of contraction
for fib(y) we choose (gy,ey). Now take any (x,p) : fibs(y); we want
to construct a path from (gy, ey) to (x, p). By Lemma 4.2.5, it suffices to

give a path 7 : gy = x such that f(7)+p = ey. We put v := g(p) "+ 7jx.
Then we have
fn)p=fg(p) " flnx) - p
= fg(p) "re(fx)p
= ey

where the second equality follows by Tx and the third equality is natu-
rality of e. O

We now define the types which encapsulate contractible pairs of data.
The following types put together the quasi-inverse ¢ with one of the ho-
motopies.

Definition 4.2.7. Given a function f : A — B, we define the types
finv(f) = Y (gof ~ids)
$:B—A
rinv(f):= Y (fog~idp)

$B—A

of left inverses and right inverses to f, respectively. We call f left in-
vertible if linv(f) is inhabited, and similarly right invertible if rinv(f) is
inhabited.

Lemma 4.2.8. If f : A — B has a quasi-inverse, then so do

(fo-):(C—A)— (C—B)
(=of):(B—=C)—= (A—C).

~—

Proof. If g is a quasi-inverse of f, then (go —) and (- o g) are quasi-
inverses of (f o —) and (- o f) respectively. O

Lemma 4.2.9. If f : A — B has a quasi-inverse, then the types rinv(f) and
linv(f) are contractible.
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Proof. By function extensionality, we have

linv(f) = ) (gof=ida).

$B—A

But this is the fiber of (- o f) over id4, and so by Lemma 4.2.8 and The-
orems 4.2.3 and 4.2.6, it is contractible. Similarly, rinv(f) is equivalent to
the fiber of (f o —) over idg and hence contractible. O

Next we define the types which put together the other homotopy
with the additional coherence datum.

Definition 4.2.10. For f : A — B, a left inverse (g,#) : linv(f), and a
right inverse (g, €) : rinv(f), we denote

lcohe(g, )= Y, [ gley) =n(gy),
(e:fog~idp) (y:B)
rcohs(g,€) := Z H f(nx) = e(fx).

(11:80f~idy) (x:A)

Lemma 4.2.11. Forany f,g,€,1, we have

lcoh(g,77) =~ l—g (&Y, 1(8Y)) =fiby(gy) (¥, refley),
y:

rcohf (g, €) =~ q(gfx,e(fx)) =fibg(fx) (% reflpy).

Proof. Using Lemma 4.2.5. O

Lemma 4.2.12. If f is a half adjoint equivalence, then for any (g, €) : rinv(f),
the type rcoh¢ (g, €) is contractible.

Proof. By Lemma 4.2.11 and the fact that dependent function types pre-
serve contractible spaces, it suffices to show that for each x : A, the type
(gfx,e(fx)) =fiby(fx) (x,reflg,) is contractible. But by Theorem 4.2.6,
fibr(fx) is contractible, and any path space of a contractible space is it-
self contractible. O

Theorem 4.2.13. Forany f : A — B, the type ishae(f) is a mere proposition.

Proof. By Exercise 3.5 it suffices to assume f to be a half adjoint equiva-
lence and show that ishae(f) is contractible. Now by associativity of
(Exercise 2.10), the type ishae(f) is equivalent to

Z rcohf(prl(u)/ pro(u)).
wrinv(f)
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But by Lemmas 4.2.9 and 4.2.12 and the fact that X preserves contractibil-
ity, the latter type is also contractible. O

Thus, we have shown that ishae(f) has all three desiderata for the
type isequiv(f). In the next two sections we consider a couple of other
possibilities.

4.3 Bi-invertible maps

Using the language introduced in §4.2, we can restate the definition pro-
posed in §2.4 as follows.

Definition 4.3.1. We say f : A — B is bi-invertible if it has both a left
inverse and a right inverse:

biinv(f) := linv(f) x rinv(f).

In §2.4 we proved that qinv(f) — biinv(f) and biinv(f) — qinv(f).
What remains is the following.

Theorem 4.3.2. Forany f : A — B, the type biinv(f) is a mere proposition.

Proof. We may suppose f to be bi-invertible and show that biinv(f) is
contractible. But since biinv(f) — qinv(f), by Lemma 4.2.9 in this case
both linv(f) and rinv(f) are contractible, and the product of contractible
types is contractible. O

Note that this also fits the proposal made at the beginning of §4.2: we
combine g and # into a contractible type and add an additional datum
which combines with € into a contractible type. The difference is that in-
stead of adding a higher datum (a 2-dimensional path) to combine with €,
we add a lower one (a right inverse that is separate from the left inverse).

Corollary 4.3.3. Forany f : A — B we have biinv(f) ~ ishae(f).

Proof. We have biinv(f) — qinv(f) — ishae(f) and ishae(f) — qinv(f) —
biinv(f). Since both ishae(f) and biinv( f) are mere propositions, the equiv-
alence follows from Lemma 3.3.3. O
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4.4 Contractible fibers

Note that our proofs about ishae(f) and biinv(f) made essential use of
the fact that the fibers of an equivalence are contractible. In fact, it turns
out that this property is itself a sufficient definition of equivalence.

Definition 4.4.1 (Contractible maps). Amap f : A — B is contractible if
for all y : B, the fiber fib¢(y) is contractible.

Thus, the type isContr(f) is defined to be

isContr(f) := 1—'! isContr(fibs(y)) (44.2)
y:

Note that in §3.11 we defined what it means for a type to be contractible.
Here we are defining what it means for a map to be contractible. Our
terminology follows the general homotopy-theoretic practice of saying
that a map has a certain property if all of its (homotopy) fibers have that
property. Thus, a type A is contractible just when the map A — 1is
contractible. From Chapter 7 onwards we will also call contractible maps
and types (—2)-truncated.

We have already shown in Theorem 4.2.6 that ishae(f) — isContr(f).
Conversely:

Theorem 4.4.3. Forany f : A — B we have isContr(f) — ishae(f).

Proof. Let P : isContr(f). We define an inverse mapping ¢ : B — A by
sending each y : B to the center of contraction of the fiber at y:

8(y) := pri(pr1(Py)).

We can thus define the homotopy e by mapping y to the witness that
¢(y) indeed belongs to the fiber at y:

e(y) := pra(pri(Py)).

It remains to define 77 and 7. This of course amounts to giving an element
of rcohf(g, €). By Lemma 4.2.11, this is the same as giving for each x : A
a path from (gfx,e(fx)) to (x,refls,) in the fiber of f over fx. But this
is easy: for any x : A, the type fibs(fx) is contractible by assumption,
hence such a path must exist. We can construct it explicitly as

(Pra(P(fx))(8fx,€(f2))) "+ (pra(P(fx)) (x, refify)). H

It is also easy to see:
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Lemma 4.4.4. For any f, the type isContr(f) is a mere proposition.

Proof. By Lemma 3.11.4, each type isContr(fibs(y)) is a mere proposition.
Thus, by Example 3.6.2, so is (4.4.2). O

Theorem 4.4.5. Forany f : A — B we have isContr(f) ~ ishae(f).

Proof. We have already established a logical equivalence isContr(f) <
ishae( f), and both are mere propositions (Lemma 4.4.4 and Theorem 4.2.13).
Thus, Lemma 3.3.3 applies. O

Usually, we prove that a function is an equivalence by exhibiting a
quasi-inverse, but sometimes this definition is more convenient. For in-
stance, it implies that when proving a function to be an equivalence, we
are free to assume that its codomain is inhabited.

Corollary 4.4.6. If f : A — B is such that B — isequiv(f), then f is an
equivalence.

Proof. To show f is an equivalence, it suffices to show that fibs(y) is con-
tractible for any y : B. Butif e : B — isequiv(f), then given any such y
we have e(y) : isequiv(f), so that f is an equivalence and hence fib¢(y) is
contractible, as desired. O

4.5 On the definition of equivalences

We have shown that all three definitions of equivalence satisfy the three
desirable properties and are pairwise equivalent:

isContr(f) ~ ishae(f) =~ biinv(f).

(There are yet more possible definitions of equivalence, but we will stop
with these three. See Exercise 3.8 and the exercises in this chapter for
some more.) Thus, we may choose any one of them as “the” definition
of isequiv(f). For definiteness, we choose to define

isequiv(f) := ishae(f).

This choice is advantageous for formalization, since ishae(f) contains the
most directly useful data. On the other hand, for other purposes, biinv(f)
is often easier to deal with, since it contains no 2-dimensional paths and
its two symmetrical halves can be treated independently. However, for
purposes of this book, the specific choice will make little difference.

In the rest of this chapter, we study some other properties and char-
acterizations of equivalences.
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4.6 Surjections and embeddings

When A and B are sets and f : A — B is an equivalence, we also call it
as isomorphism or a bijection. (We avoid these words for types that are
not sets, since in homotopy theory and higher category theory they often
denote a stricter notion of “sameness” than homotopy equivalence.) In
set theory, a function is a bijection just when it is both injective and sur-
jective. The same is true in type theory, if we formulate these conditions
appropriately. For clarity, when dealing with types that are not sets, we
will speak of embeddings instead of injections.

Definition 4.6.1. Let f : A — B.

(i) We say f is surjective (or a surjection) if for every b : B we have
(| fibs(b)]|-

(ii) We say f is an embedding if for every x,y : A the function apy :
(x =ay) = (f(x) = f(y)) is an equivalence.

In other words, f is surjective if every fiber of f is merely inhabited,
or equivalently if for all b : B there merely exists an a : A such that
f(a) = b. In traditional logical notation, f is surjective if V(b : B).3(a :
A).(f(a) = b). This must be distinguished from the stronger assertion
that [T(,.8) L(a:a)(f (@) = b); if this holds we say that f is a split surjec-
tion. (Since this latter type is equivalent to }-o.p o) [T(:8) (f (g(b)) = D),
being a split surjection is the same as being a retraction as defined in
§3.11.)

The axiom of choice from §3.8 says exactly that every surjection be-
tween sets is split. However, in the presence of the univalence axiom, it is
simply false that all surjections are split. In Lemma 3.8.5 we constructed
a type family Y : X — U such that [Tj..x)[|Y(x)| but =TT ,.x) Y(x); for
any such family, the first projection (L ,.x) Y(x)) — X is a surjection
that is not split.

If A and B are sets, then by Lemma 3.3.3, f is an embedding just when

[T (f(x) =6 f(y)) = (x=ay). (4.6.2)

XA

In this case we say that f is injective, or an injection. We avoid these
word for types that are not sets, because they might be interpreted as (4.6.2),
which is an ill-behaved notion for non-sets. It is also true that any func-
tion between sets is surjective if and only if it is an epimorphism in a suit-
able sense, but this also fails for more general types, and surjectivity is
generally the more important notion.
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Theorem 4.6.3. A function f : A — B is an equivalence if and only if it is
both surjective and an embedding.

Proof. 1f f is an equivalence, then each fib¢(b) is contractible, hence so is
[|fibs(b)||, so f is surjective. And we showed in Theorem 2.11.1 that any
equivalence is an embedding.

Conversely, suppose f is a surjective embedding. Let b : B; we show
that }(,.4)(f(x) = b) is contractible. Since f is surjective, there merely
exists an a : A such that f(a) = b. Thus, the fiber of f over b is in-
habited; it remains to show it is a mere proposition. For this, suppose
given x,y : Awith p: f(x) = band g : f(y) = b. Then since aps is an

equivalence, there exists r : x = y with ap(r) = p- g~ !. However, using
the characterization of paths in X-types, the latter equality rearranges to
r+(p) = q. Thus, together with r it exhibits (x, p) = (y,q) in the fiber of
foverb. O

Corollary 4.6.4. Forany f : A — B we have
isequiv(f) ~ (isEmbedding(f) x isSurjective(f)).

Proof. Being a surjection and an embedding are both mere propositions;
now apply Lemma 3.3.3. O

Of course, this cannot be used as a definition of “equivalence”, since
the definition of embeddings refers to equivalences. However, this char-
acterization can still be useful; see §8.8. We will generalize it in Chapter 7.

4.7 Closure properties of equivalences

We have already seen in Lemma 2.4.12 that equivalences are closed un-
der composition. Furthermore, we have:

Theorem 4.7.1 (The 2-out-of-3 property). Suppose f : A — Band g : B —
C. Ifany two of f, g, and g o f are equivalences, so is the third.

Proof. If g o f and g are equivalences, then (g o f )71 o g is a quasi-inverse
to f. On the one hand, we have (g o f)fl ogo f ~id4, while on the other
we have

fo(gof) log~glogofo(gof)og
~glog
~ idg.
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Similarly, if go f and f are equivalences, then f o (go f ) lisa quasi-
inverse to g. O

This is a standard closure condition on equivalences from homotopy
theory. Also well-known is that they are closed under retracts, in the
following sense.

Definition 4.7.2. A function g : A — Bis said to be a retract of a function
f: X — Y if there is a diagram

A x4 A

f| %i - Lg

for which there are

(i) ahomotopy R:ros ~idg.
(ii) a homotopy R’ : 7" o5’ ~ idp.
(iif) a homotopy L: fos~ s’ og.
(iv) a homotopy K: gor ~1r'o f.
(v) for every a : A, a path H(a) witnessing the commutativity of the

square
g(r(s(0)) =2 v ((s(a)))
8(R(a)) '(L(a))
3(0) =i (¢ (3@)

Recall that in §3.11 we defined what it means for a type to be a retract
of another. This is a special case of the above definition where B and Y
are 1. Conversely, just as with contractibility, retractions of maps induce
retractions of their fibers.

Lemma 4.7.3. Ifa function § : A — B is a retract of a function f : X — Y,
then fibg (b) is a retract of fibs (s’ (b)) for every b : B, where s’ : B — Y is as in
Definition 4.7.2.

Proof. Suppose that g : A — B is a retract of f : X — Y. Then for any
b : B we have the functions

@y : fibg(b) — fibe(s'(b)),  @p(a,p) := (s(a),L(a) *5'(p)),
Py - fibf(S/(b)) - fibg(b), Pp(x,q) := (r(x), K(x) -r/(q) .R’(b)).



184 CHAPTER 4. EQUIVALENCES

Then we have 4(py(a,p)) = (r(s(a)), K(s(a)) - (L(a)+5'(p))  R'(D)).
We claim ¥, is a retraction with section ¢, for all b : B, which is to say
that for all (a, p) : fibg(b) we have ¢, (¢4(a,p)) = (a,p). In other words,
we want to show

IT IT vs(eulap) =(ap).

(b:B) (a:A) (p:g(a)=D)

By reordering the first two I1s and applying a version of Lemma 3.11.9,
this is equivalent to

I;I (o) (Pg(a) (0, reflya))) = (a,refly(r))-

For any a, by Theorem 2.7.2, this equality of pairs is equivalent to a pair
of equalities. The first components are equal by R(a) : r(s(a)) = a, so we
need only show

R(a),(K(s(a)) *7'(L(a)) * R'(g(a))) = refly(,).

But this transportation computes as g(R(a)) " *K(s(a)) 7' (L(a)) =R’ (g(a)),
so the required path is given by H(a). O

Theorem 4.7.4. If g is a retract of an equivalence f, then g is also an equiva-
lence.

Proof. By Lemma 4.7.3, every fiber of g is a retract of a fiber of f. Thus,
by Lemma 3.11.7, if the latter are all contractible, so are the former. O

Finally, we show that fiberwise equivalences can be characterized in
terms of equivalences of total spaces. To explain the terminology, recall
from §2.3 that a type family P : A — U can be viewed as a fibration
over A with total space Y (,.) P(x), the fibration being the projection
Pri : Y(xa) P(x) — A. From this point of view, given two type families
P,Q: A — U, we may refer to a function f : [](y.4)(P(x) — Q(x)) as
a fiberwise map or a fiberwise transformation. Such a map induces a
function on total spaces:

Definition 4.7.5. Given type families P,Q : A — U and a map f :
[T(x.a) P(x) = Q(x), we define

total(f) := Aw. (pryw, f (pryw, pryw)) : Y P(x) — ZA Q(x).

x:A
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Theorem 4.7.6. Suppose that f is a fiberwise transformation between families
P and Q over a type A and let x : A and v : Q(x). Then we have an equivalence

ﬁbtotal(f) ((xr U)) = fibf(x) (Z))

Proof. We calculate:

fibwoal(r) (v, 0)) =}, (priw, f(priw, pryw)) = (x,0)
w:Y(x.4) P(%)
~ (a,f(a,u)) = (x,v) (by Exercise 2.10)
(a:A) (u:P(a))
~ L plfau) =0
(a:A) (u:P(a)) (p:a=x)
(by Theorem 2.7.2)
~ L puflaw)=v
(a:A) (p:a=x) (u:P(a))
~ Z flx,u) =0 (%)
u:P(x)
= flbf(x) (U)
The equivalence () follows from Lemmas 3.11.8 and 3.11.9 and Exer-
cise 2.10. O

We say that a fiberwise transformation f : []x.4) P(x) — Q(x) is a
fiberwise equivalence if each f(x) : P(x) — Q(x) is an equivalence.

Theorem 4.7.7. Suppose that f is a fiberwise transformation between families
P and Q over a type A. Then f is a fiberwise equivalence if and only if total( f)
is an equivalence.

Proof. Let f, P, Q and A be as in the statement of the theorem. By The-
orem 4.7.6 it follows for all x : A and v : Q(x) that fibyea(s)((x,0)) is
contractible if and only if fibf(,)(v) is contractible. Thus, fibyt,)(f) (w) is
contractible for all w : }(,.4) Q(x) if and only if fibg(,)(v) is contractible
forall x: Aand v : Q(x). O

4.8 The object classifier

In type theory we have a basic notion of family of types, namely a function
B : A — U. We have seen that such families behave somewhat like
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fibrations in homotopy theory, with the fibration being the projection pr; :
Y(a:4) B(a) — A. A basic fact in homotopy theory is that every map is

equivalent to a fibration. With univalence at our disposal, we can prove
the same thing in type theory.

Lemma 4.8.1. Forany type family B : A — U, the fiber of pry = ¥(1.a) B(x) —
A over a : A is equivalent to B(a):
fibpr, (a) ~ B(a)
Proof. We have
fibpr, (2):= Y. pri(u)=a
w:¥(x.4) B(x)

~ ) )

(x:4) (b:B(x))

using the left universal property of identity types.

Lemma 4.8.2. For any function f : A — B, we have A ~ Y ;,.p) fib¢ (D).
Proof. We have

Y fibg(b) =)
b:B

(bB a:

D>

=b)
(aA (b:

~ A
using the fact that }_;.5)(f(a) = b) is contractible. O

Theorem 4.8.3. For any type B there is an equivalence

X:(Z(A—)B)):(B—)L{).

AU

53]

)

Proof. We have to construct quasi-inverses

X:({;{(A%B)>—>B—>u

p:(B—=U) (AZL:{ A—>B)
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We define x by x((A, f), b) := fibs(b), and ¢ by (P) := ((L(p:5) P(D)), pr1)-
Now we have to verify that x o ¢ ~ id and that ¢ o x ~ id.

(i) Let P: B — U. By Lemma 4.8.1, fibp, (b) ~ P(b) for any b : B, so it
follows immediately that P ~ x(y(P)).
(ii) Let f : A — B be a function. We have to find a path

(X fibr (), pr1) = (A, f).

First note that by Lemma 4.8.2, we have e : ¥ ;,.p) fib(b) ~ A with
e(b,a,p) :=aand e (a) := (f(a),aq, refl¢(,)). By Theorem 2.7.2, it
remains to show (ua(e)),(pr;) = f. But by the computation rule
for univalence and (2.9.4), we have (ua(e)),(pr;) = pr; oe~!, and
the definition of e~! immediately yields pr; o e™! = f. O

In particular, this implies that we have an object classifier in the sense of
higher topos theory. Recall from Definition 2.1.7 that i/, denotes the type
Y_(au) A of pointed types.

Theorem 4.8.4. Let f : A — B be a function. Then the diagram

Oy
A———U,

B——U
X5

is a pullback square (see Exercise 2.11). Here the function 8y is defined by
Aa. (fibs(f(a)), (a,reflg))).

Proof. Note that we have the equivalences
A~ Z fib f(b)
b:B

~) )y ) X

(b:B) (X:U) (p:fibs(b)=X)

~ ), ) Z fiby ()

(b:B) (XU)
2 2 flbf =prY
(b:B) (Yiha)

= B qu.
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which gives us a composite equivalence e : A ~ B Xy U,. We may
display the action of this composite equivalence step by step by

a— (f(a), (a, reflf(a)))
= (f(a), fibg(f(a
— (f(a), fibs(f(a

), reflﬁbf(f(u)), (ll, reflf(a)))

~—  —

), ({1, reﬂf(u)), reflﬁbf(f(a))).

Therefore, we get homotopies f ~ pry oeand ¢ ~ pryoe. O

4.9 Univalence implies function extensionality

In the last section of this chapter we include a proof that the univalence
axiom implies function extensionality. Thus, in this section we work
without the function extensionality axiom. The proof consists of two
steps. First we show in Theorem 4.9.4 that the univalence axiom im-
plies a weak form of function extensionality, defined in Definition 4.9.1
below. The principle of weak function extensionality in turn implies the
usual function extensionality, and it does so without the univalence ax-
iom (Theorem 4.9.5).

Let U be a universe; we will explicitly indicate where we assume that
it is univalent.

Definition 4.9.1. The weak function extensionality principle asserts
that there is a function

(H isContr(P(x))) — isContr(I;I P(x))

x:A
for any family P : A — U of types over any type A.

The following lemma is easy to prove using function extensionality;
the point here is that it also follows from univalence without assuming
function extensionality separately.

Lemma 4.9.2. Assuming U is univalent, for any A, B, X : U andany e : A ~
B, there is an equivalence

(X = A)~ (X —B)

of which the underlying map is given by post-composition with the underlying
function of e.
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Proof. Asin the proof of Lemma 4.1.1, we may assume that e = idtoeqv(p)
for some p : A = B. Then by path induction, we may assume p is refl4,
so that e = id4. But in this case, post-composition with e is the identity,
hence an equivalence. O

Corollary 4.9.3. Let P : A — U be a family of contractible types, i.e.
[ ] isContr(P(x)).
x:A

Then the projection pry : (Y(y.a) P(x)) — A is an equivalence. Assuming
U is univalent, it follows immediately that post-composition with pry gives an
equivalence

@ (A—>ZP(x)) ~ (A — A).
x:A

Proof. By Lemma 4.8.1, for pry : ¥ (x.4) P(X) — A and x : A we have an
equivalence
fibpr, (x) =~ P(x).

Therefore pr; is an equivalence whenever each P(x) is contractible. The
assertion is now a consequence of Lemma 4.9.2. O

In particular, the homotopy fiber of the above equivalence at id4
is contractible. Therefore, we can show that univalence implies weak
function extensionality by showing that the dependent function type
[T(x:a) P(x) is a retract of fiby (id ).

Theorem 4.9.4. In a univalent universe U, suppose that P : A — U is a
family of contractible types and let a be the function of Corollary 4.9.3. Then
[T(x:a) P(x) is a retract of fiby(ida). As a consequence, T].a) P(x) is con-
tractible. In other words, the univalence axiom implies the weak function exten-
sionality principle.

Proof. Define the functions
@ ([TxayP(x)) — fibe(id4),
¢(f) = (Ax. (x, f(x)), reflig, ),
and
¢« fiby (ida) — [Txen) P(%),
(g, p) := Ax. happly(p, x), (pra(8(x)))-

Then ¢(¢(f)) = Ax. f(x), which is f, by the uniqueness principle for
dependent function types. O
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We now show that weak function extensionality implies the usual
function extensionality. Recall from (2.9.2) the function happly(f,g) :
(f = g) — (f ~ g) which converts equality of functions to homotopy.
In the proof that follows, the univalence axiom is not used.

Theorem 4.9.5. Weak function extensionality implies the function extension-
ality Axiom 2.9.3.

Proof. We want to show that

H H H isequiv(happly(f, g)).

U) (P:A=U) (f.811(x.a) P(x))

Since a fiberwise map induces an equivalence on total spaces if and only
if it is fiberwise an equivalence by Theorem 4.7.7, it suffices to show that
the function of type

Y f=9)- ¥ (~3

§T(x.n) P(x) & (xn) P(x)

induced by A(g: IT(x.a) P(x))- happly(f,g) is an equivalence. Since the
type on the left is contractible by Lemma 3.11.8, it suffices to show that
the type on the right:

) ]’[ flx (4.9.6)

(T1(x:a) P(x)) (x:A

is contractible. Now Theorem 2.15.7 says that this is equivalent to

I Z flx (4.9.7)

(x:4) (u:P(x))

The proof of Theorem 2.15.7 uses function extensionality, but only for
one of the composites. Thus, without assuming function extensionality,
we can conclude that (4.9.6) is a retract of (4.9.7). And (4.9.7) is a product
of contractible types, which is contractible by the weak function exten-
sionality principle; hence (4.9.6) is also contractible. O

Notes

The fact that the space of continuous maps equipped with quasi-inverses
has the wrong homotopy type to be the “space of homotopy equiva-
lences” is well-known in algebraic topology. In that context, the “space
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of homotopy equivalences” (A ~ B) is usually defined simply as the
subspace of the function space (A — B) consisting of the functions that
are homotopy equivalences. In type theory, this would correspond most
closely to .4 p)[lainv(f)||; see Exercise 3.8.

The first definition of equivalence given in homotopy type theory
was the one that we have called isContr(f), which was due to Voevod-
sky. The possibility of the other definitions was subsequently observed
by various people. The basic theorems about adjoint equivalences such
as Lemma 4.2.2 and Theorem 4.2.3 are adaptations of standard facts in
higher category theory and homotopy theory. Using bi-invertibility as a
definition of equivalences was suggested by André Joyal.

The properties of equivalences discussed in §§4.6 and 4.7 are well-
known in homotopy theory. Most of them were first proven in type the-
ory by Voevodsky.

The fact that every function is equivalent to a fibration is a stan-
dard fact in homotopy theory. The notion of object classifier in (oo, 1)-
category theory (the categorical analogue of Theorem 4.8.3) is due to
Rezk (see [Rez05, Lur(9]).

Finally, the fact that univalence implies function extensionality (§4.9)
is due to Voevodsky. Our proof is a simplification of his. Exercise 4.9 is
also due to Voevodsky.

Exercises

Exercise 4.1. Consider the type of “two-sided adjoint equivalence data”
forf: A— B,

DY )y

(§:B—A) (:gof~ida) (e:fogr~idp)

(HA £lrx) = e(f)) > (IT stev) = n(sw).
X y:

By Lemma 4.2.2, we know that if f is an equivalence, then this type is
inhabited. Give a characterization of this type analogous to Lemma 4.1.1.

Can you give an example showing that this type is not generally a
mere proposition? (This will be easier after Chapter 6.)

Exercise 4.2. Show that for any A, B : U, the following type is equivalent
to A ~ B.

) (H isContr (2 R(a,b))) X (H isContr(Z R(a, b)))

R:A—B—U a:A b:B b:B aA
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Can you extract from this a definition of a type satisfying the three desider-
ata of isequiv(f)?

Exercise 4.3. Reformulate the proof of Lemma 4.1.1 without using univa-
lence.

Exercise 4.4 (The unstable octahedral axiom). Suppose f : A — B and
g:B—Candb:B.

(i) Show that there is a natural map fibg.¢(g(b)) — fibg(g(b)) whose
fiber over (b, refly(;)) is equivalent to fibs(b).

(ii) Show that fibg,r(c) =~ L (wfibg (c)) fibs(priw).

Exercise 4.5. Prove that equivalences satisfy the 2-out-of-6 property: given
f:A—-Bandg:B —- Candh : C — D, if gof and ho g are
equivalences, so are f, g, i, and h o g o f. Use this to give a higher-level
proof of Theorem 2.11.1.

Exercise 4.6. For A, B : U, define

idtoginvy p : (A = B) — Z qinv(f)
f:A—B

by path induction in the obvious way. Let qinv-univalence denote the
modified form of the univalence axiom which asserts that forall A, B : U
the function idtoginv 4 5 has a quasi-inverse.

(i) Show that ginv-univalence can be used instead of univalence in the
proof of function extensionality in §4.9.
(ii) Show that ginv-univalence can be used instead of univalence in the
proof of Theorem 4.1.3.
(iii) Show that ginv-univalence is inconsistent (i.e. allows construction
of an inhabitant of 0). Thus, the use of a “good” version of isequiv
is essential in the statement of univalence.

Exercise 4.7. Show that a function f : A — B is an embedding if and only
if the following two conditions hold:

(i) f is left cancellable, i.e. for any x,y : A, if f(x) = f(y) then x = y.
(ii) For any x : A, the map aps : (A, x) — Q(B, f(x)) is an equiva-
lence.

(In particular, if A is a set, then f is an embedding if and only if it is left-
cancellable and Q)(B, f(x)) is contractible for all x : A.) Give examples to
show that neither of (i) or (ii) implies the other.
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Exercise 4.8. Show that the type of left-cancellable functions 2 — B (see
Exercise 4.7) is equivalent to Y, ,.p) (x # ). Give a similar explicit char-
acterization of the type of embeddings 2 — B.

Exercise 4.9. The naive non-dependent function extensionality axiom
says that for A,B: U and f,g : A — B there is a function ([T(y.4) f(x) =
g(x)) = (f = g). Modify the argument of §4.9 to show that this axiom
implies the full function extensionality axiom (Axiom 2.9.3).
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Chapter 5

Induction

In Chapter 1, we introduced many ways to form new types from old
ones. Except for (dependent) function types and universes, all these rules
are special cases of the general notion of inductive definition. In this chap-
ter we study inductive definitions more generally.

5.1 Introduction to inductive types

An inductive type X can be intuitively understood as a type “freely gener-
ated” by a certain finite collection of constructors, each of which is a func-
tion (of some number of arguments) with codomain X. This includes
functions of zero arguments, which are simply elements of X.

When describing a particular inductive type, we list the constructors
with bullets. For instance, the type 2 from §1.8 is inductively generated
by the following constructors:

e (0p:2
e 1,:2

Similarly, 1 is inductively generated by the constructor:
o x:1

while 0 is inductively generated by no constructors at all. An example
where the constructor functions take arguments is the coproduct A + B,
which is generated by the two constructors

e inl:A—A+B
e inr: B— A+ B.
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And an example with a constructor taking multiple arguments is the
cartesian product A x B, which is generated by one constructor

e (-,-):A—B— AxB.

Crucially, we also allow constructors of inductive types that take argu-
ments from the inductive type being defined. For instance, the type IN
of natural numbers has constructors

e 0:IN
e succ:IN — IN.

Another useful example is the type List(A) of finite lists of elements of
some type A, which has constructors

* nil : List(A)
e cons: A — List(A) — List(A).

Intuitively, we should understand an inductive type as being freely
generated by its constructors. That is, the elements of an inductive type
are exactly what can be obtained by starting from nothing and applying
the constructors repeatedly. (We will see in §5.8 and Chapter 6 that this
conception has to be modified slightly for more general kinds of induc-
tive definitions, but for now it is sufficient.) For instance, in the case of 2,
we should expect that the only elements are 0, and 1,. Similarly, in the
case of IN, we should expect that every element is either 0 or obtained by
applying succ to some “previously constructed” natural number.

Rather than assert properties such as this directly, however, we ex-
press them by means of an induction principle, also called a (dependent)
elimination rule. We have seen these principles already in Chapter 1. For
instance, the induction principle for 2 is:

* When proving a statement E : 2 — U/ about all inhabitants of 2, it
suffices to prove it for 0 and 1, i.e., to give proofs ¢y : E(02) and
e : E(lz)

Furthermore, the resulting proof ind(E, eg, €1) : I1(y:2) E(b) behaves
as expected when applied to the constructors 02 and 1,; this principle is
expressed by the computation rules:

e We have indy(E, g, e1,02) = eg.

* We have inda(E, e, e1,12) = e1.
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Thus, the induction principle for the type 2 of booleans allows us to
reason by case analysis. Since neither of the two constructors takes any
arguments, this is all we need for booleans.

For natural numbers, however, case analysis is generally not suffi-
cient: in the case corresponding to the inductive step succ(n), we also
want to presume that the statement being proven has already been shown
for n. This gives us the following induction principle:

¢ When proving a statement E : N — I/ about all natural numbers,
it suffices to prove it for 0 and for succ(n), assuming it holds for 1,
i.e,, we construct e : E(0) and es : T (,.n) E(n) — E(succ(n)).

As in the case of booleans, we also have the associated computation rules
for the function indn (E, ez, es) : [T(xny E(%):

e indn(E,ez,e5,0) =e,.

e indN(E, ez, es,succ(n)) = es(n,indn(E, ez, es,1)) for any n : IN.

The dependent function indy (E, ez, es) can thus be understood as being
defined recursively on the argument x : IN, via the functions e, and es
which we call the recurrences. When x is zero, the function simply re-
turns e,. When x is the successor of another natural number 7, the result
is obtained by taking the recurrence e; and substituting the specific pre-
decessor n and the recursive call value ind (E, e, €5, 1).

The induction principles for all the examples mentioned above share
this family resemblance. In §5.6 we will discuss a general notion of “in-
ductive definition” and how to derive an appropriate induction principle
for it, but first we investigate various commonalities between inductive
definitions.

For instance, we have remarked in every case in Chapter 1 that from
the induction principle we can derive a recursion principle in which the
codomain is a simple type (rather than a family). Both induction and
recursion principles may seem odd, since they yield only the existence of
a function without seeming to characterize it uniquely. However, in fact
the induction principle is strong enough also to prove its own unigueness
principle, as in the following theorem.

Theorem 5.1.1. Let f,g : [T E(x) be two functions which satisfy the
recurrences

e; : E(0) and e 1—11[\1 E(n) — E(succ(n))
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up to propositional equality, i.e., such that
f(0)=e, and g(0)=e;

as well as

1} f(succ(n)) = es(n, f(n)),
[T g(succ(n)) = es(n, g(n)).
n:IN

Then f and g are equal.

Proof. We use induction on the type family D(x) := f(x) = g(x). For
the base case, we have
f(0) = ez = g(0).

For the inductive case, assume 7 : IN such that f(n) = g(n). Then

f(suce(n)) = es(n, f(n)) = es(n,g(n)) = g(suce(n)).
The first and last equality follow from the assumptions on f and g. The
middle equality follows from the inductive hypothesis and the fact that
application preserves equality. This gives us pointwise equality between
f and g; invoking function extensionality finishes the proof. O

Note that the uniqueness principle applies even to functions that only
satisfy the recurrences up to propositional equality, i.e. a path. Of course,
the particular function obtained from the induction principle satisfies
these recurrences judgmentally; we will return to this point in §5.5. On
the other hand, the theorem itself only asserts a propositional equality
between functions (see also Exercise 5.2). From a homotopical viewpoint
it is natural to ask whether this path is coherent, i.e. whether the equality
f = g is unique up to higher paths; in §5.4 we will see that this is in fact
the case.

Of course, similar uniqueness theorems for functions can generally be
formulated and shown for other inductive types as well. In the next sec-
tion, we show how this uniqueness property, together with univalence,
implies that an inductive type such as the natural numbers is completely
characterized by its introduction, elimination, and computation rules.

5.2 Uniqueness of inductive types

We have defined “the” natural numbers to be a particular type IN with
particular inductive generators 0 and succ. However, by the general prin-
ciple of inductive definitions in type theory described in the previous
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section, there is nothing preventing us from defining another type in an
identical way. That is, suppose we let N’ be the inductive type generated
by the constructors

o 0/ :IN’
e succ : IN/ — IN'.

Then IN” will have identical-looking induction and recursion principles
to N. When proving a statement E : N’ — U/ for all of these “new”
natural numbers, it suffices to give the proofs ¢, : E(0) and

s: [ ] E(n) = E(succ(n)).

n:IN’

And the function recny (E, ez, €s) : [T(n:n) E(n) has the following compu-
tation rules:

e recn(E, ez,e5,0) = e,
e recn (E, ez, e5,succ’ (n)) = es(n, recny (E, ez, e5,n)) for any n : N’

But what is the relation between IN and IN'?

This is not just an academic question, since structures that “look like”
the natural numbers can be found in many other places. For instance, we
may identify natural numbers with lists over the type with one element
(this is arguably the oldest appearance, found on walls of caves), with the
non-negative integers, with subsets of the rationals and the reals, and so
on. And from a programming point of view, the “unary” representation
of our natural numbers is very inefficient, so we might prefer sometimes
to use a binary one instead. We would like to be able to identify all
of these versions of “the natural numbers” with each other, in order to
transfer constructions and results from one to another.

Of course, if two versions of the natural numbers satisfy identical
induction principles, then they have identical induced structure. For in-
stance, recall the example of the function double defined in §1.9. A similar
function for our new natural numbers is readily defined by duplication
and adding primes:

double’ := recpy (IN', 0/, An. Am.succ’ (succ’(m))).

Simple as this may seem, it has the obvious drawback of leading to a
proliferation of duplicates. Not only functions have to be duplicated,
but also all lemmas and their proofs. For example, an easy result such as
[T(n:n) double(suce(n)) = succ(succ(double(n1))), as well as its proof by
induction, also has to be “primed”.
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In traditional mathematics, one just proclaims that N and IN’ are ob-
viously “the same”, and can be substituted for each other whenever the
need arises. This is usually unproblematic, but it sweeps a fair amount
under the rug, widening the gap between informal mathematics and its
precise description. In homotopy type theory, we can do better.

First observe that we have the following definable maps:

e f:=recn(N/, 0/, An.succ’) : N — IN/,
e ¢:=recpy(N, 0, An.succ) : N’ — IN.

Since the composition of ¢ and f satisfies the same recurrences as the
identity function on IN, Theorem 5.1.1 gives that [],.) g(f(n)) = n,
and the “primed” version of the same theorem gives [(,.n) f(g(1)) =
n. Thus, f and g are quasi-inverses, so that N ~ IN’. We can now transfer
functions on IN directly to functions on IN’ (and vice versa) along this
equivalence, e.g.

double’ := An. f(double(g(n))).

It is an easy exercise to show that this version of double’ is equal to the
earlier one.

Of course, there is nothing surprising about this; such an isomor-
phism is exactly how a mathematician will envision “identifying” IN
with IN’. However, the mechanism of “transfer” across an isomorphism
depends on the thing being transferred; it is not always as simple as pre-
and post-composing a single function with f and g. Consider, for in-
stance, a simple lemma such as

[ double’ (succ’ (1)) = succ’ (succ’ (double’ (n))).
n:IN/

Inserting the correct fs and gs is only a little easier than re-proving it by
induction on n : IN' directly.

Here is where the univalence axiom steps in: since IN =~ IN’, we also
have N =;; IN/, i.e. N and IN’ are equal as types. Now the induction
principle for identity guarantees that any construction or proof relating
to IN can automatically be transferred to IN in the same way. We simply
consider the type of the function or theorem as a type-indexed family
of types P : U — U, with the given object being an element of P(IN),
and transport along the path N = IN’. This involves considerably less
overhead.

For simplicity, we have described this method in the case of two types
IN and IN’ with identical-looking definitions. However, a more common
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situation in practice is when the definitions are not literally identical,
but nevertheless one induction principle implies the other. Consider, for
instance, the type of lists from a one-element type, List(1), which is gen-
erated by

e an element nil : List(1), and
e a function cons : 1 x List(1) — List(1).

This is not identical to the definition of IN, and it does not give rise
to an identical induction principle. The induction principle of List(1)
says that for any E : List(1) — U together with recurrence data e :
E(nil) and econs : TT(u1) [T(eList(1)) E(€) — E(cons(u, ()), there exists f :
[TeList(1)) E(£) such that f (nil) = ey and f(cons(u, £)) = econs(u, £, f(£)).
(We will see how to derive the induction principle of an inductive defi-
nition in §5.6.)

Now suppose we define 0" := nil : List(1), and succ” : List(1) —
List(1) by succ” (¢) := cons(x, £). Then for any E : List(1) — U together
with e : E(0") and es : TT(s.List(1)) E(£) — E(succ”(£)), we can define

enil ‘= €
econs(*, £, %) :=es(¢, x).

(In the definition of econs we use the induction principle of 1 to assume
that u is x.) Now we can apply the induction principle of List(1), obtain-
ing f : T1(sList(1)) E(£) such that

f(0") = fnil) = enit = e
f(succ”(€)) = f(cons(x,£)) = econs(*, £, f(£)) = es(£, f(£)).

Thus, List(1) satisfies the same induction principle as IN, and hence (by
the same arguments above) is equal to it.

Finally, these conclusions are not confined to the natural numbers:
they apply to any inductive type. If we have an inductively defined type
W, say, and some other type W’ which satisfies the same induction prin-
ciple as W, then it follows that W ~ W', and hence W = W'. We use the
derived recursion principles for W and W’ to construct maps W — W’
and W' — W, respectively, and then the induction principles for each to
prove that both composites are equal to identities. For instance, in Chap-
ter 1 we saw that the coproduct A + B could also have been defined as
Y(x2) rec2(U, A, B, x). The latter type satisfies the same induction princi-
ple as the former; hence they are canonically equivalent.
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This is, of course, very similar to the familiar fact in category theory
that if two objects have the same universal property, then they are equiva-
lent. In §5.4 we will see that inductive types actually do have a universal
property, so that this is a manifestation of that general principle.

53 W-types

Inductive types are very general, which is excellent for their usefulness
and applicability, but makes them difficult to study as a whole. For-
tunately, they can all be formally reduced to a few special cases. It is
beyond the scope of this book to discuss this reduction — which is any-
way irrelevant to the mathematician using type theory in practice — but
we will take a little time to discuss one of the basic special cases that
we have not yet met. These are Martin-Lof’s W-types, also known as the
types of well-founded trees. W-types are a generalization of such types as
natural numbers, lists, and binary trees, which are sufficiently general to
encapsulate the “recursion” aspect of any inductive type.

A particular W-type is specified by giving two parameters A : I and
B : A — U, in which case the resulting W-type is written W(,.4)B(a).
The type A represents the type of labels for W ,.4)B(a), which function
as constructors (however, we reserve that word for the actual functions
which arise in inductive definitions). For instance, when defining natural
numbers as a W-type, the type A would be the type 2 inhabited by the
two elements 0, and 1,, since there are precisely two ways to obtain a
natural number — either it will be zero or a successor of another natural
number.

The type family B : A — U is used to record the arity of labels:
a label a : A will take a family of inductive arguments, indexed over
B(a). We can therefore think of the “B(a)-many” arguments of a. These
arguments are represented by a function f : B(a) — W,.4)B(a), with
the understanding that for any b : B(a), f(b) is the “b-th” argument to
the label a. The W-type W ,.4)B(a) can thus be thought of as the type of
well-founded trees, where nodes are labeled by elements of A and each
node labeled by a : A has B(a)-many branches.

In the case of natural numbers, the label 0; has arity 0, since it con-
structs the constant zero; the label 1, has arity 1, since it constructs the
successor of its argument. We can capture this by using simple elimina-
tion on 2 to define a function recy (4, 0,1) into a universe of types; this
function returns the empty type 0 for 0, and the unit type 1 for 1,. We
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can thus define
N := Wpp)reca (U, 0,1, D)

where the superscript w serves to distinguish this version of natural
numbers from the previously used one. Similarly, we can define the type
of lists over A as a W-type with 1+ A many labels: one nullary label
for the empty list, plus one unary label for each a : A, corresponding to
appending a to the head of a list:

List(A) := W(yq4a)recisa(U, 0, Aa.1, x).

In general, the W-type W(,.4)B(x) specified by A : i/ and B: A — U is
the inductive type generated by the following constructor:

* sup: TTet) (B(8) = Wiae) B(x) ) = Wi B().

The constructor sup (short for supremum) takes a label a : A and a func-
tion f : B(a) — W(,.4)B(x) representing the arguments to a, and con-
structs a new element of W(x.a)B (x). Using our previous encoding of
natural numbers as W-types, we can for instance define

0% :=sup(02, Ax.reco(NY,x)).

Put differently, we use the label 05 to construct 0W. Then, recy(U4,0,1,0,)
evaluates to 0, as it should since 0, is a nullary label. Thus, we need to
construct a function f : 0 — NW, which represents the (zero) arguments
supplied to 0. This is of course trivial, using simple elimination on 0 as
shown. Similarly, we can define 1" and a successor function succ™

1V := sup(12, Ax.0%)
succ® := An.sup(la, Ax.n).

We have the following induction principle for W-types:

* When proving a statement E : (W,.4)B(x)) — U about all ele-
ments of the W-type W(,.»)B(x), it suffices to prove it for sup(a, f),
assuming it holds for all f(b) with b : B(a). In other words, it suf-
fices to give a proof

eI I [T  E(uwplaf)

(a:A) (f:B(a) =W (2:0)B(x)) (§:T1(1:(a)) E(f(D)))
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The variable g represents our inductive hypothesis, namely that all
arguments of a satisfy E. To state this, we quantify over all elements of
type B(a), since each b : B(a) corresponds to one argument f(b) of a.

How would we define the function double on natural numbers en-
coded as a W-type? We would like to use the recursion principle of N%
with a codomain of NV itself. We thus need to construct a suitable func-
tion

TT T 1 N
(a:2) (f:B(a)—»NW) (g:B(a)—NW)
which will represent the recurrence for the double function; for simplicity
we denote the type family recy (U4, 0,1) by B.

Clearly, e will be a function taking a : 2 as its first argument. The next
step is to perform case analysis on a and proceed based on whether it is
0z or 15. This suggests the following form

e = Aa.ind2(C,eg,e1,4a)

where
C:= \a. 11 I NY.
(f:B(a)—NW) (g:B(a)—»NW)
If a is 0z, the type B(a) becomes 0. Thus, given f : 0 — N% and g :
0 — NVY, we want to construct an element of N¥. Since the label 0,
represents 0, it needs zero inductive arguments and the variables f and
g are irrelevant. We return 0% as a result:

eg = Af.Ag.0.

Analogously, if a is 15, the type B(a) becomes 1. Since the label 1, rep-
resents the successor operator, it needs one inductive argument — the
predecessor — which is represented by the variable f : 1 — NW. The
value of the recursive call on the predecessor is represented by the vari-
able ¢ : 1 — NW. Thus, taking this value (namely g(x)) and applying the
successor function twice thus yields the desired result:

e1:= Af.Ag.succ® (succ™ (g(%))).
Putting this together, we thus have
double := recyw (NY, ¢)

with e as defined above.
The associated computation rule for the function recyy, () B(®) (E,e) :

TT (W) B(x)) E(w) is as follows.
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* Foranya: Aand f: B(a) = W(,.4)B(x) we have
recW(x:A)B(x)(E,e,sup(a,f)) =e(a, f, (Ab. recW(x:A)B(x)(E, e, f(b)))).

In other words, the function reCW . 1) B(x) (E, e) satisfies the recurrence e.

By the above computation rule, the function double behaves as ex-
pected:

double(0%) = recnw (N, ¢, sup(02, Ax.reco(NY,x)))

(02, (Ax.reco(N", x)), (Ax. double(reco (N™, x))))
eo((Ax.reco(N™, x)), (Ax. double(reco (N%, x))))
=%

and

double(1%) = recyw (NY, ¢,sup(12, Ax.0%))

e(12, (Ax.0%), (Ax. double(0")))
e1((Ax.0"), (Ax. double(0")))
(
(

= succ® (succ® ((Ax. double(0%))(%)))

= succ® (succ™ (0%))

and so on.
Just as for natural numbers, we can prove a uniqueness theorem for
W-types:

Theorem 5.3.1. Let g, h : T (s () B(X)) E(w) be two functions which satisfy
the recurrence

e:TT( T E(f(8))) = E(sup(a, £),

af “b:B(a)

propositionally, i.e., such that

]_f[ 8(sup(a, f)) = e(a, f,Ab.g(f(D))),

[T (s /) = (o, A0 h(FED)

Then g and h are equal.
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5.4 Inductive types are initial algebras

As suggested earlier, inductive types also have a category-theoretic uni-
versal property. They are homotopy-initial algebras: initial objects (up to
coherent homotopy) in a category of “algebras” determined by the spec-
ified constructors. As a simple example, consider the natural numbers.
The appropriate sort of “algebra” here is a type equipped with the same
structure that the constructors of IN give to it.

Definition 5.4.1. A IN-algebra is a type C with two elements ¢y : C,
¢s : C = C. The type of such algebras is

NAlg:= )" Cx (C—C).
cu
Definition 5.4.2. A N-homomorphism between IN-algebras (C, ¢, cs)
and (D, dg, ds) isa function : C — D such thath(cy) = dgand h(cs(c)) =
ds(h(c)) forall ¢ : C. The type of such homomorphisms is

lNHom((C, Co, CS), (D,do, ds)) =
Y. (h(co) = do) x T(ec)(hlcs(c)) = ds(h(c))).

(h:C—D)

We thus have a category of IN-algebras and IN-homomorphisms, and
the claim is that IN is the initial object of this category. A category theo-
rist will immediately recognize this as the definition of a natural numbers
object in a category.

Of course, since our types behave like co-groupoids, we actually have
an (oo, 1)-category of IN-algebras, and we should ask IN to be initial in the
appropriate (oo, 1)-categorical sense. Fortunately, we can formulate this
without needing to define (oo, 1)-categories.

Definition 5.4.3. A IN-algebra I is called homotopy-initial, or h-initial
for short, if for any other IN-algebra C, the type of IN-homomorphisms
from I to C is contractible. Thus,

isHinitn (1) ;== [ isContr(NHom(I,C)).
C:NAlg

When they exist, h-initial algebras are unique — not just up to iso-
morphism, as usual in category theory, but up to equality, by the univa-
lence axiom.

Theorem 5.4.4. Any two h-initial IN-algebras are equal. Thus, the type of
h-initial IN-algebras is a mere proposition.
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Proof. Suppose I and | are h-initial IN-algebras. Then NHom(1, J) is con-
tractible, hence inhabited by some IN-homomorphism f : I — ], and
likewise we have an IN-homomorphism g : | — I. Now the composite
g o f is a N-homomorphism from I to I, as is id;; but NHom(I, I) is con-
tractible, so g o f = id;. Similarly, f o ¢ = id;. Hence I ~ J,and so I = J.
Since being contractible is a mere proposition and dependent products
preserve mere propositions, it follows that being h-initial is itself a mere
proposition. Thus any two proofs that I (or J) is h-initial are necessarily
equal, which finishes the proof. O

We now have the following theorem.
Theorem 5.4.5. The IN-algebra (IN, 0, succ) is homotopy initial.

Sketch of proof. Fix an arbitrary IN-algebra (C, cy, ¢s). The recursion prin-
ciple of IN yields a function f : N — C defined by

f(0) :=co
f(suce(n)) == cs(f(n)).

These two equalities make f an IN-homomorphism, which we can take
as the center of contraction for NHom(IN, C). The uniqueness theorem
(Theorem 5.1.1) then implies that any other N-homomorphism is equal
to f. O

To place this in a more general context, it is useful to consider the
notion of algebra for an endofunctor. Note that to make a type C into a
IN-algebra is the same as to give a function ¢ : C+1 — C, and a function
f : C — D is a N-homomorphism just when foc ~ do (f+1). In
categorical language, this means the IN-algebras are the algebras for the
endofunctor F(X) := X + 1 of the category of types.

For a more generic case, consider the W-type associated to A : U and
B : A — U. In this case we have an associated polynomial functor:

P(X) =Y (B(x) = X). (5.4.6)
x:A
Actually, this assignment is functorial only up to homotopy, but this
makes no difference in what follows. By definition, a P-algebra is then a
type C equipped with a function s¢ : PC — C. By the universal property
of Z-types, this is equivalent to giving a function [](,.4)(B(a) — C) — C.
We will also call such objects W-algebras for A and B, and we write

WAIg(A,B) := ) H ) — C.
(CU) (a:A)
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Similarly, for P-algebras (C,sc) and (D,sp), a homomorphism be-
tween them (f,sf) : (C,sc) — (D, sp) consists of a function f : C — D
and a homotopy between maps PC — D

sf: fosc =spoPf,

where Pf : PC — PD is the result of the easily-definable action of P
on f : C — D. Such an algebra homomorphism can be represented
suggestively in the form:

pf
PC —— PD

i
In terms of elements, f is a P-homomorphism (or W-homomorphism) if

f(sc(a,h)) =sp(a, foh).
We have the type of W-homomorphisms:

WHomu 5((C,sc), (D,sp)):= Y, [I TI flsclah))=spla,f

(f:C—D) (a:A) (h:B(a)—C)

Finally, a P-algebra (C,sc) is said to be homotopy-initial if for ev-
ery P-algebra (D, sp), the type of all algebra homomorphisms (C,sc) —
(D, sp) is contractible. That is,

isHinitw (A, B,I):=  []  isContr(WHomy4 (I, C)).
C:WAIg(A,B)

Now the analogous theorem to Theorem 5.4.5 is:

Theorem 5.4.7. For any type A : U and type family B : A — U, the W-
algebra (W . 4)B(x), sup) is h-initial.

Sketch of proof. Suppose we have A : U and B : A — U, and consider
the associated polynomial functor P(X) := Y (y.4)(B(x) = X). Let W :=
Wi, A)B(x). Then using the W-introduction rule from §5.3, we have a
structure map sy := sup : PW — W. We want to show that the algebra
(W, sw) is h-initial. So, let us consider another algebra (C, s¢) and show
that the type T := WHom 4 g((W,sw), (C,sc)) of W-homomorphisms
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from (W,sw) to (C,sc) is contractible. To do so, observe that the W-
elimination rule and the W-computation rule allow us to define a W-
homomorphism (f,sf) : (W,sw) — (C,sc), thus showing that T is in-
habited. It is furthermore necessary to show that for every W-homomor-
phism (g,s¢) : (W,sw) — (C,sc), there is an identity proof

p:(frsf) = (8 5g) (5.4.8)

This uses the fact that, in general, a type of the form (f,ss) = (g,s¢) is
equivalent to the type of what we call algebra 2-cells from f to g, whose
canonical elements are pairs of the form (e,s.), where e : f = ¢ and s,
is a higher identity proof between the identity proofs represented by the
following pasting diagrams:

Pg Pg
T R
PW pe PC PW PC
~___A 5
o[ e W]
Sf /—\
W C W e C
~_ " ~_ "
f f

In light of this fact, to prove that there exists an element as in (5.4.8),
it is sufficient to show that there is an algebra 2-cell (e, s,) from f to g.
The identity proof e : f = g is now constructed by function extension-
ality and W-elimination so as to guarantee the existence of the required
identity proof s,. O

5.5 Homotopy-inductive types
In §5.3 we showed how to encode natural numbers as W-types, with

Nw = W(b:z) recp (L{, 0, 1, b),
0% := sup(0g, (Ax.recog(NY, x))),
succ® := An.sup(1p, (Ax.n)).

We also showed how one can define a double function on N% using the
recursion principle. When it comes to the induction principle, however,
this encoding is no longer satisfactory: given E : N¥ — If and recur-
rences e; : E(0%) and es : [](,.nw) E(n) — E(succ™(n)), we can only
construct a dependent function r(E, ez, es) : IT(,.nw) E(n) satisfying the
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given recurrences propositionally, i.e. up to a path. This means that the
computation rules for natural numbers, which give judgmental equali-
ties, cannot be derived from the rules for W-types in any obvious way.
This problem goes away if instead of the conventional inductive types
we consider homotopy-inductive types, where all computation rules are
stated up to a path, i.e. the symbol = is replaced by =. For instance,
the computation rule for the homotopy version of W-types W" becomes:

e Foranya:Aand f:B(a) — W?X:A)B(x) we have

ey ooy (E-e,sup(a £)) = e(a, f, (Abrecyy g (E,F(0))))

Homotopy-inductive types have an obvious disadvantage when it
comes to computational properties — the behavior of any function con-
structed using the induction principle can now only be characterized
propositionally. But numerous other considerations drive us to consider
homotopy-inductive types as well. For instance, while we showed in
§5.4 that inductive types are homotopy-initial algebras, not every homotopy-
initial algebra is an inductive type (i.e. satisfies the corresponding in-
duction principle) — but every homotopy-initial algebra is a homotopy-
inductive type. Similarly, we might want to apply the uniqueness ar-
gument from §5.2 when one (or both) of the types involved is only a
homotopy-inductive type — for instance, to show that the W-type en-
coding of IN is equivalent to the usual IN.

Additionally, the notion of a homotopy-inductive type is now inter-
nal to the type theory. For example, this means we can form a type of all
natural numbers objects and make assertions about it. In the case of W-
types, we can characterize a homotopy W-type W,. A)B(x) as any type
endowed with a supremum function and an induction principle satisfy-
ing the appropriate (propositional) computation rule:

W,(AB):= Y Y I1

(W:U) (sup:I(s)(B(a)=W)—=W) (EW—U)

I1

(€I T(a,f) TTp:5(a)) E(F(0)))=E(sup(a,f))) (ind:TT(ww) E(w)) (a.f)
ind(sup(a, f)) = e(a, Ab.ind(f(b))).

In Chapter 6 we will see some other reasons why propositional compu-
tation rules are worth considering.
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In this section, we will state some basic facts about homotopy-inductive
types. We omit most of the proofs, which are somewhat technical.

Theorem 5.5.1. Forany A : U and B : A — U, the type W, (A, B) is a mere

proposition.

It turns out that there is an equivalent characterization of W-types
using a recursion principle, plus certain uniqueness and coherence laws.
First we give the recursion principle:

e When constructing a function from the W-type Wé’x: A B(x) into the

type C, it suffices to give its value for sup(a, f), assuming we are
given the values of all f(b) with b : B(a). In other words, it suffices
to construct a function

c:[J(B(a) = C)—C.
a:A

The associated computation rule for recw? B() (C ) (W(a)B(x)) =
x:A

C is as follows:

e Foranya : Aand f : B(a) — Wé’x:A)B(x) we have a witness
B(C,c,a, f) for equality

recyy B(x)(C, c,sup(a, f)) = c(a, Ab. recyyi B(x)(C, ¢, f(b))).

(x:A) (x:4)

Furthermore, we assert the following uniqueness principle, saying
that any two functions defined by the same recurrence are equal:

e Let C: U and ¢ : [(z:4)(B(a) = C) — C be given. Let g,h :
(W’Zx: A) B(x)) — C be two functions which satisfy the recurrence ¢
up to propositional equality, i.e., such that we have

Pg: I—JI 8(sup(a, f)) = c(a,Ab.g(f(b))),
B : ]—f[ h(sup(a, f)) = c(a,Ab.h(f(D)))-

Then g and / are equal, i.e. thereis a(C, c, f, g, B¢, i) of type g = h.

Recall that when we have an induction principle rather than only a
recursion principle, this propositional uniqueness principle is derivable
(Theorem 5.3.1). But with only recursion, the uniqueness principle is no
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longer derivable — and in fact, the statement is not even true (exercise).
Hence, we postulate it as an axiom. We also postulate the following
coherence law, which tells us how the proof of uniqueness behaves on
canonical elements:

e Foranya: Aand f : B(a) — C, the following diagram commutes
propositionally:
P
8(sup(a, f)) —— c(a, Ab.g(f(b)))
ﬂ(sup(a,f))l Jc(ﬂ,—)(funext(?\bJX(f(b))))
h(sup(a, f)) — c(a,Ab.h(f(b)))

where « abbreviates the path «(C,c, f,g, B¢, By) : § = h-

Putting all of this data together yields another characterization of
W(y.4)B(x), as a type with a supremum function, satisfying simple elim-
ination, computation, uniqueness, and coherence rules:

W,(A,B) :=
(WU) (supTT(a)(B(a) = W)—W) (CU) (eTT(q)(B(a)—+C)—C)

(rec:W—C) (B[ 1(s,f) rec(sup(a,f))=c(a,Ab.rec(f(b))))

[T II [1

(§W—=C) (W—=C) (Bg:I1(ay) 8(sup(a,f))=c(aAb.g(f(b))))

(Buill(a,p) h(sup(a,f))=c(a,Ab. k(£ (b)))) (:Tlgw:w)g(w)=h(w)) (a,f)
a(sup(a, f))=Bn = B c(a, —)(funext Ab.a(f(D)))

Theorem 5.5.2. Forany A : U and B : A — U, the type W,(A, B) is a mere
proposition.
Finally, we have a third, very concise characterization of W,. A)B(x)

as an h-initial W-algebra:

Wy (A,B):= ) isHinitw(A,B,I).
I:WAIg(A,B)

Theorem 5.5.3. Forany A : U and B : A — U, the type W),(A, B) is a mere
proposition.
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It turns out all three characterizations of W-types are in fact equiva-
lent:

Lemma 5.5.4. Forany A :U and B : A — U, we have
W, (A, B) >~ W, (A, B) ~ Wy(A, B)

Indeed, we have the following theorem, which is an improvement
over Theorem 5.4.7:

Theorem 5.5.5. The types satisfying the formation, introduction, elimination,
and propositional computation rules for W-types are precisely the homotopy-
initial W-algebras.

Sketch of proof. Inspecting the proof of Theorem 5.4.7, we see that only
the propositional computation rule was required to establish the h-initiality
of W(,.4)B(x). For the converse implication, let us assume that the poly-
nomial functor associated to A : U and B : A — U, has an h-initial alge-
bra (W, sy ); we show that W satisfies the propositional rules of W-types.
The W-introduction rule is simple; namely, fora : Aand ¢ : B(a) - W,
we define sup(a,t) : W to be the result of applying the structure map
sw : PW — W to (a,t) : PW. For the W-elimination rule, let us as-
sume its premisses and in particular that C' : W — U. Using the other
premisses, one shows that the type C := Y,y C'(w) can be equipped
with a structure map s¢ : PC — C. By the h-initiality of W, we obtain
an algebra homomorphism (f,ss) : (W,sw) — (C,sc). Furthermore,
the first projection pry : C — W can be equipped with the structure of a
homomorphism, so that we obtain a diagram of the form

Pf Ppry

But the identity function 1y : W — W has a canonical structure of an
algebra homomorphism and so, by the contractibility of the type of ho-
momorphisms from (W, sy ) to itself, there must be an identity proof
between the composite of (f,s¢) with (pry, spr,) and (1, s1,,). This im-
plies, in particular, that there is an identity proof p : pry o f = 1yy.

Since (prp o f)w : C((pry © f)w), we can define

rec(w,c) := p« ((prpo fw) : C(w)
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where the transport p . is with respect to the family
A.Cou:(W—-W)—->W = U.

The verification of the propositional W-computation rule is a calculation,
involving the naturality properties of operations of the form p .. O

Finally, as desired, we can encode homotopy-natural-numbers as homo-
topy-W-types:

Theorem 5.5.6. The rules for natural numbers with propositional computation
rules can be derived from the rules for W-types with propositional computation
rules.

5.6 The general syntax of inductive definitions

So far, we have been discussing only particular inductive types: 0, 1, 2,
IN, coproducts, products, Z-types, W-types, etc. However, an important
aspect of type theory is the ability to define new inductive types, rather
than being restricted only to some particular fixed list of them. In order
to be able to do this, however, we need to know what sorts of “inductive
definitions” are valid or reasonable.

To see that not everything which “looks like an inductive definition”
makes sense, consider the following “constructor” of a type C:

e ¢:(C—-N)—C.

The recursion principle for such a type C ought to say that given a type P,
in order to construct a function f : C — P, it suffices to consider the case
when the input ¢ : C is of the form g(«) for some a : C — IN. Moreover,
we would expect to be able to use the “recursive data” of f applied to «
in some way. However, it is not at all clear how to “apply f to a”, since
both are functions with domain C.

We could write down a “recursion principle” for C by just supposing
(unjustifiably) that there is some way to apply f to a and obtain a func-
tion P — IN. Then the input to the recursion rule would ask for a type P
together with a function

h:(C—N)—=(P—-N)—>P (5.6.1)

where the two arguments of /1 are a and “the result of applying f to a”.
However, what would the computation rule for the resulting function
f : C — P be? Looking at other computation rules, we would expect
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something like “f(g(a)) = h(a, f(x))” for « : C — NN, but as we have
seen, “f(x)” does not make sense. The induction principle of C is even
more problematic; it’s not even clear how to write down the hypotheses.

On the other hand, we could write down a different “recursion prin-
ciple” for C by ignoring the “recursive” presence of C in the domain
of «, considering it as merely an indexing type for a family of natural
numbers. In this case the input would ask for a type P together with a
function

h:(C—N)—P,

so the type of the recursion principle would be recc : []py((C —
IN) - P) — C — P, and similarly for the induction principle. Now it
is possible to write down a computation rule, namely recc (P, h, g(a)) =
h(«). However, the existence of a type C with this recursor and computa-
tion rule turns out to be inconsistent. See Exercises 5.7 to 5.10 for proofs
of this and other variations.

This example suggests one restriction on inductive definitions: the
domains of all the constructors must be covariant functors of the type be-
ing defined, so that we can “apply f to them” to get the result of the
“recursive call”. In other words, if we replace all occurrences of the type
being defined with a variable X : i/, then each domain of a construc-
tor must be an expression that can be made into a covariant functor of
X. This is the case for all the examples we have considered so far. For
instance, with the constructor inl : A — A + B, the relevant functor is
constant at A (i.e. X — A), while for the constructor succ : N — IN, the
functor is the identity functor (X — X).

However, this necessary condition is also not sufficient. Covariance
prevents the inductive type from occurring on the left of a single func-
tion type, as in the argument C — IN of the “constructor” g considered
above, since this yields a contravariant functor rather than a covariant
one. However, since the composite of two contravariant functors is co-
variant, double function types such as ((X — IN) — IN) are once again
covariant. This enables us to reproduce Cantorian-style paradoxes.

For instance, consider an “inductive type” D with the following con-
structor:

® k:((D — Prop) — Prop) — D.
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Assuming such a type exists, we define functions

r:D — (D — Prop) — Prop,
f:(D — Prop) — D,
p: (D — Prop) — (D — Prop) — Prop,

by
r(k(9)) =6,
f(0) :==k(Ax. (x =9)),
p(6) := Ax.8(f(x)).

Here r is defined by the recursion principle of D, while f and p are de-
fined explicitly. Then for any ¢ : D — Prop, we have r(f(6)) = Ax. (x =
J).

In particular, therefore, if f(5) = f(6'), then we have a path s :
(Ax.(x = 6)) = (Ax.(x = &")). Thus, happly(s,d) : (6 =6) = (6 =),
and so in particular 6 = ¢’ holds. Hence, f is “injective” (although a pri-
ori D may not be a set). This already sounds suspicious — we have an
“injection” of the “power set” of D into D — and with a little more work
we can massage it into a contradiction.

Suppose given 6 : (D — Prop) — Prop, and define é : D — Prop by

5(d) := 3(y: D — Prop). (f(y) =d) x 0(y). (5.6.2)

We claim that p(6) = 6. By function extensionality, it suffices to show
p(6)(7) =prop 8(7) for any 7y : D — Prop. And by univalence, for this it
suffices to show that each implies the other. Now by definition of p, we
have

f(r) x6(7).

Clearly this holds if 6(7y), since we may take 9/ := <. On the other
hand, if we have 7/ with f(9') = f() and 6(7), then 7/ = +y since f is
injective, hence also 0(7y).

This completes the proof that p(6) = 6. Thus, every element 6 :
(D — Prop) — Prop is the image under p of some element é : D — Prop.
However, if we define 6 by a classic diagonalization:

Il
W >
2
i
1
o
=X
o
Z
=
\e\
Il

0(7y) := —p(y)(y) forally:D — Prop
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then from 6 = p(6) we deduce p(d)(6) = —p(d)(6). This is a contra-
diction: no proposition can be equivalent to its negation. (Supposing
P < =P, if P, then —P, and so 0; hence —P, but then P, and so0 0.)

Remark 5.6.3. There is a question of universe size to be addressed. In gen-
eral, an inductive type must live in a universe that already contains all
the types going into its definition. Thus if in the definition of D, the am-
biguous notation Prop means Prop;;, then we do not have D : I/ but only
D : U’ for some larger universe U’ with U : U'. In a predicative theory,
therefore, the right-hand side of (5.6.2) lives in Propy, not Prop;,. So this
contradiction does require the propositional resizing axiom mentioned
in §3.5.

This counterexample suggests that we should ban an inductive type
from ever appearing on the left of an arrow in the domain of its construc-
tors, even if that appearance is nested in other arrows so as to eventually
become covariant. (Similarly, we also forbid it from appearing in the do-
main of a dependent function type.) This restriction is called strict pos-
itivity (ordinary “positivity” being essentially covariance), and it turns
out to suffice.

In conclusion, therefore, a valid inductive definition of a type W con-
sists of a list of constructors. Each constructor is assigned a type that is
a function type taking some number (possibly zero) of inputs (possibly
dependent on one another) and returning an element of W. Finally, we
allow W itself to occur in the input types of its constructors, but only
strictly positively. This essentially means that each argument of a con-
structor is either a type not involving W, or some iterated function type
with codomain W. For instance, the following is a valid constructor type:

c:(A->W)-»(B—->C—->W)=>D—->W-—=>W. (5.6.4)

All of these function types can also be dependent functions (II-types).!
Note we require that an inductive definition is given by a finite list
of constructors. This is simply because we have to write it down on the
page. If we want an inductive type which behaves as if it has an infinite
number of constructors, we can simply parametrize one constructor by
some infinite type. For instance, a constructor suchas N — W — W can
be thought of as equivalent to countably many constructors of the form

n the language of §5.4, the condition of strict positivity ensures that the relevant end-
ofunctor is polynomial. It is well-known in category theory that not all endofunctors can
have initial algebras; restricting to polynomial functors ensures consistency. One can con-
sider various relaxations of this condition, but in this book we will restrict ourselves to
strict positivity as defined here.
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W — W. (Of course, the infinity is now internal to the type theory, but
this is as it should be for any foundational system.) Similarly, if we want
a constructor that takes “infinitely many arguments”, we can allow it to
take a family of arguments parametrized by some infinite type, such as
(N — W) — W which takes an infinite sequence of elements of W.
Now, once we have such an inductive definition, what can we do
with it? Firstly, there is a recursion principle stating that in order to
define a function f : W — P, it suffices to consider the case when the
input w : W arises from one of the constructors, allowing ourselves to
recursively call f on the inputs to that constructor. For the example con-
structor (5.6.4), we would require P to be equipped with a function of

type

d:(A->W)—-(A—=-P)-B—=-C—-W)—
(B-C—P)—»D—W-—=P—P. (565)

Under these hypotheses, the recursion principle yields f : W — P, which
moreover “preserves the constructor data” in the evident way — this is
the computation rule, where we use covariance of the inputs. For in-
stance, in the example (5.6.4), the computation rule says that for any
x:A—=-W,:B—-C—W,0:D,and w: W, we have

f(c(a,B,6,0)) = d(a, fou, B, fo B0, f(@).  (566)

The induction principle for a general inductive type W is only a little
more complicated. Of course, we start with a type family P : W — U,
which we require to be equipped with constructor data “lying over” the
constructor data of W. That means the “recursive call” arguments such
as A — P above must be replaced by dependent functions with types
such as [](;:4) P(a(a)). In the full example of (5.6.4), the corresponding
hypothesis for the induction principle would require

d: TT (ITPw@))—

wA—-W “a:A

I[1 P(w)— Pc(a,B,6,w)). (5.67)

The corresponding computation rule looks identical to (5.6.6). Of course,
the recursion principle is the special case of the induction principle where
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P is a constant family. As we have mentioned before, the induction prin-
ciple is also called the eliminator, and the recursion principle the non-
dependent eliminator.

As discussed in §1.10, we also allow ourselves to invoke the induc-
tion and recursion principles implicitly, writing a definitional equation
with := for each expression that would be the hypotheses of the induc-
tion principle. This is called giving a definition by (dependent) pat-
tern matching. In our running example, this means we could define
[ Tww) P(w) by

fle(a, B,6,w)) :=---
wherea: A - Wand f: B — C — WandJ: Dand w : W are variables
that are bound in the right-hand side. Moreover, the right-hand side may
involve recursive calls to f of the form f(a(a)), f(B(b,c)), and f(w).
When this definition is repackaged in terms of the induction principle,
we replace such recursive calls by &(a), B(b,c), and @, respectively, for
new variables

a: 1;1 P(a(a))
B 1T IT P(B(bc))
(b:B) (c:C)

: P(w).

I

Then we could write
f:=indw(P, )\zx.)\&.)\ﬁ.)\ﬁ.)td. Aw. A@. -+ )

where the second argument to indyy has the type of (5.6.7).

We will not attempt to give a formal presentation of the grammar
of a valid inductive definition and its resulting induction and recursion
principles and pattern matching rules. This is possible to do (indeed, it
is necessary to do if implementing a computer proof assistant), but pro-
vides no additional insight. With practice, one learns to automatically
deduce the induction and recursion principles for any inductive defini-
tion, and to use them without having to think twice.

5.7 Generalizations of inductive types

The notion of inductive type has been studied in type theory for many
years, and admits many, many generalizations: inductive type families,
mutual inductive types, inductive-inductive types, inductive-recursive
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types, etc. In this section we give an overview of some of these, a few
of which will be used later in the book. (In Chapter 6 we will study in
more depth a very different generalization of inductive types, which is
particular to homotopy type theory.)

Most of these generalizations involve allowing ourselves to define
more than one type by induction at the same time. One very simple
example of this, which we have already seen, is the coproduct A + B. It
would be tedious indeed if we had to write down separate inductive def-
initions for N 4- N, for N +- 2, for 2 4- 2, and so on every time we wanted
to consider the coproduct of two types. Instead, we make one definition
in which A and B are variables standing for types; in type theory they
are called parameters. Thus technically speaking, what results from the
definition is not a single type, but a family of types + : U4 — U — U,
taking two types as input and producing their coproduct. Similarly, the
type List(A) of lists is a family List(—) : &/ — U in which the type Ais a
parameter.

In mathematics, this sort of thing is so obvious as to not be worth
mentioning, but we bring it up in order to contrast it with the next exam-
ple. Note that each type A + B is independently defined inductively, as is
each type List(A). By contrast, we might also consider defining a whole
type family B : A — U by induction together. The difference is that now
the constructors may change the index a : A, and as a consequence we
cannot say that the individual types B(a) are inductively defined, only
that the entire family is inductively defined.

The standard example is the type of lists of specified length, tradition-
ally called vectors. We fix a parameter type A, and define a type family
Vec, (A), for n : IN, generated by the following constructors:

e avector nil : Vecy(A) of length zero,
* afunction cons : [](,.n) A — Vecy(A) — Vecg,cc(n)(A).

In contrast to lists, vectors (with elements from a fixed type A) form a
family of types indexed by their length. While A is a parameter, we
say that #n : IN is an index of the inductive family. An individual type
such as Vecz(A) is not inductively defined: the constructors which build
elements of Vecz(A) take input from a different type in the family, such
ascons: A — Vecy(A) — Vecz(A).

In particular, the induction principle must refer to the entire type fam-
ily as well; thus the hypotheses and the conclusion must quantify over
the indices appropriately. In the case of vectors, the induction principle
states that given a type family C : [](,.n) Vecn (A) — U, together with
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¢ an element cy,; : C(0,nil), and
¢ a function

Ceons H IT II < ¢) — C(succ(n), cons(a,l))
N) (a:A) (€:Vec,(A))

there exists a function f : [T(u:n) [T(s:vec, (a)) C(1, £) such that

f(O, nl|) = Cpil
f(succ(n),cons(a, £)) = ccons(n,a,¢, f(£)).

One use of inductive families is to define predicates inductively. For
instance, we might define the predicate iseven : N — {{ as an inductive
family indexed by IN, with the following constructors:

¢ an element eveny : iseven(0),

* afunction evenss : [\ iseven(n) — iseven(succ(succ(n))).

In other words, we stipulate that 0 is even, and that if n is even then so is
succ(succ(n)). These constructors “obviously” give no way to construct
an element of, say, iseven(1), and since iseven is supposed to be freely gen-
erated by these constructors, there must be no such element. (Actually
proving that —iseven(1) is not entirely trivial, however). The induction
principle for iseven says that to prove something about all even natural
numbers, it suffices to prove it for 0 and verify that it is preserved by
adding two.

Inductively defined predicates are much used in computer formal-
ization of mathematics and software verification. But we will not have
much use for them, with a couple of exceptions in §§10.3 and 11.5.

Another important special case is when the indexing type of an in-
ductive family is finite. In this case, we can equivalently express the
inductive definition as a finite collection of types defined by mutual in-
duction. For instance, we might define the types even and odd of even
and odd natural numbers by mutual induction, where even is generated
by constructors

e (0:evenand

e esucc : odd — even,
while odd is generated by the one constructor

® osucc : even — odd.
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Note that even and odd are simple types (not type families), but their con-
structors can refer to each other. If we expressed this definition as an in-
ductive type family paritynat : 2 — U, with paritynat(02) and paritynat(12)
representing even and odd respectively, it would instead have construc-
tors:

e 0: paritynat(0z),
® esucc : paritynat(1p) — paritynat(02),
® osucc : paritynat(0p) — paritynat(1;).

When expressed explicitly as a mutual inductive definition, the induc-
tion principle for even and odd says that given C : even — U and D :
odd — U, along with

® (Cp: C(O),
* ¢ [(noad) D(n) — C(esucc(n)),
* ds: H (n:even) (11) - (OSUCC( ))

there exist f : [T(s:even) C(1) and g : [T(n:0dd) D (1) such that

) = ¢s(g(n))
) = ds(f(n)).

In particular, just as we can only induct over an inductive family “all at
once”, we have to induct on even and odd simultaneously. We will not
have much use for mutual inductive definitions in this book either.

A further, more radical, generalization is to allow definition of a type
family B : A — U in which not only the types B(a), but the type A it-
self, is defined as part of one big induction. In other words, not only do
we specify constructors for the B(a)s which can take inputs from other
B(a')s, as with inductive families, we also at the same time specify con-
structors for A itself, which can take inputs from the B(a)s. This can
be regarded as an inductive family in which the indices are inductively
defined simultaneously with the indexed types, or as a mutual induc-
tive definition in which one of the types can depend on the other. More
complicated dependency structures are also possible. In general, these
are called inductive-inductive definitions. For the most part, we will
not use them in this book, but their higher variant (see Chapter 6) will
appear in a couple of experimental examples in Chapter 11.

The last generalization we wish to mention is inductive-recursive
definitions, in which a type is defined inductively at the same time as

f (esucc(n)
)

g(osucc(n
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a recursive function on it. That is, we fix a known type P, and give con-
structors for an inductive type A and at the same time define a function
f : A — P using the recursion principle for A resulting from its construc-
tors — with the twist that the constructors of A are allowed to refer also
to the values of f. We do not yet know how to justify such definitions
from a homotopical perspective, and we will not use any of them in this
book.

5.8 Identity types and identity systems

We now wish to point out that the identity types, which play so central
a role in homotopy type theory, may also be considered to be defined
inductively. Specifically, they are an “inductive family” with indices, in
the sense of §5.7. In fact, there are fwo ways to describe identity types as
an inductive family, resulting in the two induction principles described
in Chapter 1, path induction and based path induction.

In both definitions, the type A is a parameter. For the first definition,
we inductively define a family =4: A — A — U, with two indices
belonging to A, by the following constructor:

e foranya: A, anelementrefl, : a =4 a.

By analogy with the other inductive families, we may extract the induc-
tion principle from this definition. It states that given any

C: H (a:Ab)—>U,
ab:A

along with d : [T (4.4) C(a, a, refl;), there exists

f+ II TII Cabp)

(ab:A) (pa=pb)

such that f(a, a, refl;) = d(a). This is exactly the path induction principle
for identity types.

For the second definition, we consider one element ay : A to be a
parameter along with A : U, and we inductively define a family (a9 =4
-) : A — U, with one index belonging to A, by the following constructor:

¢ an element refl,, : ag =4 ap.

Note that because a9 : A was fixed as a parameter, the constructor refly,
does not appear inside the inductive definition as a function, but only
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as an element. The induction principle for this definition says that given
C : T1p:a)(a0 =4 b) — U along with an element d : C(ay, refly,), there
exists f 1 [T(p:a) [(piag=np) C(b, p) With f(ag, refloy) = d. This is exactly
the based path induction principle for identity types.

The view of identity types as inductive types has historically caused
some confusion, because of the intuition mentioned in §5.1 that all the
elements of an inductive type should be obtained by repeatedly applying
its constructors. For ordinary inductive types such as 2 and IN, this is the
case: we saw in Eq. (1.8.1) that indeed every element of 2 is either 0, or
12, and similarly one can prove that every element of IN is either 0 or a
SUCCessor.

However, this is not true for identity types: there is only one construc-
tor refl, but not every path is equal to the constant path. More precisely,
we cannot prove, using only the induction principle for identity types
(either one), that every inhabitant of 4 =4 a is equal to refl,. In order
to actually exhibit a counterexample, we need some additional princi-
ple such as the univalence axiom — recall that in Example 3.1.9 we used
univalence to exhibit a particular path 2 =;; 2 which is not equal to refl,.

The point is that, as validated by the study of homotopy-initial al-
gebras, an inductive definition should be regarded as freely generated by
its constructors. Of course, a freely generated structure may contain ele-
ments other than its generators: for instance, the free group on two sym-
bols x and y contains not only x and y but also words such as xy, yx~ly,
and x>y?x2yx. In general, the elements of a free structure are obtained
by applying not only the generators, but also the operations of the am-
bient structure, such as the group operations if we are talking about free
groups.

In the case of inductive types, we are talking about freely gener-
ated types — so what are the “operations” of the structure of a type?
If types are viewed as like sets, as was traditionally the case in type the-
ory, then there are no such operations, and hence we expect there to be
no elements in an inductive type other than those resulting from its con-
structors. In homotopy type theory, we view types as like spaces or oco-
groupoids, in which case there are many operations on the paths (con-
catenation, inversion, etc.) — this will be important in Chapter 6 — but
there are still no operations on the objects (elements). Thus, it is still true
for us that, e.g., every element of 2 is either 0, or 1, and every element
of IN is either 0 or a successor.

However, as we saw in Chapter 2, viewing types as co-groupoids en-
tails also viewing functions as functors, and this includes type families
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B : A — U. Thus, the identity type (a9 =4 —), viewed as an inductive
type family, is actually a freely generated functor A — U. Specifically, it
is the functor F : A — U freely generated by one element refl,, : F(ap).
And a functor does have operations on objects, namely the action of the
morphisms (paths) of A.

In category theory, the Yoneda lemma tells us that for any category A
and object ay, the functor freely generated by an element of F(a) is the
representable functor hom 4 (ag, —). Thus, we should expect the identity
type (a9 =4 —) to be this representable functor, and this is indeed exactly
how we view it: (a9 =4 b) is the space of morphisms (paths) in A from
ap to b.

One reason for viewing identity types as inductive families is to ap-
ply the uniqueness principles of §§5.2 and 5.5. Specifically, we can char-
acterize the family of identity types of a type A, up to equivalence, by
giving another family of types over A x A satisfying the same induction
principle. This suggests the following definitions and theorem.

Definition 5.8.1. Let A be a type and a¢ : A an element.

* A pointed predicate over (A4, ap) is a family R : A — U equipped
with an element g : R(ag).

e For pointed predicates (R,7) and (S,sp), a family of maps g :
[T(p:4) R(b) — S(b) is pointed if g(ao, 70) = so. We have

ppmap(R, S) := ) (g(ag,r0) = s0)-
&1 (p.a) R(b)—S(b)

* Anidentity system at ag is a pointed predicate (R, ry) such that for
any type family D : [T(.4) R(b) — U and d : D(ag, rp), there exists
a function f : [T(p.4) [1(r:r()) D(b, 1) such that f(ap, 7o) = d.

Theorem 5.8.2. For a pointed predicate (R, rq) over (A, ap), the following are
logically equivalent.

(i) (R, 7o) is an identity system at ag.
(ii) For any pointed predicate (S, sg), the type ppmap(R, S) is contractible.
(iii) Forany b : A, the function transport® (-, 1) : (ag =4 b) — R(b) isan
equivalence.
(iv) The type ¥4y R(D) is contractible.

Note that the equivalences (i)« (ii)< (iii) are a version of Lemma 5.5.4
for identity types ayp =4 —, regarded as inductive families varying over
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one element of A. Of course, (ii)—(iv) are mere propositions, so that log-
ical equivalence implies actual equivalence. (Condition (i) is also a mere
proposition, but we will not prove this.) Note also that unlike (i)-(iii),
statement (iv) doesn’t refer to ag or 7.

Proof. First, assume (i) and let (S,sg) be a pointed predicate. Define
D(b,r) := S(b) and d := sy : S(agp) = D(ag,rp). Since R is an iden-
tity system, we have f : [T.4) R(b) — S(b) with f(ap,r9) = so; hence
ppmap(R, S) is inhabited. Now suppose (f, f+), (g, &r) : ppmap(R, S), and
define D(b,7) := (f(b,r) = g(b,7)), and letd := f, =g, ' : f(ao,r0) =
so = g(ao,r9). Then again since R is an identity system, we have / :
IT(5:) [1(r:r(s)) D (b, 7) such that h(ag, 7o) = fr*g;~'. By function exten-
sionality and the characterization of paths in X-types and path types,
these data yield an equality (f, fr) = (g,8r). Hence ppmap(R,S) is an
inhabited mere proposition, and thus contractible; so (ii) holds.

Now suppose (ii), and define S(b) := (a9 = b) with sy = refly; :
S(ap). Then (S,sg) is a pointed predicate, and Ab. Ap. transport® (p,r) :
[Tp:a) S(b) — R(D) is a pointed family of maps from S to R. By assump-
tion, ppmap(R, S) is contractible, hence inhabited, so there also exists a
pointed family of maps from R to S. And the composites in either direc-
tion are pointed families of maps from R to R and from S to S, respec-
tively, hence equal to identities since ppmap(R, R) and ppmap(S, S) are
contractible. Thus (iii) holds.

Now supposing (iii), condition (iv) follows from Lemma 3.11.8, us-
ing the fact that X-types respect equivalences (the “if” direction of Theo-
rem 4.7.7).

Finally, assume (iv), and let D : [T(.4) R(b) — U and d : D(ag, o).
We can equivalently express D as a family D" : (¥.4) R(b)) — U. Now
since }_(.4) R(D) is contractible, we have

p: JI (ao,r0) =u.

u:Yp:4) R(b)

Moreover, since the path types of a contractible type are again contractible,
we have p((ag,r9)) = refl(, ). Define f(u) := transport? (p(u),d),
yielding f : H(MZZ(;;;A) rv)) D' (), orequivalently f : TT(y.4) [T(rr(p)) D (b, 7).
Finally, we have

f(ag, ro) = transportD/(p((ao, r9)),d) = transportD/(refl( d) =d.

ao,ro)”

Thus, (i) holds. O
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We can deduce a similar result for identity types =4, regarded as a
family varying over two elements of A.

Definition 5.8.3. An identity system over a type A isa family R : A —
A — U equipped with a function g : [](s:4) R(a,a) such that for any
type family D : [Ty p.4) R(a,b) — U and d : [](4.4) D(a,a,79(a)), there
exists a function f : [T(4:4) [1(r:r(ap)) D(a, b, 7) such that f(a,a,r0(a)) =
d(a) foralla: A.

Theorem 5.8.4. For R: A — A — U equipped with 1 : [1(,.) R(a,a), the
following are logically equivalent.

(i) (R, 7o) is an identity system over A.
(ii) Forall ag : A, the pointed predicate (R(ag),ro(ag)) is an identity system
at agp.
(iii) Forany S: A — A — U and s : T (,.4) S(a,a), the type

Y H) g(a,a,r9(a)) = so(a)

(8T1(ap:0) R(a,b)—=S(ab)) (a:A

is contractible.

(iv) Forany a,b: A, the map transportR(®) (=, ro(a)) : (a =4 b) — R(a,b)
is an equivalence.

(v) Forany a: A, the type Y ;. 4) R(a, b) is contractible.

Proof. The equivalence (i)« (ii) follows exactly the proof of equivalence
between the path induction and based path induction principles for iden-
tity types; see §1.12. The equivalence with (iv) and (v) then follows from
Theorem 5.8.2, while (iii) is straightforward. O

One reason this characterization is interesting is that it provides an
alternative way to state univalence and function extensionality. The uni-
valence axiom for a universe I/ says exactly that the type family

(—x-):U—->U—-U

together with id : [T a4 (A =~ A) satisfies Theorem 5.8.4(iv). Therefore,
it is equivalent to the corresponding version of (i), which we can state as
follows.

Corollary 5.8.5 (Equivalence induction). Given any type family

D: [] (A~B)—U
A,B:U
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and function d : [[ 429 D(A, A,id 1), there exists
(AU)

f+ II JI D(ABe)

(ABU) (e:A~B)
such that f(A, A,idy) =d(A) forall A: U.

In other words, to prove something about all equivalences, it suffices
to prove it about identity maps. We have already used this principle
(without stating it in generality) in Lemma 4.1.1.

Similarly, function extensionality says that for any B : A — U, the
type family

(= ~-) (HB )%(gw))%u

together with Af. Aa.refl¢(, satisfies Theorem 5.8.4(iv). Thus, it is also
equivalent to the corresponding version of (i).

Corollary 5.8.6 (Homotopy induction). Given any

D: I (f~g)—U
f18T(a:a) B(a)

and d : H(f:H(a:A) B(a)) D(f, f, Ax.reflg(y)), there exists

ke T1 [T D(f.gh

(f8T1(a:a) B(a)) (h:f~g)

such that k(f, f, Ax.reflg(,y) = d(f) for all f.

Notes

Inductive definitions have a long pedigree in mathematics, arguably go-
ing back at least to Frege and Peano’s axioms for the natural numbers.
More general “inductive predicates” are not uncommon, but in set theo-
retic foundations they are usually constructed explicitly, either as an in-
tersection of an appropriate class of subsets or using transfinite iteration
along the ordinals, rather than regarded as a basic notion.

In type theory, particular cases of inductive definitions date back to
Martin-Lof’s original papers: [ML71] presents a general notion of induc-
tively defined predicates and relations; the notion of inductive type was
present (but only with instances, not as a general notion) in Martin-Lof’s
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first papers in type theory [ML75]; and then as a general notion with
W-types in [ML82].

A general notion of inductive type was introduced in 1985 by Con-
stable and Mendler [CM85]. A general schema for inductive types in in-
tensional type theory was suggested in [PPM90]. Further developments
included [CP90, Dyb91].

The notion of inductive-recursive definition appears in [Dyb00]. An
important type-theoretic notion is the notion of tree types (a general ex-
pression of the notion of Post system in type theory) which appears in
[PS89].

The universal property of the natural numbers as an initial object of
the category of IN-algebras is due to Lawvere [Law06]. This was later
generalized to a description of W-types as initial algebras for polyno-
mial endofunctors by [MP0O]. The coherently homotopy-theoretic equiv-
alence between such universal properties and the corresponding induc-
tion principles (§§5.4 and 5.5) is due to [AGS12].

For actual constructions of inductive types in homotopy-theoretic se-
mantics of type theory, see [KLV12, vdBM15, LS17].

Exercises

Exercise 5.1. Derive the induction principle for the type List(A) of lists
from its definition as an inductive type in §5.1.

Exercise 5.2. Construct two functions on natural numbers which satisfy
the same recurrence (e, es) judgmentally, but are not judgmentally equal.

Exercise 5.3. Construct two different recurrences (e, es) on the same type
E which are both satisfied judgmentally by the same function f : N — E.

Exercise 5.4. Show that for any type family E : 2 — U, the induction
operator
|nd2( ) (E(Oz X E 12 —)H E

is an equivalence.

Exercise 5.5. Show that the analogous statement to Exercise 5.4 for IN
fails.

Exercise 5.6. Show that if we assume simple instead of dependent elimi-
nation for W-types, the uniqueness property (analogue of Theorem 5.3.1)
fails to hold. That is, exhibit a type satisfying the recursion principle of
a W-type, but for which functions are not determined uniquely by their
recurrence.
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Exercise 5.7. Suppose that in the “inductive definition” of the type C at
the beginning of §5.6, we replace the type IN by 0. Analogously to (5.6.1),
we might consider a recursion principle for this type with hypothesis

h:(C—0)— (P—0)—P.

Show that even without a computation rule, this recursion principle is
inconsistent, i.e. it allows us to construct an element of 0.

Exercise 5.8. Consider now an “inductive type” D with one constructor
scott : (D — D) — D. The second recursor for C suggested in §5.6 leads
to the following recursor for D:

recp: [[((D—+D)— (D—P)—P)—D—P
P:u

with computation rule recp (P, h,scott(a)) = h(a, (Ad.recp(P,h,a(d)))).
Show that this also leads to a contradiction.

Exercise 5.9. Let A be an arbitrary type and consider generally an “induc-
tive definition” of a type L4 with constructor lawvere : (L4 — A) — La.
The second recursor for C suggested in §5.6 leads to the following recur-
sor for L :
rec,, : [ [((La = A) = P) = Ly — P
P:U

with computation rule recy , (P, i, lawvere(a)) = h(a). Using this, show
that A has the fixed-point property, i.e. for every function f : A — A
there exists an a : A such that f(a) = a. In particular, L, is inconsistent
if A is a type without the fixed-point property, such as 0, 2, or IN.

Exercise 5.10. Continuing from Exercise 5.9, consider L1, which is not ob-
viously inconsistent since 1 does have the fixed-point property. Formu-
late an induction principle for L1 and its computation rule, analogously
to its recursor, and using this, prove that it is contractible.

Exercise 5.11. In §5.1 we defined the type List(A) of finite lists of elements
of some type A. Consider a similar inductive definition of a type Lost(A)
whose only constructor is

cons: A — Lost(A) — Lost(A).

Show that Lost(A) is equivalent to 0.

Exercise 5.12. Suppose A is a mere proposition, and B: A — U.

(i) Show that W ,.4)B(a) is a mere proposition.
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(ii) Show that W(,.4)B(a) is equivalent to Y (,.4) ~B(a).
(ili) Without using W ,.4)B(a), show that }_(,.4) =B(a) is a homotopy
W-type W?a:A)B(“) in the sense of §5.5.

Exercise 5.13. Let A:Udand B: A — U.

(i) Show that (z(w A) —|B(a)) — (w(a: A)B(a)>.

(ii) Show that (W(Q:A)B(a)) — (—| H(u:A) B(ﬂ)) .
Exercise 5.14. Let A : U and suppose that B : A — U is decidable, i.e.
[T(a:a)(B(a) + —B(a)) (see Definition 3.4.3). Show that (W(H:A)B(a)> —
(Z(a;A) ﬁB(ﬂ))

Exercise 5.15. Show that the following are logically equivalent.
(i) (W(a:A)B(a)) — HZ(“:A) —|B(a)H forany A : Setand B : A — Prop.

(i) (= TTaua) B@)) — |
Prop.
(iii) The law of excluded middle (as in §3.4).
Similarly, using Corollary 3.2.7, show that it is inconsistent to assume
that either implication in (i) or (ii) holds forall A: i/ and B: A — U.
Exercise 5.16. For A :Ud and B: A — U, define
Wi =] (H(B(a) —+R) - R) —R

RU "a:A

W(WA)B(a)H forany A : Setand B : A —

W), p is called the impredicative encoding of W(,.4)B(a). Note that un-
like W(,.4yB(a), it lives in a higher universe than A and B.
(i) Show that Wzlq,B is logically equivalent (as defined in §1.11) to W 4. 4) B(
(ii) Show that W), p implies ==Y (,.4) ~B(a).

(iii) Without using W ;. 4)B (a), show that Wzlq, p satisfies the same recur-
sion principle as W ,. ) B(a) for defining functions into types in the
universe U (to which it itself does not belong).

(iv) Using LEM, give an exampleofan A : {{ and a B : A — U such that
W), p is not equivalent to W ,. o) B(a).

Exercise 5.17. Show that for any A : U and B : A — U, we have
~(Wiaa)B@) = (¥ ~B(a)).
a:A
In other words, W, A)B(a) is empty if and only if it has no nullary con-
structor. (Compare to Exercise 5.11.)
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Chapter 6
Higher inductive types

6.1 Introduction

Like the general inductive types we discussed in Chapter 5, higher in-
ductive types are a general schema for defining new types generated by
some constructors. But unlike ordinary inductive types, in defining a
higher inductive type we may have “constructors” which generate not
only points of that type, but also paths and higher paths in that type. For
instance, we can consider the higher inductive type S! generated by

* A point base : sl and
¢ Apath loop : base =g base.

This should be regarded as entirely analogous to the definition of, for
instance, 2, as being generated by

¢ Apoint 0z : 2 and
e Apoint1;:2,

or the definition of IN as generated by

* Apoint0: N and
e A function succ : N — IN.

When we think of types as higher groupoids, the more general notion of
“generation” is very natural: since a higher groupoid is a “multi-sorted
object” with paths and higher paths as well as points, we should allow
“generators” in all dimensions.

We will refer to the ordinary sort of constructors (such as base) as
point constructors or ordinary constructors, and to the others (such as
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loop) as path constructors or higher constructors. Each path constructor
must specify the starting and ending point of the path, which we call its
source and target; for loop, both source and target are base.

Note that a path constructor such as loop generates a new inhabitant
of an identity type, which is not (at least, not a priori) equal to any pre-
viously existing such inhabitant. In particular, loop is not a priori equal
to refly,se (although proving that they are definitely unequal takes a lit-
tle thought; see Lemma 6.4.1). This is what distinguishes S! from the
ordinary inductive type 1.

There are some important points to be made regarding this general-
ization.

First of all, the word “generation” should be taken seriously, in the
same sense that a group can be freely generated by some set. In par-
ticular, because a higher groupoid comes with operations on paths and
higher paths, when such an object is “generated” by certain construc-
tors, the operations create more paths that do not come directly from the
constructors themselves. For instance, in the higher inductive type S!,
the constructor loop is not the only nontrivial path from base to base; we
have also “loop * loop” and “loop * loop * loop” and so on, as well as loop™?,
etc., all of which are different. This may seem so obvious as to be not
worth mentioning, but it is a departure from the behavior of “ordinary”
inductive types, where one can expect to see nothing in the inductive
type except what was “put in” directly by the constructors.

Secondly, this generation is really free generation: higher inductive
types do not technically allow us to impose “axioms”, such as forcing
“loop * loop” to equal refl,ee. However, in the world of co-groupoids,
there is little difference between “free generation” and “presentation”,
since we can make two paths equal up to homotopy by adding a new 2-
dimensional generator relating them (e.g. a path loop * loop = reflpq in
base = base). We do then, of course, have to worry about whether this
new generator should satisfy its own “axioms”, and so on, but in princi-
ple any “presentation” can be transformed into a “free” one by making
axioms into constructors. As we will see, by adding “truncation con-
structors” we can use higher inductive types to express classical notions
such as group presentations as well.

Thirdly, even though a higher inductive type contains “constructors”
which generate paths in that type, it is still an inductive definition of a sin-
gle type. In particular, as we will see, it is the higher inductive type itself
which is given a universal property (expressed, as usual, by an induc-
tion principle), and not its identity types. The identity type of a higher



6.1 INTRODUCTION 235

inductive type retains the usual induction principle of any identity type
(i.e. path induction), and does not acquire any new induction principle.

Thus, it may be nontrivial to identify the identity types of a higher
inductive type in a concrete way, in contrast to how in Chapter 2 we
were able to give explicit descriptions of the behavior of identity types
under all the traditional type forming operations. For instance, are there
any paths from base to base in S! which are not simply composites of
copies of loop and its inverse? Intuitively, it seems that the answer should
be no (and it is), but proving this is not trivial. Indeed, such questions
bring us rapidly to problems such as calculating the homotopy groups
of spheres, a long-standing problem in algebraic topology for which no
simple formula is known. Homotopy type theory brings a new and pow-
erful viewpoint to bear on such questions, but it also requires type theory
to become as complex as the answers to these questions.

Fourthly, the “dimension” of the constructors (i.e. whether they out-
put points, paths, paths between paths, etc.) does not have a direct con-
nection to which dimensions the resulting type has nontrivial homotopy
in. As a simple example, if an inductive type B has a constructor of type
A — B, then any paths and higher paths in A result in paths and higher
paths in B, even though the constructor is not a “higher” constructor at
all. The same thing happens with higher constructors too: having a con-
structor of type A — (x =p y) means not only that points of A yield
paths from x to y in B, but that paths in A yield paths between these
paths, and so on. As we will see, this possibility is responsible for much
of the power of higher inductive types.

On the other hand, it is even possible for constructors without higher
types in their inputs to generate “unexpected” higher paths. For in-
stance, in the 2-dimensional sphere S generated by

* A point base : S%, and
* A 2-dimensional path surf : refly,ee = reflp,se in base = base,

there is a nontrivial 3-dimensional path from refl e, to itself. Topologists
will recognize this path as an incarnation of the Hopf fibration. From a
category-theoretic point of view, this is the same sort of phenomenon as
the fact mentioned above that S! contains not only loop but also loop * loop
and so on: it’s just that in a higher groupoid, there are operations which
raise dimension. Indeed, we saw many of these operations back in §2.1:
the associativity and unit laws are not just properties, but operations,
whose inputs are 1-paths and whose outputs are 2-paths.
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6.2 Induction principles and dependent paths

When we describe a higher inductive type such as the circle as being
generated by certain constructors, we have to explain what this means
by giving rules analogous to those for the basic type constructors from
Chapter 1. The constructors themselves give the introduction rules, but it
requires a bit more thought to explain the elimination rules, i.e. the induc-
tion and recursion principles. In this book we do not attempt to give a
general formulation of what constitutes a “higher inductive definition”
and how to extract the elimination rule from such a definition — indeed,
this is a subtle question and the subject of current research. Instead we
will rely on some general informal discussion and numerous examples.

The recursion principle is usually easy to describe: given any type
equipped with the same structure with which the constructors equip the
higher inductive type in question, there is a function which maps the
constructors to that structure. For instance, in the case of S!, the recursion
principle says that given any type B equipped with a point b : B and a
path £ : b = b, there is a function f : S' — B such that f(base) = b and
aps(loop) = /.

The latter two equalities are the computation rules. There is, however,
a question of whether these computation rules are judgmental equalities
or propositional equalities (paths). For ordinary inductive types, we had
no qualms about making them judgmental, although we saw in Chap-
ter 5 that making them propositional would still yield the same type up
to equivalence. In the ordinary case, one may argue that the computa-
tion rules are really definitional equalities, in the intuitive sense described
in the Introduction.

For higher inductive types, this is less clear. Moreover, since the op-
eration apy is not really a fundamental part of the type theory, but some-
thing that we defined using the induction principle of identity types (and
which we might have defined in some other, equivalent, way), it seems
inappropriate to refer to it explicitly in a judgmental equality. Judgmental
equalities are part of the deductive system, which should not depend on
particular choices of definitions that we may make within that system.
There are also semantic and implementation issues to consider; see the
Notes.

It does seem unproblematic to make the computational rules for the
point constructors of a higher inductive type judgmental. In the example
above, this means we have f(base) = b, judgmentally. This choice facil-
itates a computational view of higher inductive types. Moreover, it also
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greatly simplifies our lives, since otherwise the second computation rule
ap¢(loop) = ¢ would not even be well-typed as a propositional equal-
ity; we would have to compose one side or the other with the specified
identification of f(base) with b. (Such problems do arise eventually, of
course, when we come to talk about paths of higher dimension, but that
will not be of great concern to us here. See also §6.7.) Thus, we take the
computation rules for point constructors to be judgmental, and those for
paths and higher paths to be propositional.!

Remark 6.2.1. Recall that for ordinary inductive types, we regard the
computation rules for a recursively defined function as not merely judg-
mental equalities, but definitional ones, and thus we may use the notation
:= for them. For instance, the truncated predecessor function p : IN — IN
is defined by p(0) := 0 and p(succ(n)) := n. In the case of higher induc-
tive types, this sort of notation is reasonable for the point constructors
(e.g. f(base) := b), but for the path constructors it could be misleading,
since equalities such as f(loop) = ¢ are not judgmental. Thus, we hy-
bridize the notations, writing instead f (loop) := ¢ for this sort of “propo-
sitional equality by definition”.

Now, what about the induction principle (the dependent eliminator)?
Recall that for an ordinary inductive type W, to prove by induction that
[T(x:wy P(x), we must specify, for each constructor of W, an operation on
P which acts on the “fibers” above that constructor in W. For instance, if
W is the natural numbers IN, then to prove by induction that [T(,.n) P(x),
we must specify

e Anelement b : P(0) in the fiber over the constructor 0 : IN, and
 For each n : N, a function P(n) — P(succ(n)).

The second can be viewed as a function “P — P” lying over the construc-
tor succ : IN — IN, generalizing how b : P(0) lies over the constructor
0:IN.

By analogy, therefore, to prove that [],.g1) P(x), we should specify

e An element b : P(base) in the fiber over the constructor base : S!,
and

n particular, in the language of §1.1, this means that our higher inductive types are
a mix of rules (specifying how we can introduce such types and their elements, their in-
duction principle, and their computation rules for point constructors) and axioms (the com-
putation rules for path constructors, which assert that certain identity types are inhabited
by otherwise unspecified terms). We may hope that eventually, there will be a better type
theory in which higher inductive types, like univalence, will be presented using only rules
and no axioms.
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¢ A path from b to b “lying over the constructor loop : base = base”.

Note that even though S! contains paths other than loop (such as reflp,q.
and loop * loop), we only need to specify a path lying over the constructor
itself. This expresses the intuition that S! is “freely generated” by its
constructors.

The question, however, is what it means to have a path “lying over”
another path. It definitely does not mean simply a path b = b, since
that would be a path in the fiber P(base) (topologically, a path lying over
the constant path at base). Actually, however, we have already answered
this question in Chapter 2: in the discussion preceding Lemma 2.3.4 we
concluded that a path from u : P(x) tov : P(y) lying over p : x = y
can be represented by a path p. (1) = v in the fiber P(y). Since we will
have a lot of use for such dependent paths in this chapter, we introduce
a special notation for them:

(u :5 v) := (transport” (p,u) = v). (6.2.2)

Remark 6.2.3. There are other possible ways to define dependent paths.
For instance, instead of p.(u) = v we could consider u = (p~!),(v).
We could also obtain it as a special case of a more general “heteroge-
neous equality”, or with a direct definition as an inductive type family.
All these definitions result in equivalent types, so in that sense it doesn’t
much matter which we pick. However, choosing p. (1) = v as the defi-
nition makes it easiest to conclude other things about dependent paths,
such as the fact that apd f produces them, or that we can compute them
in particular type families using the transport lemmas in §2.5.

With the notion of dependent paths in hand, we can now state more
precisely the induction principle for S!: given P : S — U/ and

e anelement b : P(base), and
e apath/:b :{fmp b,

thereis a function f : [](,.q1) P(x) such that f(base) = band apd(loop) =
¢. As in the non-dependent case, we speak of defining f by f(base) := b
and apdg (loop) := £.

Remark 6.2.4. When describing an application of this induction principle
informally, we regard it as a splitting of the goal “P(x) for all x : S!”
into two cases, which we will sometimes introduce with phrases such as
“when x is base” and “when x varies along loop”, respectively. There is
no specific mathematical meaning assigned to “varying along a path”: it
is just a convenient way to indicate the beginning of the corresponding
section of a proof; see Lemma 6.4.2 for an example.
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base

Figure 6.1: The topological induction principle for S

Topologically, the induction principle for S! can be visualized as shown
in Figure 6.1. Given a fibration over the circle (which in the picture is a
torus), to define a section of this fibration is the same as to give a point
b in the fiber over base along with a path from b to b lying over loop.
The way we interpret this type-theoretically, using our definition of de-
pendent paths, is shown in Figure 6.2: the path from b to b over loop is
represented by a path from loop, (b) to b in the fiber over base.

Of course, we expect to be able to prove the recursion principle from
the induction principle, by taking P to be a constant type family. This is
in fact the case, although deriving the non-dependent computation rule
for loop (which refers to ap ) from the dependent one (which refers to
apdy) is surprisingly a little tricky.

Lemma 6.2.5. If A is a type together witha : A and p : a =4 a, then there is
a function f : S' — A with

f(base)
aps(loop) := p.

a

Proof. We would like to apply the induction principle of S! to the con-
stant type family, (Ax. A) : S' — U. The required hypotheses for this
are a point of (Ax. A)(base) = A, which we have (namely a4 : A), and a
dependent path in a :fg’; a, or equivalently transport*™~*4 (loop,a) = a.
This latter type is not the same as the type a =4 a where p lives, but it is

equivalent to it, because by Lemma 2.3.5 we have transportconst;} opl@)
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Figure 6.2: The type-theoretic induction principle for S!

transport* 4 (loop,a) = a. Thus, givena : Aand p : a = a, we can

consider the composite

_x—A
a “loop a)

transportconstfgop(a) p(

Applying the induction principle, we obtain f : S! — A such that
f(base) =a and (6.2.6)
apdg(loop) = transportconstfgop(a) ' p. (6.2.7)

It remains to derive the equality aps(loop) = p. However, by Lemma 2.3.8,
we have

apd(loop) = transportconstfgop(f(base)) »apy(loop).

Combining this with (6.2.7) and canceling the occurrences of transportconst
(which are the same by (6.2.6)), we obtain ap¢(loop) = p. O

We also have a corresponding uniqueness principle.

Lemma 6.2.8. If A isa type and f,g : S' — A are two maps together with
two equalities p, g:

p: f(base) =4 g(base),
g f(loop) =™ 4% g(loop).

Then for all x : S' we have f(x) = g(x).
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Proof. We apply the induction principle of S! at the type family P(x) :=
(f(x) = g(x)). When x is base, p is exactly what we need. And when x

varies along loop, we need p :l);;gg(x):g(x) p, which by Theorems 2.11.3

and 2.11.5 can be reduced to 4. O

These two lemmas imply the expected universal property of the cir-
cle:

Lemma 6.2.9. For any type A we have a natural equivalence

(' = A) = Y (x=x).

x:A

Proof. We have a canonical function f : (S' — A) — Yixa)(x = x)
defined by f(g) := (g(base), g(loop)). In the other direction, we have
g La(x = x) — (8! — A) defined by taking a pair (b, /) to the
function S — A given by the recursion principle of the circle.

Now, by the computation rule of the recursion principle, f o g ~ id.
Whereas g o f ~ id by the uniqueness principle, since (g o f)(loop) :?e’;i;:f‘x
loop, again, by the computation rule of the recursion principle of the cir-
cle. Thus, f has a quasi-inverse, and is therefore an equivalence. O

As in §5.5, we can show that the conclusion of Lemma 6.2.9 is equiv-
alent to having an induction principle with propositional computation
rules. Other higher inductive types also satisfy lemmas analogous to
Lemmas 6.2.5 and 6.2.9; we will generally leave their proofs to the reader.
We now proceed to consider many examples.

6.3 The interval

The interval, which we denote I, is perhaps an even simpler higher in-
ductive type than the circle. It is generated by:

* apoint0;: I,

® apoint1;: I, and

* apathseg:0; =1 1;.
The recursion principle for the interval says that given a type B along
with

e apointby: B,

® apoint by : B, and
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e apaths:by =0y,

there is a function f : I — B such that f(0;) = by, f(1;) = by, and
f(seg) = s. The induction principle says that given P : I — U/ along with

e apoint by : P(0;),
* apoint by : P(1;), and
® apaths: by :_feg b1,

there is a function f : [ (,.;y P(x) such that f(0;) = by, f(11) = by, and
apd(seg) = s.

Regarded purely up to homotopy, the interval is not really interest-
ing:
Lemma 6.3.1. The type I is contractible.

Proof. We prove that for all x : I we have x = 1;. In other words we
want a function f of type [](,.;)(x =; 11). We begin to define f in the
following way:

f(Or) :=seg :0; =11y,

f(l]) = reﬂh: 1[ =1 1[.
It remains to define apd (seg), which must have type seg =00 Y1 refly,.
By definition this type is seg, (seg) =1,—,1, refl;,, which in turn is equiv-
alent to seg ! * seg = refl;,. But there is a canonical element of that type,
namely the proof that path inverses are in fact inverses. O

However, type-theoretically the interval does still have some inter-
esting features, just like the topological interval in classical homotopy
theory. For instance, it enables us to give an easy proof of function exten-
sionality. (Of course, as in §4.9, for the duration of the following proof we
suspend our overall assumption of the function extensionality axiom.)

Lemma 6.3.2. If f,g : A — B are two functions such that f(x) = g(x) for
every x : A, then f = g in the type A — B.

Proof. Let’s call the proof we have p : []y.4)(f(x) = g(x)). Forallx : A
we define a function py : [ — B by
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We now define g : I — (A — B) by

q(i) := (Ax. px (i)

Then ¢(0;p) is the function Ax. p(0r), which is equal to f because px(0;)
is defined by f(x). Similarly, we have g(1;) = g, and hence

q(seg) : f =(a=p) § 0

In Exercise 6.10 we ask the reader to complete the proof of the full
function extensionality axiom from Lemma 6.3.2.

6.4 Circles and spheres

We have already discussed the circle ! as the higher inductive type gen-
erated by

* A point base : S!, and
* A path loop : base =g base.

Its induction principle says that given P : S — U/ along with b : P(base)
and ¢ : b :f;op b, we have f : [].g) P(x) with f(base) = b and
apdy(loop) = /. Its non-dependent recursion principle says that given
Bwithb: Band ¢ : b = b, we have f : S' — B with f(base) = b and

f(loop) = .
We observe that the circle is nontrivial.

Lemma 6.4.1. loop # refly ee-

Proof. Suppose that loop = reflp,s.. Then since for any type A with x : A
and p : x = x, there is a function f : S' — A defined by f(base) := x and
f(loop) := p, we have

p = f(loop) = f(reflpase) = refly.

But this implies that every type is a set, which as we have seen is not the
case (see Example 3.1.9). O

The circle also has the following interesting property, which is useful
as a source of counterexamples.

Lemma 6.4.2. There exists an element of [].q1) (x = x) which is not equal to
x > refly.
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Proof. We define f : H(x:sl)(x = x) by Sl-induction. When x is base, we
let f(base) := loop. Now when x varies along loop (see Remark 6.2.4),
we must show that transport™*=*(loop, loop) = loop. However, in §2.11
we observed that transport¥>¥=*(p,q) = p~!+ g+ p, so what we have to
show is that loop ™! = loop * loop = loop. But this is clear by canceling an
inverse.

To show that f # (x ~— refly), it suffices to show that f(base) #
reflpase- But f(base) = loop, so this is just the previous lemma. O

For instance, this enables us to extend Example 3.1.9 by showing that
any universe which contains the circle cannot be a 1-type.

Corollary 6.4.3. If the type S! belongs to some universe U, then U is not a
1-type.

Proof. The type S' = S! in i/ is, by univalence, equivalent to the type
S! ~ 8! of autoequivalences of S!, so it suffices to show that S! ~ Sl is
not a set. For this, it suffices to show that its equality type idg1 = g1.g1)
idg1 is not a mere proposition. Since being an equivalence is a mere
proposition, this type is equivalent to ids1 =(g1_,g1) idgi. But by function
extensionality, this is equivalent to [](,g1)(x = x), which as we have
seen in Lemma 6.4.2 contains two unequal elements. O

We have also mentioned that the 2-sphere S? should be the higher
inductive type generated by

* A point base : §?, and
¢ A 2-dimensional path surf : reflp e = reflp,ee in base = base.

The recursion principle for S? is not hard: it says that given B with b : B
and s : refl, = refl,, we have f : S — B with f(base) = band apj%(surf) =
s. Here by “a pjzr (surf)” we mean an extension of the functorial action of f
to two-dimensional paths, which can be stated precisely as follows.

Lemma 6.4.4. Given f : A — Band x,y: Aand p,q:x =y, andr:p =g,
we have a path apjzc(r) 1 f(p) = f(9)-

Proof. By path induction, we may assume p = g and r is reflexivity. But
then we may define ap%(reflp) = reflgy). O

In order to state the general induction principle, we need a version
of this lemma for dependent functions, which in turn requires a notion
of dependent two-dimensional paths. As before, there are many ways
to define such a thing; one is by way of a two-dimensional version of
transport.
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Lemma 6.4.5. Given P: A —Uand x,y: Aand p,q: x =yandr:p =q,
for any u : P(x) we have transport?(r,u) : p«(u) = q«(u).

Proof. By path induction. O

Now suppose given x,y : Aand p,q: x = yandr : p = g and also
points u : P(x) and v : P(y) and dependent paths /1 : u :5 vand k :
u :f; v. By our definition of dependent paths, this means h : p,(u) = v
and k : g« (u) = v. Thus, it is reasonable to define the type of dependent

2-paths over r to be
(h =L k) := (h = transport?(r, u) * k).
We can now state the dependent version of Lemma 6.4.4.

Lemma 6.4.6. Given P: A — U and x,y : Aand p,q: x =yandr:p =q
and a function f : T](,.a) P(x), we have apd}(r) rapdg(p) =P apd(q).

Proof. Path induction. O

Now we can state the induction principle for $?: suppose we are
given P : §> — U with b : P(base) and s : refl, :sQurf refl, where
Q = Ap.b :1; b. Then there is a function f : [],.2) P(x) such that
f(base) = b and apdj%(surf) =s.

Of course, this explicit approach gets more and more complicated as
we go up in dimension. Thus, if we want to define n-spheres for all #,
we need some more systematic idea. One approach is to work with n-
dimensional loops directly, rather than general n-dimensional paths.

Recall from §2.1 the definitions of pointed types U, and the n-fold loop
space " : U, — U, (Definitions 2.1.7 and 2.1.8). Now we can define the
n-sphere 5" to be the higher inductive type generated by

¢ A point base : 5", and
e An n-loop loop,, : )"*(S", base).

In order to write down the induction principle for this presentation, we
would need to define a notion of “dependent n-loop”, along with the
action of dependent functions on n-loops. We leave this to the reader
(see Exercise 6.4); in the next section we will discuss a different way to
define the spheres that is sometimes more tractable.
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6.5 Suspensions

The suspension of a type A is the universal way of making the points of
A into paths (and hence the paths in A into 2-paths, and so on). It is a
type LA defined by the following generators:?

e apointN: XA,
® apointS: XA, and
e afunction merid : A — (N =54 S).

The names are intended to suggest a “globe” of sorts, with a north pole, a
south pole, and an A’s worth of meridians from one to the other. Indeed,
as we will see, if A = S, then its suspension is equivalent to the surface
of an ordinary sphere, 2.

The recursion principle for XA says that given a type B together with

* points n,s : B and
e afunctionm: A — (n =s),

we have a function f : XA — Bsuch that f(N) = nand f(S) = s, and for
alla : A we have f(merid(a)) = m(a). Similarly, the induction principle
says that given P : A — U together with

e apointn : P(N),
e apoints: P(S), and

P

e foreacha: A,apathm(a):n =merid(a) 5

there exists a function f : [T(x.z4) P(x) such that f(N) = nand f(S) =
and for each a : A we have apd¢(merid(a)) = m(a).

Our first observation about suspension is that it gives another way to
define the circle.

Lemma 6.5.1. ¥2 ~ Gl

Proof. Define f : £2 — S! by recursion such that f(N) := base and
f(S) := base, while f(merid(02)) := loop but f(merid(12)) = reflpse.
Define g : S' — %2 by recursion such that g(base) := N and g(loop) :=
merid(0,) * merid(12) '. We now show that f and g are quasi-inverses.
First we show by induction that g(f(x)) = x forall x : X2. If x = N,
then g(f(N)) = g(base) = N, so we have refly : g(f(N)) =N. Ifx =S,

2There is an unfortunate clash of notation with dependent pair types, which of course
are also written with a X. However, context usually disambiguates.
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then g(f(S)) = g(base) = N, and we choose the equality merid(1;) :
g(f(S)) = S. It remains to show that for any y : 2, these equalities
are preserved as x varies along merid(y), which is to say that when refly
is transported along merid(y) it yields merid(12). By transport in path
spaces and pulled back fibrations, this means we are to show that

g(f(merid(y))) "« refly * merid(y) = merid(1,).

Of course, we may cancel refly. Now by 2-induction, we may assume
either y = 0 or y = 1,. If y = 0, then we have

g(f(merid(02))) " * merid(02) = g(loop) ~* * merid(0;)
= (merid(02) * merid(lg_)fl)i1 * merid(0z)
= merid(15) * merid(03) " * merid(0)
= merid(1,)

while if y = 15, then we have

g(f(merid(lz)))_1 *merid(13) = g(reflbase)fl *merid(15)
= refly !+ merid(1,)
= merid(13).

Thus, for all x : X2, we have g(f(x)) = x.

Now we show by induction that f(g(x)) = x for all x : S'. If x =
base, then f(g(base)) = f(N) = base, so we have refly,s. : f(g(base)) =
base. It remains to show that this equality is preserved as x varies along
loop, which is to say that it is transported along loop to itself. Again, by
transport in path spaces and pulled back fibrations, this means to show
that

f(g(|00p))_1 *reflpase * loop = reflpgge.

However, we have

f(g(loop)) = f(merid(Oz) . merid(lz)fl)
= f(merid(02)) * f(merid(13))

= loop * reflp,se
so this follows easily. O

Topologically, the two-point space 2 is also known as the 0-dimensional
sphere, S°. (For instance, it is the space of points at distance 1 from the
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origin in R}, just as the topological 1-sphere is the space of points at
distance 1 from the origin in ]RZ.) Thus, Lemma 6.5.1 can be phrased
suggestively as £S° ~ S!. In fact, this pattern continues: we can define
all the spheres inductively by

§%:=2 and S"Hl:=3xg" (6.5.2)

We can even start one dimension lower by defining S~! := 0, and ob-
serve that 2.0 ~ 2.

To prove carefully that this agrees with the definition of 5" from the
previous section would require making the latter more explicit. How-
ever, we can show that the recursive definition has the same univer-
sal property that we would expect the other one to have. If (A, ap)
and (B, bg) are pointed types (with basepoints often left implicit), let
Map, (A, B) denote the type of based maps:

Map*(Ar B) = Z (f(QO) = bO)

f:A—=B

Note that any type A gives rise to a pointed type A, := A + 1 with
basepoint inr(x); this is called adjoining a disjoint basepoint.

Lemma 6.5.3. For a type A and a pointed type (B, by), we have
Map, (A4, B) ~ (A — B)

Note that on the right we have the ordinary type of unbased functions
from A to B.

Proof. From left to right, given f : AL — B with p : f(inr(x)) = by, we
have foinl : A — B. And from right to left, given g : A — B we define
¢ AL — Bby ¢(inl(a)) := g(a) and g'(inr(u)) := by. We leave it to the
reader to show that these are quasi-inverse operations. O

In particular, note that 2 ~ 1. Thus, for any pointed type B we have
Map,(2,B) ~ (1 — B) ~ B.

Now recall that the loop space operation () acts on pointed types, with
definition () (A, ag) := (agp =4 4ao, refly,). We can also make the suspen-
sion ¥ act on pointed types, by (A4, a9) := (XA, N).

Lemma 6.5.4. For pointed types (A, ay) and (B, by) we have

Map, (XA, B) ~ Map, (A, QB).
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Proof. We first observe the following chain of equivalences:

Map, (£4,B) == Y (F(N) = o)

fXA—B

~ ) (pri(f) = bo)
F:(bn:B) Los:B) (A= (bn=Ds))

~ Y (A= (by=1bs)) x (by = bo)
(bu:B) (bs:B)

The first equivalence is by the universal property of suspensions, which
says that
(ZA%B) ~ ( Y Y (Aa(bn:bs)))
(bn:B) (bs:B)
with the function from right to left given by the recursor (see Exercise 6.11).
The second and third equivalences are by Exercise 2.10, along with a
reordering of components. Finally, the last equivalence follows from
Lemma 3.11.9, since by Lemma 3.11.8, ¥ ;,.p)(bn = bo) is contractible
with center (by, refly,).
The proof is now completed by the following chain of equivalences:

Y (A= (bo=10bs))~ ) Y. Y. (g(ag) =9q)
beB (beiB) (g:A— (by=bs)) (g:bo—bs)
o~ )y Y. (g(ag) = pra(7))

(r:Eps:3) (bo=Ds)) (g:A—(bo=pr(r)))

~ Z (g(ag) = reflho)

§:A—(bo=bo)
= Map, (A, QB).

Similar to before, the first and last equivalences are by Lemmas 3.11.8
and 3.11.9, and the second is by Exercise 2.10 and reordering of compo-
nents. O

In particular, for the spheres defined as in (6.5.2) we have
Map, (8", B) ~ Map, (8" "1,QB) ~ - - - ~ Map, (2,)"B) ~ Q"B.

Thus, these spheres 5" have the universal property that we would expect
from the spheres defined directly in terms of n-fold loop spaces as in §6.4.
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6.6 Cell complexes

In classical topology, a cell complex is a space obtained by successively
attaching discs along their boundaries. It is called a CW complex if the
boundary of an n-dimensional disc is constrained to lie in the discs of
dimension strictly less than n (the (n — 1)-skeleton).

Any finite CW complex can be presented as a higher inductive type,
by turning n-dimensional discs into n-dimensional paths and partition-
ing the image of the attaching map into a source and a target, with each
written as a composite of lower dimensional paths. Our explicit defini-
tions of S' and S? in §6.4 had this form.

Another example is the torus T2, which is generated by:

e apointh: T2,
® apathp:b=0b,
e another pathg:b = b, and
* a2-patht:p-g=q-p.
Perhaps the easiest way to see that this is a torus is to start with a rect-

angle, having four corners a,b,c,d, four edges p,q,7,s, and an interior
which is manifestly a 2-path t from p=qtor+s:

Now identify the edge r with g and the edge s with p, resulting in also
identifying all four corners. Topologically, this identification can be seen
to produce a torus.

The induction principle for the torus is the trickiest of any we’ve writ-
ten out so far. Given P : T?> — U, for a section [T(x.12) P(x) we require

e apointb’ : P(b),

* apathp': b/ =]V,

* apathq': b’ =] V/,and

e a2-path t’ between the “composites” p’ *¢" and g’ * p’, lying over t.
In order to make sense of this last datum, we need a composition op-

eration for dependent paths, but this is not hard to define. Then the
induction principle gives a function f : T],.12) P(x) such that f(b) = v
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Figure 6.3: A 2-disc made out of a hub and spokes

and apd¢(p) = p’ and apd¢(q) = 4’ and something like ”apdjzc(t) =t
However, this is not well-typed as it stands, firstly because the equalities
apd¢(p) = p' and apd¢(q) = ¢’ are not judgmental, and secondly be-
cause apdy only preserves path concatenation up to homotopy. We leave
the details to the reader (see Exercise 6.1).

Of course, another definition of the torus is T? := &1 x &1 (in Exer-
cise 6.3 we ask the reader to verify the equivalence of the two). The cell-
complex definition, however, generalizes easily to other spaces without
such descriptions, such as the Klein bottle, the projective plane, etc. But
it does get increasingly difficult to write down the induction principles,
requiring us to define notions of dependent n-paths and of apd acting on
n-paths. Fortunately, once we have the spheres in hand, there is a way
around this.

6.7 Hubs and spokes

In topology, one usually speaks of building CW complexes by attaching
n-dimensional discs along their (n — 1)-dimensional boundary spheres.
However, another way to express this is by gluing in the cone on an (n —
1)-dimensional sphere. That is, we regard a disc as consisting of a cone
point (or “hub”), with meridians (or “spokes”) connecting that point to
every point on the boundary, continuously, as shown in Figure 6.3.

We can use this idea to express higher inductive types containing n-
dimensional path constructors for n > 1 in terms of ones containing
only 1-dimensional path constructors. The point is that we can obtain
an n-dimensional path as a continuous family of 1-dimensional paths
parametrized by an (n — 1)-dimensional object. The simplest (n — 1)-
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dimensional object to use is the (n — 1)-sphere, although in some cases
a different one may be preferable. (Recall that we were able to define
the spheres in §6.5 inductively using suspensions, which involve only 1-
dimensional path constructors. Indeed, suspension can also be regarded
as an instance of this idea, since it involves a family of 1-dimensional
paths parametrized by the type being suspended.)

For instance, the torus T? from the previous section could be defined
instead to be generated by:

e apointb : T?,

® apathp:b =09,

e another pathg:b =1,

* apoint/: T?, and

e foreach x : S!,a paths(x) : f(x) = h, where f : S' — T2 is defined

by f(base) := b and f(loop) :=p+q-p~'-g7 L.

The induction principle for this version of the torus says that given P :
T? — U, for a section [ ,.72) P(x) we require

e apoint?’ : P(b),

* apathp’: b/ =]V,

* apathg : b/ =]V,

e apointh’: P(h), and

e for each x : S!, a path g(x) :f(x) h', where g : [T(,.q1) P(f(x)) is

defined by g(base) := b and apd, (loop) := t(p'+q’* () te(gH)h.
In the latter, - denotes concatenation of dependent paths, and the

definition of ¢ : (b’ :j‘j(loop) b)) ~ (v :f:g; b') is left to the reader.

Note that there is no need for dependent 2-paths or apd?. We leave it to
the reader to write out the computation rules.

Remark 6.7.1. One might question the need for introducing the hub point
h; why couldn’t we instead simply add paths continuously relating the
boundary of the disc to a point on that boundary, as shown in Figure 6.4?
However, this does not work without further modification. For if, given
some f : S — X, we give a path constructor connecting each f(x) to
f (base), then what we end up with is more like the picture in Figure 6.5
of a cone whose vertex is twisted around and glued to some point on its
base. The problem is that the specified path from f (base) to itself may not
be reflexivity. We could remedy the problem by adding a 2-dimensional
path constructor to ensure this, but using a separate hub avoids the need
for any path constructors of dimension above 1.
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Figure 6.4: Hubless spokes Figure 6.5: Hubless spokes, 11

Remark 6.7.2. Note also that this “translation” of higher paths into 1-
paths does not preserve judgmental computation rules for these paths,
though it does preserve propositional ones.

6.8 Pushouts

From a category-theoretic point of view, one of the important aspects of
any foundational system is the ability to construct limits and colimits. In
set-theoretic foundations, these are limits and colimits of sets, whereas in
our case they are limits and colimits of types. We have seen in §2.15 that
cartesian product types have the correct universal property of a categor-
ical product of types, and in Exercise 2.9 that coproduct types likewise
have their expected universal property.

As remarked in §2.15, more general limits can be constructed using
identity types and X-types, e.g. the pullbackof f : A -+ Cand g: B — C
is Y(a:a) L) (f(a) = g(b)) (see Exercise 2.11). However, more gen-
eral colimits require identifying elements coming from different types,
for which higher inductives are well-adapted. Since all our construc-
tions are homotopy-invariant, all our colimits are necessarily homotopy
colimits, but we drop the ubiquitous adjective in the interests of conci-
sion.

In this section we discuss pushouts, as perhaps the simplest and one of
the most useful colimits. Indeed, one expects all finite colimits (for a suit-
able homotopical definition of “finite”) to be constructible from pushouts
and finite coproducts. It is also possible to give a direct construction of
more general colimits using higher inductive types, but this is somewhat
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technical, and also not completely satisfactory since we do not yet have
a good fully general notion of homotopy coherent diagrams.
Suppose given a span of types and functions:

CLB

9= fl

A

The pushout of this span is the higher inductive type A LI® B presented
by

e afunctioninl: A —» ALICB,

e afunctioninr: B — AL B, and

e foreachc: Capath glue(c) : (inl(f(c)) = inr(g(c))).

In other words, A LI€ Bis the disjoint union of A and B, together with for
every ¢ : C a witness that f(c) and g(c) are equal. The recursion principle
says that if D is another type, we can define amap s : AL B — D by
defining

e foreacha: A, the value of s(inl(a)) : D,

e for each b : B, the value of s(inr(b)) : D, and
e foreach ¢ : C, the value of ap,(glue(c)) : s(inl(f(c))) = s(inr(g(c))).

We leave it to the reader to formulate the induction principle. It also
implies the uniqueness principle that if s,s’ : AU B — D are two maps
such that

s(inl(a)) = §'(inl(a))
s(inr(b)) = §'(inr(b))

aps(glue(c)) = apy(glue(c)) (modulo the previous two equalities)

forevery a,b,c, thens = ¢

To formulate the universal property of a pushout, we introduce the
following.
Definition 6.8.1. Given a span 7 = (A Lcs B) and a type D, a
cocone under ¥ with vertex D consists of functions i : A — D and
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j B — Dand ahomotopy & : T (c.c)(i(f(c)) = j(g(c))):

]

A D

1 |-

We denote by coconeg (D) the type of all such cocones, i.e.

coconey (D) := ) Yoo T G j(8(c)))-

(i:A—D) (j:B—D) (c:C)

Of course, there is a canonical cocone under 2 with vertex A LI B
consisting of inl, inr, and glue.

The following lemma says that this is the universal such cocone.
Lemma 6.8.2. For any type E, there is an equivalence
(AUSB — E) ~ coconey(E).

Proof. Let’s consider an arbitrary type E : . There is a canonical func-
tion ¢, defined by

(AU¢B — E) — coconey(E)
t +—— (toinl toinr, ap; o glue)

We write informally ¢ + t o ¢, for this function. We show that this is an
equivalence.

Firstly, given a c = (i,],h) : coconeg(E), we need to construct a map
s(c) from A LI Bto E.

8
—

C B
Iy
E

A*>

—.
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The map s(c) is defined in the following way

s(c)(inl(a)) :=i(a),
s(c)(inr (b)) := j(b),
aps(c) (glue(x)) := h(x).
We have defined a map

{cocone@(E) — (AU°B = E)
c — s(c)

and we need to prove that this map is an inverse to t — t o ¢;;. On the
one hand, if ¢ = (i,j,h) : coconey(E), we have

s(c) o s(c) oinl,s(c) oinr, apg(c) © glue)
Aa.s(c)(inl(a)), Ab.s(c)(inr(b)), Ax.apc)(glue(x)))

= (
= (
= (Aa.i(a), Ab.j(b), Ax.h(x))
(
c.

i,j,h)

On the other hand, if t : AU B — E, we want to prove thats(tocy) = t.

Fora: A, we have
s(tocy)(inl(a)) = t(inl(a))

because the first component of t o ¢, is t o inl. In the same way, for b : B

we have
s(tocy)(inr(b)) = t(inr(b))

and for x : C we have

aPs(toc.) (glue(x)) = ap;(glue(x))

hences(tocy) =t.
This proves that ¢ — s(c) is a quasi-inverse to t — f o ¢, as desired.
O

A number of standard homotopy-theoretic constructions can be ex-
pressed as (homotopy) pushouts.

e The pushout of the span 1 <~ A — 1 is the suspension XA (see
§6.5).

¢ The pushout of A < A x B P2, Bis called the j join of A and B,
written A * B.
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e The pushoutof1 < A i> B is the cone or cofiber of f.
¢ If A and B are equipped with basepoints ag : A and by : B, then the
pushout of A £ 1% Bis the wedge AV B.

e If A and B are pointed as before, define f : AVB — A X B by

f(inl(a)) := (a,bo) and f(inr(b)) := (ao, b), with f(glue) := refl ; 4)-
Then the cone of f is called the smash product A A B.

We will discuss pushouts further in Chapters 7 and 8.

Remark 6.8.3. As remarked in §3.7, the notations A and V for the smash
product and wedge of pointed spaces are also used in logic for “and”
and “or”, respectively. Since types in homotopy type theory can behave
either like spaces or like propositions, there is technically a potential for
conflict — but since they rarely do both at once, context generally dis-
ambiguates. Furthermore, the smash product and wedge only apply to
pointed spaces, while the only pointed mere propositionis T =1—and
wehavel1 A1 =1and 1V 1 = 1 for either meaning of A and V.

Remark 6.8.4. Note that colimits do not in general preserve truncated-
ness. For instance, SY and 1 are both sets, but the pushout of 1 < 8051
is S!, which is not a set. If we are interested in colimits in the category
of n-types, therefore (and, in particular, in the category of sets), we need
to “truncate” the colimit somehow. We will return to this point in §6.9
and Chapters 7 and 10.

6.9 Truncations

In §3.7 we introduced the propositional truncation as a new type form-
ing operation; we now observe that it can be obtained as a special case
of higher inductive types. This reduces the problem of understanding
truncations to the problem of understanding higher inductives, which
at least are amenable to a systematic treatment. It is also interesting be-
cause it provides our first example of a higher inductive type which is
truly recursive, in that its constructors take inputs from the type being
defined (as does the successor succ : N — IN).

Let A be a type; we define its propositional truncation || A|| to be the
higher inductive type generated by:

e A function |-| : A — ||A||, and
e foreachx,y:||A|,apathx =y.
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Note that the second constructor is by definition the assertion that || A||
is a mere proposition. Thus, the definition of ||A|| can be interpreted as
saying that || A|| is freely generated by a function A — ||A|| and the fact
that it is a mere proposition.

The recursion principle for this higher inductive definition is easy to
write down: it says that given any type B together with

¢ afunctiong: A — B, and
e forany x,y: B,apathx =p v,

there exists a function f : ||A|| — B such that

* f(la]) =g(a) foralla: A, and
e forany x,y : [|Al|, the function ap takes the specified path x =y
in || A|| to the specified path f(x) = f(y) in B (propositionally).

These are exactly the hypotheses that we stated in §3.7 for the recursion
principle of propositional truncation — a function A — B such that B
is a mere proposition — and the first part of the conclusion is exactly
what we stated there as well. The second part (the action of ap £) was not
mentioned previously, but it turns out to be vacuous in this case, because
B is a mere proposition, so any two paths in it are automatically equal.

There is also an induction principle for ||A||, which says that given
any B : ||A]| — U together with

* afunction g : [](,.4) B(|a[), and

e for any x,y : ||A]| and u : B(x) and v : B(y), a dependent path
qg:u :fj(x’y) v, where p(x,y) is the path coming from the second
constructor of ||A|l,

there exists f : (x ) B(x) such that f(|a|]) = g(a) fora : A, and
also another computatlon rule. However, because there can be at most
one function between any two mere propositions (up to homotopy), this
induction principle is not really useful (see also Exercise 3.17).

We can, however, extend this idea to construct similar truncations
landing in n-types, for any n. For instance, we might define the O-trunca-
tion || A||, to be generated by

* A function |-|,: A — [|A]y, and
e Foreachx,y: ||Aljand each p,q: x =y, apathp =g.

Then || Al|, would be freely generated by a function A — ||A||, together
with the assertion that || Al|, is a set. A natural induction principle for it
would say that given B : ||A||, — U together with
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* afunction g : [T(,:2) B(|aly), and
e for any x,y : ||Al|, with z : B(x) and w : B(y), and each p,q :

=Bw

x =ywithr:z :g wands : z :5 w,a2-pathov:r :z(xypq) s,
where u(x,y,p,q) : p = q is obtained from the second constructor

of [ Allg,

there exists f : T](x.4|,) B(x) such that f(|a[,) = g(a) foralla : A, and

also apd f( u(x,y,p,q)) is the 2-path specified above. (As in the proposi-
tional case, the latter condition turns out to be uninteresting.) From this,
however, we can prove a more useful induction principle.

Lemma 6.9.1. Suppose given B : || A||, — U together with g : [ (,.4) B(laly),
and assume that each B(x) is a set. Then there exists f : [, a),) B(x) such
that f(|aly) = g(a) forall a : A.

Proof. It suffices to construct, for any x,y,z,w, p,q,7,s as above, a 2-path
v:ir :E (vapa) S However, by the definition of dependent 2-paths, this
is an ordinary 2-path in the fiber B(y). Since B(y) is a set, a 2-path exists

between any two parallel paths. O
This implies the expected universal property.

Lemma 6.9.2. For any set B and any type A, composition with |—|, : A —
|| Al| determines an equivalence

(IAllg = B) =~ (A— B).

Proof. The special case of Lemma 6.9.1 when B is the constant family
gives a map from right to left, which is a right inverse to the “compose
with |-|,” function from left to right. To show that it is also a left inverse,
leth: ||All, = B, and define /" : ||A|, — B by applying Lemma 6.9.1 to
the composite a — h(|aly). Thus, 1 (|a|,) = h(|aly).

However, since B is a set, for any x : ||A||, the type h(x) = I'(x)is a
mere proposition, and hence also a set. Therefore, by Lemma 6.9.1, the
observation that //(|a|,) = h(la|,) for any a : A implies h(x) = h'(x) for
any x : ||Al|,, and hence h = I/’ O

For instance, this enables us to construct colimits of sets. We have

seen thatif A & C % Bisa span of sets, then the pushout A LI B

may no longer be a set. (For instance, if A and B are 1 and C is 2, then
the pushout is S1.) However, we can construct a pushout that is a set,
and has the expected universal property with respect to other sets, by
truncating.
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Lemma 6.9.3. Let A <£ C3 Bbea span of sets. Then for any set E, there is
a canonical equivalence

(HA UCBHO — E) ~ coconeg(E).

Proof. Compose the equivalences in Lemmas 6.8.2 and 6.9.2. O

We refer to || A UC B, as the set-pushout of f and g, to distinguish
it from the (homotopy) pushout A UC B. Alternatively, we could modify
the definition of the pushout in §6.8 to include the 0-truncation construc-
tor directly, avoiding the need to truncate afterwards. Similar remarks
apply to any sort of colimit of sets; we will explore this further in Chap-
ter 10.

However, while the above definition of the 0-truncation works — it
gives what we want, and is consistent — it has a couple of issues. Firstly,
it doesn’t fit so nicely into the general theory of higher inductive types. In
general, it is tricky to deal directly with constructors such as the second
one we have given for || Al|,, whose inputs involve not only elements of
the type being defined, but paths in it.

This can be gotten round fairly easily, however. Recall in §5.1 we
mentioned that we can allow a constructor of an inductive type W to
take “infinitely many arguments” of type W by having it take a single
argument of type IN — W. There is a general principle behind this: to
model a constructor with funny-looking inputs, use an auxiliary induc-
tive type (such as IN) to parametrize them, reducing the input to a simple
function with inductive domain.

For the O-truncation, we can consider the auxiliary higher inductive
type S generated by two points 4,b : S and two paths p,q : a = b. Then
the fishy-looking constructor of ||Al|, can be replaced by the unobjec-
tionable

* Forevery f: S — [|Allo, a path aps(p) = ap¢(q).

Since to give a map out of S is the same as to give two points and two
parallel paths between them, this yields the same induction principle.

A more serious problem with our current definition of O-truncation,
however, is that it doesn’t generalize very well. If we want to describe
a notion of definition of “n-truncation” into n-types uniformly for all » :
IN, then this approach is unfeasible, since the second constructor would
need a number of arguments that increases with n. In §7.3, therefore, we
will use a different idea to construct these, based on the observation that
the type S introduced above is equivalent to the circle S'. This includes
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the O-truncation as a special case, and satisfies generalized versions of
Lemmas 6.9.1 and 6.9.2.

6.10 Quotients

A particularly important sort of colimit of sets is the quotient by a relation.
Thatis, let Abeasetand R : A x A — Prop a family of mere propositions
(a mere relation). Its quotient should be the set-coequalizer of the two
projections

E(a,b:A)R(a/ b) = A
We can also describe this directly, as the higher inductive type A/R gen-
erated by

e A functiong: A — A/R;

e Foreacha,b: Asuch that R(a,b), an equality q(a) = g(b); and

® The O-truncation constructor: forall x,y : A/Rand r,s : x =y, we
have r = s.

We will sometimes refer to this higher inductive type A/R as the set-
quotient of A by R, to emphasize that it produces a set by definition.
(There are more general notions of “quotient” in homotopy theory, but
they are mostly beyond the scope of this book. However, in §9.9 we will
consider the “quotient” of a type by a 1-groupoid, which is the next level
up from set-quotients.)

Remark 6.10.1. Itis not actually necessary for the definition of set-quotients,
and most of their properties, that A be a set. However, this is generally
the case of most interest.

Lemma 6.10.2. The function q : A — A/ R is surjective.

Proof. We must show that for any x : A/R there merely exists ana : A
with g(a) = x. We use the induction principle of A/R. The first case
is trivial: if x is g(a), then of course there merely exists an a4 such that
g(a) = g(a). And since the goal is a mere proposition, it automatically
respects all path constructors, so we are done. O

We can now prove that the set-quotient has the expected universal
property of a (set-)coequalizer.

Lemma 6.10.3. For any set B, precomposing with q yields an equivalence

(A/R—B) = (¥ TI R@b) = (f(a) = £(b))).

(f:A—B) (a,b:A)
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Proof. The quasi-inverse of — o g, going from right to left, is just the re-
cursion principle for A/R. That is, given f : A — B such that

[T R(a,b) = (f(a) = £(b)),

a,b:A

we define f : A/R — Bby f(q(a)) := f(a). This defining equation says
precisely that (f — f) is a right inverse to (- o q).

For it to also be a left inverse, we must show that forany g: A/R — B
and x : A/R we have g(x) = go4(x). However, by Lemma 6.10.2 there
merely exists a such that g(a) = x. Since our desired equality is a mere
proposition, we may assume there purely exists such an 4, in which case

8(x) = g(q(a)) =g°4q(q(a)) = goq(x). O

Of course, classically the usual case to consider is when R is an equiv-
alence relation, i.e. we have

o reflexivity: [1(;.4) R(a,a),
e symmetry: [](,5.4) R(a,b) = R(b,a), and
e transitivity: [T, .c) R(a,b) x R(b,c) — R(a,c).

In this case, the set-quotient A/R has additional good properties, as we
will see in §10.1: for instance, we have R(a,b) ~ (q(a) =4,r q(b)). We
often write an equivalence relation R(a, b) infix as a ~ b.

The quotient by an equivalence relation can also be constructed in
other ways. The set theoretic approach is to consider the set of equiv-
alence classes, as a subset of the power set of A. We can mimic this
“impredicative” construction in type theory as well.

Definition 6.10.4. A predicate P : A — Prop is an equivalence class of a
relation R : A X A — Prop if there merely exists an a : A such that for all
b: Awehave R(a,b) ~ P(b).

As R and P are mere propositions, the equivalence R(a,b) ~ P(b)
is the same thing as implications R(a,b) — P(b) and P(b) — R(a,b).
And of course, for any a : A we have the canonical equivalence class
P,(b) := R(a,b).
Definition 6.10.5. We define
AJR:={P:A — Prop|Pisanequivalence class of R } .

The function ¢’ : A — A J/ R is defined by ¢’ (a) := P,.
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Theorem 6.10.6. For any equivalence relation R on A, the type A /| R is equiv-
alent to the set-quotient A/R.

Proof. First, note that if R(a,b), then since R is an equivalence relation
we have R(a,c) < R(b,c) for any ¢ : A. Thus, R(a,c) = R(b,c) by
univalence, hence P, = P, by function extensionality, i.e. ¢'(a) = ¢/(b).
Therefore, by Lemma 6.10.3 we have an induced map f : A/R —+ A /R
such that foq =¢'.

We show that f is injective and surjective, hence an equivalence. Sur-
jectivity follows immediately from the fact that ¢4’ is surjective, which in
turn is true essentially by definition of A / R. For injectivity, if f(x) =
f(y), then to show the mere proposition x = y, by surjectivity of g we
may assume x = g(a) and y = ¢q(b) for some a,b : A. Then R(a,c) =
f(g(a))(c) = f(q(b))(c) = R(b,c) forany ¢ : A, and in particular R(a,b) =
R(b,b). But R(b, b) is inhabited, since R is an equivalence relation, hence
sois R(a,b). Thus q(a) = g(b) and so x = y. O

In §10.1.3 we will give an alternative proof of this theorem. Note that
unlike A/R, the construction A // R raises universe level: if A : U; and
R: A — A — Propy, then in the definition of A / R we must also use
Propy, to include all the equivalence classes, so that A / R : U;yq. Of
course, we can avoid this if we assume the propositional resizing axiom
from §3.5.

Remark 6.10.7. The previous two constructions provide quotients in gen-
erality, but in particular cases there may be easier constructions. For
instance, we may define the integers Z as a set-quotient

Z:=(NxN)/~
where ~ is the equivalence relation defined by
(a,b) ~ (c,d):=(a+d=b+c).

In other words, a pair (a, b) represents the integer a — b. In this case, how-
ever, there are canonical representatives of the equivalence classes: those of
the form (n,0) or (0, n).

The following lemma says that when this sort of thing happens, we
don’t need either general construction of quotients. (A functionr: A —
A s called idempotentif ror =r.)

Lemma 6.10.8. Suppose ~ is a relation on a set A, and there exists an idem-
potent r : A — A such that (r(x) = r(y)) ~ (x ~ y) forall x,y : A. (This
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implies ~ is an equivalence relation.) Then the type
)= (Z r(x) = x)
x:A

satisfies the universal property of the set-quotient of A by ~, and hence is equiv-
alent to it. In other words, there is a map q : A — (A/~) such that for every
set B, precomposition with q induces an equivalence

((4/~)~B) = ( YT (e~y) = (300 =) 6109)

(g:A—B) (xy:A)

Proof. Leti: (x.4)7(r(x)) = r(x) witness idempotence of r. The map g :
A — (A/~) is defined by g(x) := (r(x),i(x)). Note that since A is a set,
we have g(x) = g(y) if and only if r(x) = r(y), hence (by assumption) if
and only if x ~ y. We define a map e from left to right in (6.10.9) by

e(f):=(foq, ),

where the underscore _ denotes the following proof: if x,y : A and x ~
y, then g(x) = q(y) as observed above, hence f(q(x)) = f(q(y)). To
see that e is an equivalence, consider the map ¢’ in the opposite direction
defined by
¢ (g,5)(x,p) = g(x).
Givenany f : (A/~) — B,
¢ (e(f)(x,p) = fa(x)) = f(r(x),i(x)) = f(x,p)

where the last equality holds because p : r(x) = x and so (x,p) =
(r(x),i(x)) because A is a set. Similarly we compute

e(é'(g,s)) =e(gopry) = (gopriog, ).

Because B is a set we need not worry about the _ part, while for the first
component we have

gpri(q(x))) = g(r(x)) = g(x),

where the last equation holds because r(x) ~ x, and g respects ~ by the
assumption s. O

Corollary 6.10.10. Suppose p : A — B is a retraction between sets. Then B is
the quotient of A by the equivalence relation ~ defined by

(a1 ~a2) := (p(ar) = p(az)).



6.10 QUOTIENTS 265

Proof. Suppose s : B — A is a section of p. Thensop : A — Aisan
idempotent which satisfies the condition of Lemma 6.10.8 for this ~, and
s induces an isomorphism from B to its set of fixed points. O

Remark 6.10.11. Lemma 6.10.8 applies to Z with the idempotent r : IN X
IN — IN x IN defined by

Ha,b) = (a—1b,0) ifa>0b,
"7 1(0,b—a)  otherwise.

(This is a valid definition even constructively, since the relation > on
N is decidable.) Thus a non-negative integer is canonically represented
as (k,0) and a non-positive one by (0,m), for k,m : IN. This division
into cases implies the following “induction principle” for integers, which
will be useful in Chapter 8. (As usual, we identify a natural number
n with the corresponding non-negative integer, i.e. with the image of
(n,0) :IN x N in Z.)

Lemma 6.10.12. Suppose P : Z — U is a type family and that we have

i dg : P(O),

o dy : [Ty P(n) — P(succ(n)), and

o d_: [y P(—n) = P(—succ(n)).
Then we have f : [1(,.z) P(z) such that

* f(0) =do,

* f(succ(n)) =d(n, f(n)) foralln : N, and

® f(—succ(n)) =d_(n, f(—n)) foralln : N.
Proof. For purposes of this proof, let Z denote Y (.nxn)(r(x) = x),
where r is the above idempotent. (We can then transport the result to
any equivalent definition of Z.) Let g : IN x N — Z be the quotient
map, defined by g(x) = (r(x),i(x)) as in Lemma 6.10.8. Now define

Q:=Pog: NN xIN — U. By transporting the given data across appro-
priate equalities, we obtain

d6 1 Q(0,0)
d, 1_]1[\] Q(n,0) — Q(succ(n),0)

d_: H Q(0,n) — Q(0,succ(n)).
n:IN
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Note also that since g(n,m) = g(succ(n),succ(m)), we have an induced
equivalence

enm - Q(n,m) ~ Q(succ(n), succ(m)).

We can then construct g : [T (x.nxn) Q(x) by double induction on x:

£(0,0) := dj,
g(succ(n),0) :=d', (n,¢(n,0)),
¢(0,succ(m)) :=d" (m,g(0,m)),
g(succ(n),succ(m)) = epm(g(n,m)).

Now we have pr; : Z — IN x IN, with the property that g o pr; = id.
In particular, therefore, we have Q o pr; = P, and hence a family of
equivalences s : [](;.z) Q(pri(z)) =~ P(z). Thus, we can define f(z) =
s(z,g(pr1(z))) to obtain f : [](..z) P(z), and verify the desired equali-
ties. O

We will sometimes denote a function f : [](..z) P(z) obtained from
Lemma 6.10.12 with a pattern-matching syntax, involving the three cases
dy,dy,and d_:

f(0) =do
f(suce(n)) :=d(n, f(n))
f(=suce(n)) ==d_(n, f(—n))

We use := rather than : =, as we did for the path constructors of higher in-
ductive types, to indicate that the “computation” rules implied by Lemma 6.’
are only propositional equalities. For example, in this way we can define
the n-fold concatenation of a loop for any integer #.

Corollary 6.10.13. Let A be a type witha : Aand p : a = a. There is a
function [1.7z)(a = a), denoted n — p", defined by

0

p = refl,
prli=ptep forn>0
p”_1 =pt p_l forn <0.

We will discuss the integers further in §§6.11 and 11.1.
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6.11 Algebra

In addition to constructing higher-dimensional objects such as spheres
and cell complexes, higher inductive types are also very useful even
when working only with sets. We have seen one example already in
Lemma 6.9.3: they allow us to construct the colimit of any diagram of
sets, which is not possible in the base type theory of Chapter 1. Higher
inductive types are also very useful when we study sets with algebraic
structure.

As a running example in this section, we consider groups, which are
familiar to most mathematicians and exhibit the essential phenomena
(and will be needed in later chapters). However, most of what we say
applies equally well to any sort of algebraic structure.

Definition 6.11.1. A monoid is a set G together with

e a multiplication function G x G — G, written infix as (x,y) — x - y;
and

* a unit element e : G; such that
e forany x: G,wehavex-e = xand e x = x; and

e forany x,y,z: G,wehavex- (y-z) = (x-y) - z.
A group is a monoid G together with

e an inversion function i : G — G, written x — x~!; such that

1

e foranyx: Gwehavex-x ! =candx ! - x=e.

Remark 6.11.2. Note that we require a group to be a set. We could con-
sider a more general notion of “co-group” which is not a set, but this
would take us further afield than is appropriate at the moment. With
our current definition, we may expect the resulting “group theory” to
behave similarly to the way it does in set-theoretic mathematics (with
the caveat that, unless we assume LEM, it will be “constructive” group
theory).

Example 6.11.3. The natural numbers IN are a monoid under addition,
with unit 0, and also under multiplication, with unit 1. If we define the
arithmetical operations on the integers Z in the obvious way, then as
usual they are a group under addition and a monoid under multiplica-
tion (and, of course, a ring). For instance, if u, v € Z are represented by
(a,b) and (c,d), respectively, then u + v is represented by (a +c¢, b+ d),
—u is represented by (b,a), and uv is represented by (ac + bd, ad + bc).
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Example 6.11.4. We essentially observed in §2.1 that if (A, a) is a pointed
type, then its loop space Q)(A,a) := (a =4 a) has all the structure of a
group, except that it is not in general a set. It should be an “co-group” in
the sense mentioned in Remark 6.11.2, but we can also make it a group
by truncation. Specifically, we define the fundamental group of A based
ata: Atobe
71 (A,a) = [Q(A,a) .

This inherits a group structure; for instance, the multiplication 711 (4, 2) x
m1(A,a) — m1(A,a) is defined by double induction on truncation from
the concatenation of paths.

More generally, the n'' homotopy group of (A,a) is 7,(A,a) =
Q" (A,a)|y Then 7,(A,a) = m(Q"1(A,a)) for n > 1, so it is also
a group. (When n = 0, we have 7o(A) = ||A||,, which is not a group.)
Moreover, the Eckmann-Hilton argument (Theorem 2.1.6) implies that if
n > 2, then 71, (A, a) is an abelian group, i.e. we have x - y = y - x for all
x,y. Chapter 8 will be largely the study of these groups.

One important notion in group theory is that of the free group gener-
ated by a set, or more generally of a group presented by generators and
relations. It is well-known in type theory that some free algebraic ob-
jects can be defined using ordinary inductive types. For instance, the free
monoid on a set A can be identified with the type List(A) of finite lists of
elements of A, which is inductively generated by

* a constructor nil : List(A), and

e foreach ¢ : List(A) and a : A, an element cons(a, {) : List(A).

We have an obvious inclusion 7 : A — List(A) defined by a — cons(a, nil).
The monoid operation on List(A) is concatenation, defined recursively

by
nil - £:=7¢
cons(a, l1) - U := cons(a, (1 - ().
It is straightforward to prove, using the induction principle for List(A),

that List(A) is a set and that concatenation of lists is associative and has
nil as a unit. Thus, List(A) is a monoid.

Lemma 6.11.5. For any set A, the type List(A) is the free monoid on A. In
other words, for any monoid G, composition with 1 is an equivalence

homyoneid (List(A), G) ~ (A — G),

where homyyoneiq (—, —) denotes the set of monoid homomorphisms (functions
which preserve the multiplication and unit).
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Proof. Given f : A — G, we define f : List(A) — G by recursion:
f(nil):=e
f(cons(a, £)) := f(a) - f(£).

It is straightforward to prove by induction that f is a monoid homomor-
phism, and that f — f is a quasi-inverse of (- o 7); see Exercise 6.8. [

This construction of the free monoid is possible essentially because
elements of the free monoid have computable canonical forms (namely,
finite lists). However, elements of other free (and presented) algebraic
structures — such as groups — do not in general have computable canon-
ical forms. For instance, equality of words in group presentations is al-
gorithmically undecidable. However, we can still describe free algebraic
objects as higher inductive types, by simply asserting all the axiomatic
equations as path constructors.

For example, let A be a set, and define a higher inductive type F(A)
with the following generators.

e Afunctionzy: A — F(A).
e A functionm : F(A) x F(A) — F(A).
e Anelemente: F(A).

E(A).

e A functioni: F(A) —
(A), an equality m(x,m(y,z)) = m(m(x,y),z).
e For each x : F(A), equalities m(x,e) = x and m(e, x) = x.
e For each x : F(A), equalities m(x,i(x)) = e and m(i(x), x) = e.
¢ The 0-truncation constructor: for any x,y : F(A) and p,q : x =y,
we have p = 4.

e Foreachx,y,z: F

The first constructor says that A maps to F(A). The next three give F(A)
the operations of a group: multiplication, an identity element, and in-
version. The three constructors after that assert the axioms of a group:
associativity, unitality, and inverses. Finally, the last constructor asserts
that F(A) is a set.

Therefore, F(A) is a group. It is also straightforward to prove:

Theorem 6.11.6. F(A) is the free group on A. In other words, for any (set)
group G, composition with y : A — F(A) determines an equivalence

homgoup (F(A),G) ~ (A — G)

where homgoup (—, —) denotes the set of group homomorphisms between two
groups.
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Proof. The recursion principle of the higher inductive type F(A) says
precisely that if G is a group and we have f : A — G, then we have
f : F(A) — G. Its computation rules say that f oy = f, and that f is a
group homomorphism. Thus, (- o#) : homgeup (F(A),G) — (A — G)
has a right inverse. It is straightforward to use the induction principle of
F(A) to show that this is also a left inverse. O

It is worth taking a step back to consider what we have just done. We
have proven that the free group on any set exists without giving an ex-
plicit construction of it. Essentially all we had to do was write down the
universal property that it should satisfy. In set theory, we could achieve
a similar result by appealing to black boxes such as the adjoint functor
theorem; type theory builds such constructions into the foundations of
mathematics.

Of course, it is sometimes also useful to have a concrete description
of free algebraic structures. In the case of free groups, we can provide
one, using quotients. Consider List(A + A), where in A + A we write
inl(a) as a, and inr(a) as 4 (intended to stand for the formal inverse of a).
The elements of List(A + A) are words for the free group on A.

Theorem 6.11.7. Let A be a set, and let F'(A) be the set-quotient of List(A +
A) by the following relations.

(...,a1,80,d3,03,...)=(...,a1,a3,...)
(...,Lll,d\z,az,ag,...) = (...,611,613,...).

Then F'(A) is also the free group on the set A.

Proof. Firstwe show that F'(A) is a group. We have seen that List(A + A)
is a monoid; we claim that the monoid structure descends to the quo-
tient. We define F'(A) x F/(A) — F'(A) by double quotient recursion;
it suffices to check that the equivalence relation generated by the given
relations is preserved by concatenation of lists. Similarly, we prove the
associativity and unit laws by quotient induction.

In order to define inverses in F/(A), we first define reverse : List(B) —
List(B) by recursion on lists:

reverse(nil) := nil,

reverse(cons(b, £)) := reverse({) - cons(b, nil).

Now we define i : F/(A) — F/'(A) by quotient recursion, acting on a
list £ : List(A + A) by switching the two copies of A and reversing the
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list. This preserves the relations, hence descends to the quotient. And
we can prove that i(x) - x = e for x : F/(A) by induction. First, quotient
induction allows us to assume x comes from ¢ : List(A + A), and then
we can do list induction; if we write g : List(A + A) — F'(A) for the
quotient map, the cases are

i(g(nil)) =g(nil) = g(nil)

(nil)

i(g(cons(a, ?)))=q(cons(a,£)) =i(q(£)) = q(cons(a,nil)) *g(cons(a, ?))
=1i(q(¢)) = q(cons(a,cons(a,)))
=i(q(£))*q(0)

= g(nil).  (by the inductive hypothesis)

= q(nil)

I
)

(We have omitted a number of fairly evident lemmas about the behavior
of concatenation of lists, etc.)

This completes the proof that F/(A) is a group. Now if G is any group
with a function f : A — G, we can define A + A — G to be f on the first
copy of A and f composed with the inversion map of G on the second
copy. Now the fact that G is a monoid yields a monoid homomorphism
List(A+ A) — G. And since G is a group, this map respects the relations,
hence descends to a map F'(A) — G. It is straightforward to prove that
this is a group homomorphism, and the unique one which restricts to f
on A. O

If A has decidable equality (such as if we assume excluded middle),
then the quotient defining F/(A) can be obtained from an idempotent as
in Lemma 6.10.8. We define a word, which we recall is just an element
of List(A + A), to be reduced if it contains no adjacent pairs of the form
(a,a) or (4,a). When A has decidable equality, it is straightforward to
define the reduction of a word, which is an idempotent generating the
appropriate quotient; we leave the details to the reader.

If A := 1, which has decidable equality, a reduced word must consist

either entirely of ’s or entirely of #’s. Thus, the free group on 1 is equiv-
alent to the integers Z, with 0 corresponding to nil, the positive integer n
corresponding to a reduced word of 1 x’s, and the negative integer (—n)
corresponding to a reduced word of n #’s. One could also, of course,
show directly that Z has the universal property of F(1).
Remark 6.11.8. Nowhere in the construction of F(A) and F/(A), and the
proof of their universal properties, did we use the assumption that Aisa
set. Thus, we can actually construct the free group on an arbitrary type.
Comparing universal properties, we conclude that F(A) ~ F(||Al|,)-
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We can also use higher inductive types to construct colimits of alge-
braic objects. For instance, suppose f : G -+ Hand g : G — K are
group homomorphisms. Their pushout in the category of groups, called
the amalgamated free product H *; K, can be constructed as the higher
inductive type generated by

e Functionsh: H -+ HxgKand k : K — H xg K.

¢ The operations and axioms of a group, as in the definition of F(A).
* Axioms asserting that i and k are group homomorphisms.

e Forx:G,wehave h(f(x)) =k(g(x)).

The 0-truncation constructor.

On the other hand, it can also be constructed explicitly, as the set-quotient
of List(H + K) by the following relations:

(coo,x1,x0,...)=(...,x1-x2,...) for x1,xy: H
(coyvy2)=0.y1-y2,...) fory1,y2 : K
(.01, o) =0(..,..r)
(... 0g,...)=0(..,...)
(oo, f(x),...)=10(...,8(x),...) for x: G.

We leave the proofs to the reader. In the special case that G is the trivial
group, the last relation is unnecessary, and we obtain the free product
H x K, the coproduct in the category of groups. (This notation unfor-
tunately clashes with that for the join of types, as in §6.8, but context
generally disambiguates.)

Note that groups defined by presentations can be regarded as a special
case of colimits. Suppose given a set (or more generally a type) A, and a
pair of functions R =% F(A). We regard R as the type of “relations”, with
the two functions assigning to each relation the two words that it sets
equal. For instance, in the presentation (a | 4> = ¢) we would have A :=
1 and R := 1, with the two morphisms R =% F(A) picking out the list
(a,a) and the empty list nil, respectively. Then by the universal property
of free groups, we obtain a pair of group homomorphisms F(R) = F(A).
Their coequalizer in the category of groups, which can be built just like
the pushout, is the group presented by this presentation.

Note that all these sorts of construction only apply to algebraic theo-
ries, which are theories whose axioms are (universally quantified) equa-
tions referring to variables, constants, and operations from a given sig-
nature. They can be modified to apply also to what are called essentially
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algebraic theories: those whose operations are partially defined on a do-
main specified by equalities between previous operations. They do not
apply, for instance, to the theory of fields, in which the “inversion” oper-
ation is partially defined on a domain { x | x # 0 } specified by an apart-
ness # between previous operations, see Theorem 11.2.4. And indeed, it
is well-known that the category of fields has no initial object.

On the other hand, these constructions do apply just as well to in-
finitary algebraic theories, whose “operations” can take infinitely many
inputs. In such cases, there may not be any presentation of free algebras
or colimits of algebras as a simple quotient, unless we assume the axiom
of choice. This means that higher inductive types represent a signifi-
cant strengthening of constructive type theory (not necessarily in terms
of proof-theoretic strength, but in terms of practical power), and indeed
are stronger in some ways than Zermelo-Fraenkel set theory (without
choice) [Bla83].

6.12 The flattening lemma

As we will see in Chapter 8, amazing things happen when we combine
higher inductive types with univalence. The principal way this comes
about is that if W is a higher inductive type and U is a type universe,
then we can define a type family P : W — U by using the recursion
principle for W. When we come to the clauses of the recursion principle
dealing with the path constructors of W, we will need to supply paths in
U, and this is where univalence comes in.

For example, suppose we have a type X and a self-equivalence e :
X ~ X. Then we can define a type family P : S! — U by using S!-
recursion:

P(base) :=X and  P(loop) := ua(e).

The type X thus appears as the fiber P(base) of P over the basepoint. The
self-equivalence e is a little more hidden in P, but the following lemma
says that it can be extracted by transporting along loop.

Lemma 6.12.1. Given B: A = U and x,y : A, withapath p : x = y and an
equivalence e : B(x) ~ B(y) such that B(p) = ua(e), then for any u : B(x)

we have

transport® (p, u) = e(u).
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Proof. Applying Lemma 2.10.5, we have

transport® (p, u) = idtoeqv(B(p))(u)
= idtoeqv(ua(e))(u)
=e(u). O

We have seen type families defined by recursion before: in §§2.12
and 2.13 we used them to characterize the identity types of (ordinary)
inductive types. In Chapter 8, we will use similar ideas to calculate ho-
motopy groups of higher inductive types.

In this section, we describe a general lemma about type families of
this sort which will be useful later on. We call it the flattening lemma:
it says that if P : W — U is defined recursively as above, then its total
space ) (.w) P(x) is equivalent to a “flattened” higher inductive type,
whose constructors may be deduced from those of W and the defini-
tion of P. (From a category-theoretic point of view, .y P(x) is the
“Grothendieck construction” of P, and the flattening lemma expresses
its universal property as a “lax colimit”. Although because types in ho-
motopy type theory (like W) correspond categorically to co-groupoids
(since all paths are invertible), in this case the lax colimit is the same as a
pseudo colimit.)

We prove here one general case of the flattening lemma, which di-
rectly implies many particular cases and suggests the method to prove
others. Suppose we have A,B : U/ and f,g : B — A, and that the higher
inductive type W is generated by

e c:A— Wand
* p: [Ty (c(f (b)) =w c(g(b)))-

Thus, W is the (homotopy) coequalizer of f and g. Using binary sums
(coproducts) and dependent sums (X-types), a lot of interesting nonre-
cursive higher inductive types can be represented in this form. All point
constructors have to be bundled in the type A and all path constructors
in the type B. For instance:

e The circle S! can be represented by taking A := 1and B := 1, with
f and g the identity.

e The pushoutof j : X — Y and k : X — Z can be represented by
taking A:=Y + Z and B := X, with f :=inlojand g :=inrok.

Now suppose in addition that

e C: A — U is afamily of types over A, and
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* D: Tl C(f(b)) =~ C(g(b)) is a family of equivalences over B.
Define a type family P : W — U recursively by

Let W be the higher inductive type generated by
* C: Ta:a) Cla) — W and
* P Iw:s) Hiyciroy) (€ (D), v) =5 €(8(b), D(b)(y)))-
The flattening lemma is:

Lemma 6.12.2 (Flattening lemma). In the above situation, we have
(2 p (x)) ~ W
xW

As remarked above, this equivalence can be seen as expressing the
universal property of },.y) P(x) as a “lax colimit” of P over W. It can
also be seen as part of the stability and descent property of colimits, which
characterizes higher toposes.

The proof of Lemma 6.12.2 occupies the rest of this section. It is some-
what technical and can be skipped on a first reading. But it is also a good
example of “proof-relevant mathematics”, so we recommend it on a sec-
ond reading.

The idea is to show that },.;y) P(x) has the same universal property
as W. We begin by showing that it comes with analogues of the construc-
tors ¢ and p.

Lemma 6.12.3. There are functions
o T H(u:A) C(‘l) - Z(x:W) P(x) and
o 5 Tlos) Ngeeqron) (€ ®LY) =g pe) €(0), DOM)))-

Proof. The first is easy; define ¢’ (4, x) := (c(a), x) and note that by defini-
tion P(c(a)) = C(a). For the second, suppose givenb : Band y : C(f(b));
we must give an equality

(c(f(D),y) = (c((b)), D(D)(y))-

),
Since we have p(b) : c(f(b)) = c(g(b)), by equalities in X-types it suf-
fices to give an equality p(b),(y) = D(b)(y). But this follows from
Lemma 6.12.1, using the definition of P. O
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Now the following lemma says to define a section of a type family
over ¥, P(w), it suffices to give analogous data as in the case of W.

Lemma 6.12.4. Suppose Q : ( L(y.w) P(x)) — U is a type family and that we
have

e c: H(H:A) H(x:C(a)) Q(E/(a/ x)) and
* p:Tlom) Higegmy (500).(c(F0),9) = c(g(b), DE)W)))-
Then there exists k : H(ZIZ(W;W) p(w)) Q(z) such that k(<'(a, x)) = c(a, x).

Proof. Suppose given w : W and x : P(w); we must produce an element
k(w,x) : Q(w,x). By induction on w, it suffices to consider two cases.
When w = c(a), then we have x : C(a), and so c(a,x) : Q(c(a),x) as
desired. (This part of the definition also ensures that the stated compu-
tational rule holds.)

Now we must show that this definition is preserved by transporting
along p(b) for any b : B. Since what we are defining, for all w : W, is
a function of type IT(y.p(w)) Q(w, x), by Lemma 2.9.7 it suffices to show
that for any y : C(f(b)), we have

transport (pair= (p(b), reflys) (), c(f(0), 1)) = c(g(b), p(b). (1))

Let g : p(b),(y) = D(b)(y) be the path obtained from Lemma 6.12.1.
Then we have

c(g(b), p(b),(y)) = transport™ Q€N (371 ¢(g(b), D(b)(y)))
(by apdch(g(b),x) (qil)il)

= transport® (ap, e (g(5) 1) (17 1), €(8(b), D(b) (y))).
(by Lemma 2.3.10)

Thus, it suffices to show
transport® (pairz(p(b), reflow). (1)) c(f(b),y)) =

transport® (ap.. e/ (g(4)0)(41), ¢(g(b), DB)(W)) )-

Moving the right-hand transport to the other side, and combining two
transports, this is equivalent to

transport® (pair:(p(b), reflp(b)*(y)) " APy (g(b) ) (9), c(f(b),y)) =
c(g(b), D(b)(y))-
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However, we have

pair— (p(b), refly@y (1)) * APxse (g(0),x) (1) =
pair— (p(D), refly ) () * pair™ (refle (o)), 9) = pair™(p(b),q) = (b, y)

so the construction is completed by the assumption p(b, y) of type

transport® (5’ (b, y), (£ (b), ) = c(g(b), D(b) (y))- -

Lemma 6.12.4 almost gives Y ,.w) P(w) the same induction principle
as W. The missing bit is the equality apd(p'(b,y)) = p(b,y). In order to
prove this, we would need to analyze the proof of Lemma 6.12.4, which
of course is the definition of k.

It should be possible to do this, but it turns out that we only need the
computation rule for the non-dependent recursion principle. Thus, we
now give a somewhat simpler direct construction of the recursor, and a
proof of its computation rule.

Lemma 6.12.5. Suppose Q is a type and that we have
* c:[I(za)Cla) — Qand
o P i Tl Miecr) (c(F(8),y) =g c(2(6), D)) ).
Then there exists k : ( L.y P(w)) — Q such that k(<'(a, x)) = c(a, x).

Proof. As in Lemma 6.12.4, we define k(w, x) by induction on w : W.
When w = c(a), we define k(c(a), x) := c(a, x). Now by Lemma 2.9.6, it
suffices to consider, for b : Band y : C(f (b)), the composite path

transportxHQ(p(b),c(f(b),y)) = c(g(b),transportp(p(b),y)) (6.12.6)

defined as the composition

transport™~ 9 (p(b), c(f(b),y))

c(f(b),y) (by Lemma 2.3.5)
c(g(b), D(b)(y)) (by p(b,y))

c(g(b), transport” (p(b), y)).
(by Lemma 6.12.1)

The computation rule k(¢'(a,x)) = c(a, x) follows by definition, as be-
fore. O

For the second computation rule, we need the following lemma.
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Lemma 6.12.7. Let Y : X — U bea type family and letk : (L (y.x) Y(x)) — Z
be defined componentwise by k(x,y) := d(x)(y) for a curried function d :
[Txx) Y(x) — Z. Then for any s : x1 =x xp and any y1 : Y(x1) and
Yo Y(xp) witha pathr : s.(y1) = yo, the path

api(pair~ (s, 7)) : k(x1,y1) = k(x2,¥2)

is equal to the composite

k(x1,y1) = d(x1)(y1)
= transport™%(s,d(x1) (y1)) (by (Lemma 2.3.5)" 1)
— transport™(s,d(x1)(s L (5. (1))
= (transport™ ()2 2) (5,d(x1))) (. (1)) (by (294)

= d(x2) (s (y1)) (by happly(apdy(s))(s«(y1))
=d(x2)(y2) (by ap,(x,) (7))
= k(X2, y2)

Proof. After path induction on s and r, both equalities reduce to reflexiv-
ities. O

At first it may seem surprising that Lemma 6.12.7 has such a com-
plicated statement, while it can be proven so simply. The reason for the
complication is to ensure that the statement is well-typed: apy(pair=(s, 7))
and the composite path it is claimed to be equal to must both have the
same start and end points. Once we have managed this, the proof is easy
by path induction.

Lemma 6.12.8. In the situation of Lemma 6.12.5, we have api(p'(b,y)) =
p(b,y)-

Proof. Recall that p'(b,y) := pair—(p(b),q) where q : p(b),(y) = D(b)(y)
comes from Lemma 6.12.1. Thus, since k is defined componentwise, we
may compute apy(p’(b,y)) by Lemma 6.12.7, with

x1 := c(f(b)) Y1 =y
xp = c(g(b)) y2:=D(b)(y)
= p(b) ri=gq.

The curried function d : [](y.w) P(w) — Q was defined by induction
onw : W; to apply Lemma 6.12.7 we need to understand apyy,)(r) and

happly(apd;(s), s« (y1))-
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For the first, since d(c(a), x) = ¢(a, x), we have

aPy(x,) (1) = aPe(g(n),—) (q)-

For the second, the computation rule for the induction principle of W
tells us that apd;(p(b)) is equal to the composite (6.12.6), passed across
the equivalence of Lemma 2.9.6. Thus, the computation rule given in
Lemma 2.9.6 implies that happly(apd,; (p(b)), p(b), (y)) is equal to the com-
posite

(p(b). (c(£(6), =) (p(0). (1)) = p(b). (c(£(b), p(B) . (p (D), ())))

(by (29.4)
= p(b).(c(f(0),y))

=c(f(b),y) (by Lemma 2.3.5)
= c(g(0), D(b)(y)) (by p(by))
= c(g(b),p(b)..(¥))- by aPc(g(p),—) (@) )

Finally, substituting these values of ap(,,) () and happly(apd,(s), s+ (y1))
into Lemma 6.12.7, we see that all the paths cancel out in pairs, leaving

only p(b,y). O

Now we are finally ready to prove the flattening lemma.

Proof of Lemma 6.12.2. We define h : W — Y(w:w) P(w) by using the re-

cursion principle for W, with ¢ and p’ as input data. Similarly, we define
k: (Cww) P(w)) — W by using the recursion principle of Lemma 6.12.5,
with ¢ and p as input data.

On the one hand, we must show that for any z : W, we have k(/(z)) =
z. By induction on z, it suffices to consider the two constructors of W. But
we have

k(h(¢(a,x))) = k(' (a,x)) =<(a, x)

by definition, while similarly

k(h(p(b,y))) = k(®'(b,y)) = p(b,y)

using the propositional computation rule for W and Lemma 6.12.8.

On the other hand, we must show that for any z : Y (,,.w) P(w), we
have h(k(z)) = z. But this is essentially identical, using Lemma 6.12.4
for “induction on ¥,y P(w)” and the same computation rules. O
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6.13 The general syntax of higher inductive
definitions

In §5.6, we discussed the conditions on a putative “inductive definition”
which make it acceptable, namely that all inductive occurrences of the
type in its constructors are “strictly positive”. In this section, we say
something about the additional conditions required for higher inductive
definitions. Finding a general syntactic description of valid higher in-
ductive definitions is an area of current research, and all of the solutions
proposed to date are somewhat technical in nature; thus we only give a
general description and not a precise definition. Fortunately, the corner
cases never seem to arise in practice.

Like an ordinary inductive definition, a higher inductive definition is
specified by a list of constructors, each of which is a (dependent) function.
For simplicity, we may require the inputs of each constructor to satisfy
the same condition as the inputs for constructors of ordinary inductive
types. In particular, they may contain the type being defined only strictly
positively. Note that this excludes definitions such as the 0-truncation as
presented in §6.9, where the input of a constructor contains not only the
inductive type being defined, but its identity type as well. It may be pos-
sible to extend the syntax to allow such definitions; but also, in §7.3 we
will give a different construction of the O-truncation whose constructors
do satisfy the more restrictive condition.

The only difference between an ordinary inductive definition and a
higher one, then, is that the output type of a constructor may be, not
the type being defined (W, say), but some identity type of it, such as
u = v, or more generally an iterated identity type suchas p =(,_ ) 4.
Thus, when we give a higher inductive definition, we have to specify not
only the inputs of each constructor, but the expressions u and v (or u, v,
p, and g, etc.) which determine the source and target of the path being
constructed.

Importantly, these expressions may refer to other constructors of W.
For instance, in the definition of S', the constructor loop has both u and
v being base, the previous constructor. To make sense of this, we require
the constructors of a higher inductive type to be specified in order, and
we allow the source and target expressions 1 and v of each constructor to
refer to previous constructors, but not later ones. (Of course, in practice
the constructors of any inductive definition are written down in some
order, but for ordinary inductive types that order is irrelevant.)

Note that this order is not necessarily the order of “dimension”: in
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principle, a 1-dimensional path constructor could refer to a 2-dimensional
one and hence need to come after it. However, we have not given the
0-dimensional constructors (point constructors) any way to refer to pre-
vious constructors, so they might as well all come first. And if we use
the hub-and-spoke construction (§6.7) to reduce all constructors to points
and 1-paths, then we might assume that all point constructors come first,
followed by all 1-path constructors — but the order among the 1-path
constructors continues to matter.

The remaining question is, what sort of expressions can # and v be?
We might hope that they could be any expression at all involving the
previous constructors. However, the following example shows that a
naive approach to this idea does not work.

Example 6.13.1. Consider a family of functions f : [T x¢) (X — X). Of
course, fx might be just idy for all X, but other such fs may also exist.
For instance, nothing prevents f, : 2 — 2 from being the nonidentity
automorphism (see Exercise 6.9).

Now suppose that we attempt to define a higher inductive type K
generated by:

e twoelementsa,b : K, and
e apatho: fx(a) = fx(b).

What would the induction principle for K say? We would assume a type
family P : K — U, and of course we would need x : P(a) and y : P(b).
The remaining datum should be a dependent path in P living over o,
which must therefore connect some element of P(fx(a)) to some element
of P(fx(b)). But what could these elements possibly be? We know that
P(a) and P(b) are inhabited by x and y, respectively, but this tells us
nothing about P(fx(a)) and P(fx(b)).

Clearly some condition on u and v is required in order for the defini-
tion to be sensible. It seems that, just as the domain of each constructor
is required to be (among other things) a covariant functor, the appropriate
condition on the expressions # and v is that they define natural transfor-
mations. Making precise sense of this requirement is beyond the scope of
this book, but informally it means that # and v must only involve opera-
tions which are preserved by all functions between types.

For instance, it is permissible for # and v to refer to concatenation of
paths, as in the case of the final constructor of the torus in §6.6, since
all functions in type theory preserve path concatenation (up to homo-
topy). However, it is not permissible for them to refer to an operation
like the function f in Example 6.13.1, which is not necessarily natural:
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there might be some function ¢ : X — Y such that fy o g # go fx. (Uni-
valence implies that fx must be natural with respect to all equivalences,
but not necessarily with respect to functions that are not equivalences.)

The intuition of naturality supplies only a rough guide for when a
higher inductive definition is permissible. Even if it were possible to
give a precise specification of permissible forms of such definitions in
this book, such a specification would probably be out of date quickly, as
new extensions to the theory are constantly being explored. For instance,
the presentation of n-spheres in terms of “dependent n-loops” referred
toin §6.4, and the “higher inductive-recursive definitions” used in Chap-
ter 11, were innovations introduced while this book was being written.
We encourage the reader to experiment — with caution.

Notes

The general idea of higher inductive types was conceived in discussions
between Andrej Bauer, Peter Lumsdaine, Mike Shulman, and Michael
Warren at the Oberwolfach meeting in 2011, although there are some
suggestions of some special cases in earlier work. Subsequently, Guil-
laume Brunerie and Dan Licata contributed substantially to the general
theory, especially by finding convenient ways to represent them in com-
puter proof assistants and do homotopy theory with them (see Chap-
ter 8).

A general discussion of the syntax of higher inductive types, and
their semantics in higher-categorical models, appears in [LS17]. As with
ordinary inductive types, models of higher inductive types can be con-
structed by transfinite iterative processes; a slogan is that ordinary in-
ductive types describe free monads while higher inductive types describe
presentations of monads. The introduction of path constructors also in-
volves the model-category-theoretic equivalence between “right homo-
topies” (defined using path spaces) and “left homotopies” (defined using
cylinders) — the fact that this equivalence is generally only up to ho-
motopy provides a semantic reason to prefer propositional computation
rules for path constructors.

Another (temporary) reason for this preference comes from the limi-
tations of existing computer implementations. Proof assistants like COQ
and AGDA have ordinary inductive types built in, but not yet higher
inductive types. We can of course introduce them by assuming lots of
axioms, but this results in only propositional computation rules. How-
ever, there is a trick due to Dan Licata which implements higher induc-
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tive types using private data types; this yields judgmental rules for point
constructors but not path constructors.

The type-theoretic description of higher spheres using loop spaces
and suspensions in §§6.4 and 6.5 is largely due to Brunerie and Licata;
Hou has given a type-theoretic version of the alternative description that
uses n-dimensional paths. The reduction of higher paths to 1-dimensional
paths with hubs and spokes (§6.7) is due to Lumsdaine and Shulman.
The description of truncation as a higher inductive type is due to Lums-
daine; the (—1)-truncation is closely related to the “bracket types” of [AB04].
The flattening lemma was first formulated in generality by Brunerie.

Quotient types are unproblematic in extensional type theory, such as
NUPRL [CAB*86]. They are often added by passing to an extended sys-
tem of setoids. However, quotients are a trickier issue in intensional type
theory (the starting point for homotopy type theory), because one cannot
simply add new propositional equalities without specifying how they
are to behave. Some solutions to this problem have been studied [Hof95,
Alt99, AMS07], and several different notions of quotient types have been
considered. The construction of set-quotients using higher-inductives
provides an argument for our particular approach (which is similar to
some that have previously been considered), because it arises as an in-
stance of a general mechanism. Our construction does not yet provide
a new solution to all the computational problems related to quotients,
since we still lack a good computational understanding of higher induc-
tive types in general—but it does mean that ongoing work on the com-
putational interpretation of higher inductives applies to the quotients as
well. The construction of quotients in terms of equivalence classes is, of
course, a standard set-theoretic idea, and a well-known aspect of elemen-
tary topos theory; its use in type theory (which depends on the univa-
lence axiom, at least for mere propositions) was proposed by Voevodsky.
The fact that quotient types in intensional type theory imply function ex-
tensionality was proved by [Hof95], inspired by the work of [Car95] on
exact completions; Lemma 6.3.2 is an adaptation of such arguments.

Exercises

Exercise 6.1. Define concatenation of dependent paths, prove that appli-
cation of dependent functions preserves concatenation, and write out the
precise induction principle for the torus T? with its computation rules.

Exercise 6.2. Prove that £S! ~ S2, using the explicit definition of S? in
terms of base and surf given in §6.4.
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Exercise 6.3. Prove that the torus T? as defined in §6.6 is equivalent to
Sl x sl (Warning: the path algebra for this is rather difficult.)

Exercise 6.4. Define dependent n-loops and the action of dependent func-
tions on n-loops, and write down the induction principle for the n-spheres
as defined at the end of §6.4.

Exercise 6.5. Prove that £8" ~ S$"*! using the definition of $" in terms
of 0" from §6.4.

Exercise 6.6. Prove that if the type S? belongs to some universe U, then U
is not a 2-type.

Exercise 6.7. Prove that if G is a monoid and x : G, then },.c)((x -y =
e) X (y-x = e)) is a mere proposition. Conclude, using the principle
of unique choice (Corollary 3.9.2), that it would be equivalent to define
a group to be a monoid such that for every x : G, there merely exists a
y:Gsuchthatx-y=ceandy-x =e.

Exercise 6.8. Prove that if A is a set, then List(A) is a monoid. Then com-
plete the proof of Lemma 6.11.5.

Exercise 6.9. Assuming LEM, construct a family f : [ x4/ (X — X) such
that f : 2 — 2 is the nonidentity automorphism.

Exercise 6.10. Show that the map constructed in Lemma 6.3.2 is in fact a
quasi-inverse to happly, so that an interval type implies the full function
extensionality axiom. (You may have to use Exercise 2.16.)

Exercise 6.11. Prove the universal property of suspension:

(ZA — B) ~ ((b%) (Zg) (A — (b, = bs)))

Exercise 6.12. Show that Z ~ IN + 1 + IN. Show that if we were to define
Z as N + 1 + IN, then we could obtain Lemma 6.10.12 with judgmental
computation rules.

Exercise 6.13. Show that we can also prove Lemma 6.3.2 by using |2||
instead of I.



Chapter 7
Homotopy n-types

One of the basic notions of homotopy theory is that of a homotopy n-
type: a space containing no interesting homotopy above dimension n. For
instance, a homotopy O-type is essentially a set, containing no nontrivial
paths, while a homotopy 1-type may contain nontrivial paths, but no
nontrivial paths between paths. Homotopy n-types are also called n-
truncated spaces. We have mentioned this notion already in §3.1; our first
goal in this chapter is to give it a precise definition in homotopy type
theory.

A dual notion to truncatedness is connectedness: a space is n-connected
if it has no interesting homotopy in dimensions 1 and below. For instance,
a space is 0-connected (also called just “connected”) if it has only one
connected component, and 1-connected (also called “simply connected”)
if it also has no nontrivial loops (though it may have nontrivial higher
loops between loops).

The duality between truncatedness and connectedness is most easily
seen by extending both notions to maps. We call a map n-truncated or n-
connected if all its fibers are so. Then n-connected and n-truncated maps
form the two classes of maps in an orthogonal factorization system, i.e.
every map factors uniquely as an n-connected map followed by an n-
truncated one.

In the case n = —1, the n-truncated maps are the embeddings and
the n-connected maps are the surjections, as defined in §4.6. Thus, the
n-connected factorization system is a massive generalization of the stan-
dard image factorization of a function between sets into a surjection fol-
lowed by an injection. At the end of this chapter, we sketch briefly an
even more general theory: any type-theoretic modality gives rise to an
analogous factorization system.



286 CHAPTER 7. HOMOTOPY n-TYPES

7.1 Definition of n-types

As mentioned in §§3.1 and 3.11, it turns out to be convenient to define n-
types starting two levels below zero, with the (—1)-types being the mere
propositions and the (—2)-types the contractible ones.

Definition 7.1.1. Define the predicate is-n-type : Y — U forn > —2 by
recursion as follows:

isContr(X) ifn=-2,

is-n-type(X) :=
ype(X) {H(wzx) is-n’-type(x =x y) ifn=n"+1.

We say that X is an n-type, or sometimes that it is n-truncated, if is-n-type(X)
is inhabited.

Remark 7.1.2. The number 7 in Definition 7.1.1 ranges over all integers
greater than or equal to —2. We could make sense of this formally by
defining a type Zx _, of such integers (a type whose induction principle
is identical to that of IN), or instead defining a predicate is-(k — 2)-type
for k : IN. Either way, we can prove theorems about n-types by induction
on n, with n = —2 as the base case.

Example7.1.3. We saw in Lemma 3.11.10 that X is a (—1)-type if and only
if it is a mere proposition. Therefore, X is a O-type if and only if it is a set.

We have also seen that there are types which are not sets (Exam-
ple 3.1.9). So far, however, we have not shown for any n > 0 that there
exist types which are not n-types. In Chapter 8, however, we will show
that the (n + 1)-sphere S" ! is not an n-type. (Kraus has also shown that
the n'h nested univalent universe is also not an n-type, without using
any higher inductive types.) Moreover, in §8.8 will give an example of a
type that is not an n-type for any (finite) number .

We begin the general theory of n-types by showing they are closed
under certain operations and constructors.

Theorem 7.1.4. Let p : X — Y be a retraction and suppose that X is an
n-type, for any n > —2. Then Y is also an n-type.

Proof. We proceed by induction on n. The base case n = —2 is handled
by Lemma 3.11.7.

For the inductive step, assume that any retract of an n-type is an n-
type, and that X is an (n + 1)-type. Let y,y' : Y; we must show that
y = y' is an n-type. Let s be a section of p, and let € be a homotopy
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€:pos ~ 1. Since X is an (n + 1)-type, s(y) =x s(y’) is an n-type. We
claim that y = v/ is a retract of s(y) =x s(y’). For the section, we take

aps s (y =y') = (s(y) = s(v))-
For the retraction, we define t : (s(y) =s(y’')) = (y =y') by

1

Ha) =ey~ =p(g) ey

To show that t is a retraction of ap;, we must show that

ey*1 *p(s(r)) ey =7

for any r : y = y. But this follows from Lemma 2.4.3. O

As an immediate corollary we obtain the stability of n-types under
equivalence (which is also immediate from univalence):

Corollary 7.1.5. If X ~ Y and X is an n-type, then so is Y.
Recall also the notion of embedding from §4.6.

Theorem 7.1.6. If f : X — Y is an embedding and Y is an n-type for some
n > —1, then so is X.

Proof. Let x,x" : X; we must show that x =x x’ is an (n — 1)-type. But
since f is an embedding, we have (x =x 1) ~ (f(x) =y f(«’)), and the
latter is an (n — 1)-type by assumption. O

Note that this theorem fails when n = —2: the map 0 — 1 is an
embedding, but 1 is a (—2)-type while 0 is not.

Theorem 7.1.7. The hierarchy of n-types is cumulative in the following sense:
given a number n > =2, if X is an n-type, then it is also an (n + 1)-type.

Proof. We proceed by induction on 7.

For n = —2, we need to show that a contractible type, say, A, has
contractible path spaces. Let ay : A be the center of contraction of A,
and let x,y : A. We show that x =4 y is contractible. By contractibility
of A we have a path contry * contry’1 : x = y, which we choose as the
center of contraction for x = y. Given any p : x = y, we need to show
p = contry * contr, ~!. By path induction, it suffices to show that refl, =
contry * contry !, which is trivial.

For the inductive step, we need to show that x =x y is an (n + 1)-
type, provided that X is an (n + 1)-type. Applying the inductive hy-
pothesis to x =x y yields the desired result. O
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We now show that n-types are preserved by most of the type forming
operations.

Theorem 7.1.8. Letn > —2,andlet A:U and B: A — U. If A is an n-type
and for all a : A, B(a) is an n-type, then so is ¥ . 1) B(x).

Proof. We proceed by induction on #.

For n = —2, we choose the center of contraction for Y (,.4) B(x) to
be the pair (a9, by), where ay : A is the center of contraction of A and
by : B(ap) is the center of contraction of B(ap). Given any other element
(a,b) of ¥1.) B(x), we provide a path (a,b) = (ao, bp) by contractibility
of A and B(ag), respectively.

For the inductive step, suppose that A is an (n 4 1)-type and for any
a: A, B(a)is an (n + 1)-type. We show that } .4y B(x) is an (n + 1)-
type: fix (a1,b1) and (a2, b2) in Y (y.4) B(x), we show that (a;,b1) =
(a2, bp) is an n-type. By Theorem 2.7.2 we have

((a1,01) = (a2,b2)) = ) (p«(b1) =p(a) b2)

par=az

and by preservation of n-types under equivalences (Corollary 7.1.5) it
suffices to prove that the latter is an n-type. This follows from the induc-
tive hypothesis. O

As a special case, if A and B are n-types, so is A x B. Note also that
Theorem 7.1.7 implies that if A is an n-type, then so is x =4 y for any
x,y : A. Combining this with Theorem 7.1.8, we see that for any func-
tions f : A — Cand g : B — C between n-types, their pullback

AXcB:= Z Z v))

(x:4) (v:B

(see Exercise 2.11) is also an n-type. More generally, n-types are closed
under all limits.

Theorem 7.1.9. Letn > =2, andlet A:Uand B: A — U. Ifforalla: A,
B(a) is an n-type, then 0 is [1(y. o) B(x).

Proof. We proceed by induction on n. For n = —2, the result is simply
Lemma 3.11.6.

For the inductive step, assume the result is true for n-types, and that
each B(a) isan (n +1)-type. Let f,g : [T(4:) B(a). We need to show that
f = g is an n-type. By function extensionality and closure of n-types
under equivalence, it suffices to show that [T(,.4)(f(a) =p(,) g(a)) is an
n-type. This follows from the inductive hypothesis.
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As a special case of the above theorem, the function space A — B is
an n-type provided that B is an n-type. We can now generalize our obser-
vations in Chapter 2 that isSet(A) and isProp(A) are mere propositions.

Theorem 7.1.10. For any n > —2 and any type X, the type is-n-type(X) is a
mere proposition.

Proof. We proceed by induction with respect to 7.

For the base case, we need to show that for any X, the type isContr(X)
is a mere proposition. This is Lemma 3.11.4.

For the inductive step we need to show

[ [ isProp(is-n-type(X)) — [ | isProp(is-(n 4 1)-type(X)).
XU XU

To show the conclusion of this implication, we need to show that for any

type X, the type
[] is-n-type(x = x')
x,x": X
is a mere proposition. By Example 3.6.2 or Theorem 7.1.9, it suffices to
show that for any x, x’ : X, the type is-n-type(x =x x’) is a mere proposi-
tion. But this follows from the inductive hypothesis applied to the type
(x =x x'). O

Finally, we show that the type of n-types is itself an (n + 1)-type. We
define this to be:

n-Type := ) _ is-n-type(X).
XU

If necessary, we may specify the universe / by writing n-Type;,. In par-
ticular, we have Prop := (—1)-Type and Set := 0-Type, as defined in
Chapter 2. Note that just as for Prop and Set, because is-n-type(X) is a
mere proposition, by Lemma 3.5.1 for any (X, p), (X', p) : n-Type we
have

((X,p) =nrype (X',1)) = (X = X)
~ (X ~ X').
Theorem 7.1.11. For any n > —2, the type n-Type is an (n + 1)-type.

Proof. Let (X, p), (X', p’) : n-Type; we need to show that (X, p) = (X', p’)
is an n-type. By the above observation, this type is equivalent to X ~ X'.
Next, we observe that the projection

(X~X')— (X—=X).
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is an embedding, so that if n > —1, then by Theorem 7.1.6 it suffices to
show that X — X’ is an n-type. But since n-types are preserved under
the arrow type, this reduces to an assumption that X’ is an n-type.

In the case n = —2, this argument shows that X ~ X’ is a (—1)-type
— but it is also inhabited, since any two contractible types are equivalent
to 1, and hence to each other. Thus, X ~ X’ is also a (—2)-type. O

7.2 Uniqueness of identity proofs and
Hedberg’s theorem

In §3.1 we defined a type X tobe asetifforall x,y : Xand p,q: x =x v
we have p = ¢. In conventional type theory, this property goes by the
name of uniqueness of identity proofs (UIP). We have seen also that it
is equivalent to being a 0-type in the sense of the previous section. Here
is another equivalent characterization, involving Streicher’s “Axiom K”
[Str93]:

Theorem 7.2.1. A type X is a set if and only if it satisfies Axiom K: for all
x:Xand p: (x =4 x) we have p = refl,.

Proof. Clearly Axiom K is a special case of UIP. Conversely, if X satisfies
Axiom K, let x,y : X and p,q : (x = y); we want to show p = g. But
induction on g reduces this goal precisely to Axiom K. O

We stress that we are not assuming UIP or the K principle as axioms!
They are simply properties which a particular type may or may not sat-
isty (which are equivalent to being a set). Recall from Example 3.1.9 that
not all types are sets.

The following theorem is another useful way to show that types are
sets.

Theorem 7.2.2. Suppose R is a reflexive mere relation on a type X implying
identity. Then X is a set, and R(x,y) is equivalent to x =x y for all x,y : X.

Proof. Let p : [(x.x) R(x, x) witness reflexivity of R, and let

f: 11 Rxy) = (x=xy)

x,y:X

be a witness that R implies identity. Note first that the two statements in
the theorem are equivalent. For on one hand, if X is a set, then x =x v
is a mere proposition, and since it is logically equivalent to the mere
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proposition R(x,y) by hypothesis, it must also be equivalent to it. On
the other hand, if x =x y is equivalent to R(x, y), then like the latter it is
a mere proposition for all x,y : X, and hence X is a set.

We give two proofs of this theorem. The first shows directly that X is
a set; the second shows directly that R(x,y) =~ (x = y).

First proof: we show that X is a set. The idea is the same as that of
Lemma 3.3.4: the function f must be continuous in its arguments x and
y. However, it is slightly more notationally complicated because we have
to deal with the additional argument of type R(x,y).

Firstly, for any x : X and p : x =x x, consider apdy(,)(p). This is
a dependent path from f(x,x) to itself. Since f(x,x) is still a function
R(x,x) = (x =x x), by Lemma 2.9.6 this yields for any r : R(x, x) a path

ps(f(x,2,7)) = f(x, %, p«(r)).

On the left-hand side, we have transport in an identity type, which is
concatenation. And on the right-hand side, we have p.(r) = r, since
both lie in the mere proposition R(x, x). Thus, substituting r := p(x), we
obtain

fxx,0(x)) p = fx,x,0(x)).

By cancellation, p = refl,. So X satisfies Axiom K, and hence is a set.

Second proof: we show that each f(x,y) : R(x,y) — x =x yis an
equivalence. By Theorem 4.7.7, it suffices to show that f induces an
equivalence of total spaces:

(yZX R(x,y)) ~ (yZX X =x y).

By Lemma 3.11.8, the type on the right is contractible, so it suffices to
show that the type on the left is contractible. As the center of contraction
we take the pair (x, p(x)). It remains to show, for every y : X and every
H : R(x,y) that

(x,p(x)) = (y, H).
But since R(x,y) is a mere proposition, by Theorem 2.7.2 it suffices to
show that x =x y, which we get from f(H). O

Corollary 7.2.3. If a type X has the property that =—(x = y) — (x = y) for
any x,y : X, then X is a set.

Another convenient way to show that a type is a set is the following.
Recall from §3.4 that a type X is said to have decidable equality if for all
x,y : X we have

(x=xy)+-(x=xy).
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This is a very strong condition: it says that a path x = y can be chosen,
when it exists, continuously (or computably, or functorially) in x and y.
This turns out to imply that X is a set, by way of Theorem 7.2.2 and the
following lemma.

Lemma 7.2.4. For any type A we have (A + —A) — (-—=A — A).

Proof. This was essentially already proven in Corollary 3.2.7, but we re-
peat the argument. Suppose x : A + = A. We have two cases to consider.
If xisinl(a) for some a : A, then we have the constant function -—A — A
which maps everything to a. If x is inr(t) for some ¢ : = A, we have g(t) : 0
for every g : == A. Hence we may use ex falso quodlibet, that is recy, to
obtain an element of A for any g : - —A. O

Theorem 7.2.5 (Hedberg). If X has decidable equality, then X is a set.

Proof. If X has decidable equality, it follows that == (x = y) — (x = y)
for any x,y : X. Therefore, Hedberg’s theorem follows from Corol-
lary 7.2.3. O

There is, of course, a strong connection between this theorem and
Corollary 3.2.7. The statement LEM, that is denied by Corollary 3.2.7
clearly implies that every type has decidable equality, and hence is a set,
which we know is not the case. Note that the consistent axiom LEM from
§3.4 implies only that every type has merely decidable equality, i.e. that for

any A we have
[T (la=2b]+~lla = b]).
a,b:A

As an example application of Theorem 7.2.5, recall that in Exam-
ple 3.1.4 we observed that IN is a set, using our characterization of its
equality types in §2.13. A more traditional proof of this theorem uses
only (2.13.2) and (2.13.3), rather than the full characterization of Theo-
rem 2.13.1, with Theorem 7.2.5 to fill in the blanks.

Theorem 7.2.6. The type IN of natural numbers has decidable equality, and
hence is a set.

Proof. Let x,y : IN be given; we proceed by induction on x and case
analysis on y to prove (x = y)+-(x = y). Ifx = 0and y = 0, we
take inl(refly). If x = 0 and y = succ(n), then by (2.13.2) we get =(0 =
succ(n)).

For the inductive step, let x = succ(n). If y = 0, we use (2.13.2) again.
Finally, if y = succ(m), the inductive hypothesis gives (m = n) + —(m =
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n). In the first case, if p : m = n, then succ(p) : succ(m) = succ(n). And
in the second case, (2.13.3) yields —(succ(m) = succ(n)). O

Although Hedberg’s theorem appears rather special to sets (O-types),
“Axiom K” generalizes naturally to n-types. Note that the ordinary Ax-
iom K (as a property of a type X) states that for all x : X, the loop space
Q(X, x) (see Definition 2.1.8) is contractible. Since ()(X, x) is always in-
habited (by refly), this is equivalent to its being a mere proposition (a
(—1)-type). Since 0 = (—1) + 1, this suggests the following generaliza-
tion.

Theorem 7.2.7. Foranyn > —1,a type X is an (n + 1)-type if and only if for
all x = X, the type Q(X, x) is an n-type.

Before proving this, we prove an auxiliary lemma:

Lemma 7.2.8. Given n > —1 and X : U. If, given any inhabitant of X it
follows that X is an n-type, then X is an n-type.

Proof. Let f : X — is-n-type(X) be the given map. We need to show that
forany x,x’ : X, the type x = x’ is an (n — 1)-type. But then f(x) shows
that X is an n-type, hence all its path spaces are (n — 1)-types. O

Proof of Theorem 7.2.7. The “only if” direction is obvious, since Q(X, x) :=
(x =x x). Conversely, in order to show that X is an (n + 1)-type, we need
to show that for any x,x’ : X, the type x = x’ is an n-type. Following
Lemma 7.2.8 it suffices to give a map

(x = x') — is-n-type(x = x').

By path induction, it suffices to do this when x = x/, in which case it
follows from the assumption that Q(X, x) is an n-type. O

By induction and some slightly clever whiskering, we can obtain a
generalization of the K property to n > 0.

Theorem 7.2.9. For every n > —1, a type A is an n-type if and only if
Q"FY(A, a) is contractible for all a : A.

Proof. Recalling that 0°(A,a) = (A, a), the case n = —1 is Exercise 3.5.
The case n = 0 is Theorem 7.2.1. Now we use induction; suppose the
statement holds for n : IN. By Theorem 7.2.7, A is an (n 4 1)-type iff
Q(A,a) is an n-type for all a : A. By the inductive hypothesis, the latter
is equivalent to saying that Q"*1(Q(A4,a), p) is contractible for all p :
Q(A,a).
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Since O"*2(A,a) := Q"T1(Q(A,a),refl,), and Q"1 = 0" 0 Q, it will
suffice to show that Q(Q(A,a),p) is equal to Q(Q(A,a),refl;), in the
type U, of pointed types. For this, it suffices to give an equivalence

:Q(Q(A,a),p) ~Q(Q(A,a),refl,)

which carries the basepoint refl, to the basepoint refl..q,. Forq: p = p,
define g(q) : refl; = refl, to be the following composite:

refl, = prp~! 1 prp L= refl,

where the path labeled “4” is actually ap,, . -1 (9). Then g is an equiva-
lence because it is a composite of equivalences
ap/\rAr.pfl -1 -1 je—ail
(p=p) ———(prp =prp7) — (refla = refly).
using Example 2.4.8 and Theorem 2.11.1, where i : refl, = p+p~! is the
canonical equality. And it is evident that g(refl,) = refl e, . O

7.3 Truncations

In §3.7 we introduced the propositional truncation, which makes the
“best approximation” of a type that is a mere proposition, i.e. a (—1)-
type. In §6.9 we constructed this truncation as a higher inductive type,
and gave one way to generalize it to a O-truncation. We now explain a
better generalization of this, which truncates any type into an n-type for
any n > —2; in classical homotopy theory this would be called its nh
Postnikov section.

The idea is to make use of Theorem 7.2.9, which states that A is an n-
type just when Q)"*1( A4, a) is contractible for all a : A, and Lemma 6.5.4,
which implies that

QO"(A,a) ~ Map, ("1, (A, a)),

where $"*1 is equipped with some basepoint which we may as well call
base. However, contractibility of Map, (S"*1, (A, a)) is something that we
can ensure directly by giving path constructors.

We will use the “hub and spoke” construction as in §6.7. Thus, for
n > —1, we take ||A||,, to be the higher inductive type generated by:

* afunction |-, : A — ||A]l,,
e foreachr:S"*! — ||Al|,, a hubpoint h(r) : ||Al|,, and



7.3 TRUNCATIONS 295

e for each r : S"*1 — ||A||, and each x : S"*1, a spoke path s,(x) :
r(x) = h(r).
The existence of these constructors is now enough to show:

Lemma 7.3.1. ||A||,, is an n-type.

Proof. By Theorem 7.2.9, it suffices to show that Q"*1(||A|,b) is con-
tractible for all b : || A||,,, which by Lemma 6.5.4 is equivalent to

Map, (8", (|| All,,, b))-

As center of contraction for the latter, we choose the function ¢, : gn+l _y
|| A, which is constant at b, together with refl, : ¢, (base) = b.

Now, an arbitrary element of Map, (5", (|| A||,,, b)) consists of a map
r: S" — ||A||, together with a path p : r(base) = b. By function
extensionality, to show r = ¢ it suffices to give, for each x : $"*1, a path
r(x) = cp(x) = b. We choose this to be the composite s, (x) * s, (base) -1 P,
where s,(x) is the spoke at x.

Finally, we must show that when transported along this equality r =
cp, the path p becomes refl,. By transport in path types, this means we
need

(s (base) * s, (base) ! » p)_1 +p = refly.

But this is immediate from path operations. O

(This construction fails for n = —2, but in that case we can simply
define ||A||_, := 1 for all A. From now on we assume n > —1.)

To show the desired universal property of the n-truncation, we need
the induction principle. We extract this from the constructors in the usual
way; it says that given P : || A||,, — U together with

* Foreacha: A, an element g(a) : P(la|,),

* Foreachr : 8" — ||A[|, and 7’ : [T(ygw+1) P(r(x)), an element
W (r,7"): P(h(r)),

* For each r : 8"*1 — ||A]|, and #' : [T(ygw+1) P(r(x)), and each
x : §"*1, a dependent path r/(x) :g(x) W (r,7"),

there exists a section f : [y, 4/ ) P(x) with f(|a[,,) = g(a) foralla : A.
To make this more useful, we reformulate it as follows.

Theorem 7.3.2. For any type family P : ||Al|, — U such that each P(x)
is an n-type, and any function g : [1(z.4) P(|al,), there exists a section f :
[T(xyjay,) P(x) such that f(|al,) := g(a) forall a : A.
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Proof. It will suffice to construct the second and third data listed above,
since ¢ has exactly the type of the first datum. Given r : S"t1 — ||A],
and r' : T (xgni1) P(r(x)), we have h(r) : ||Al|, and s, : [T(y.gni1)(r(x) =
h(r)). Define t : S"*1 — P(h(r)) by t(x) := s,(x),(r'(x)). Then since
P(h(r)) is n-truncated, there exists a point u : P(h(r)) and a contraction
0 [Txsniny (t(x) = u). Define h'(r,r’) := u, giving the second datum.
Then (recalling the definition of dependent paths), v has exactly the type
required of the third datum. O

In particular, if E is some n-type, we can consider the constant family
of types equal to E for every point of A. Thus, everymap f : A — E can
be extended to a map ext(f) : ||Al|,, — E defined by ext(f)(|al|,) := f(a);
this is the recursion principle for || A||,,.

The induction principle also implies a uniqueness principle for func-
tions of this form. Namely, if E is an n-typeand g, ¢’ : || Al|,, — E are such
that g(|al,) = ¢'(]a|,,) for every a : A, then g(x) = ¢/(x) forall x : ||A]],,
since the type g(x) = ¢/(x) is an n-type. Thus, g = ¢’. (In fact, this
uniqueness principle holds more generally when E is an (n + 1)-type.)
This yields the following universal property.

Lemma 7.3.3 (Universal property of truncations). Let n > —2, A : U and
B : n-Type. The following map is an equivalence:

{(IlAln—>B) — (A= B)
8§ — go|—|n

Proof. Given that B is n-truncated, any f : A — B can be extended to a
map ext(f) : ||Al|, — B. The map ext(f) o|-|, is equal to f, because
for every a : A we have ext(f)(|a|,) = f(a) by definition. And the map
ext(g o |-|,) is equal to g, because they both send |a|, to g(|al,,). O

In categorical language, this says that the n-types form a reflective
subcategory of the category of types. (To state this fully precisely, one
ought to use the language of (oo, 1)-categories.) In particular, this im-
plies that the n-truncation is functorial: given f : A — B, applying

the recursion principle to the composite A Lp IBJ|,, yields a map
£l : [IAll,, = [|Bl|,,- By definition, we have a homotopy

nat} : 1} £, al,) = (@), (7.3.4)

expressing naturality of the maps |-|,,.
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Uniqueness implies functoriality laws such as ||go f||,, = lIgll,, o || f],,
and |id4l[, = idj4 , with attendant coherence laws. We also have
higher functoriality, for instance:

Lemma 7.3.5. Given f,g : A — B and a homotopy h : f ~ g, there is an
induced homotopy ||h||,, : ||fll,, ~ |gll, such that the composite

15l (lal,,) (@)

nat$
Igll,(lal,) ———=

nat{i

[f(a)], —— ||f|| (lal,,) ——— g (a)l,
(7.3.6)
is equal to ap|_ (h(a)).

Proof. First, we indeed have a homotopy with components ap|_ ((a)) :
|f(a)|, = |g(a)],,. Composing on either sides with the paths |f(a)|, =
Il fll,,(|al,) and |g(a)|, = |/8ll,,(|a],,), which arise from the definitions of
I£Il, and g, we obtain a homotopy ([Ifll,  [=|) ~ (llgll, © I|).
and hence an equality by function extensionality. But since (- o |-|,) is
an equivalence, there must be a path || f||,, = ||g]|,, inducing it, and the
coherence laws for function extensionality imply (7.3.6). O

The following observation about reflective subcategories is also stan-
dard.

Corollary 7.3.7. A type A is an n-type if and only if |-|, : A — ||A]|,, is an
equivalence.

Proof. “It” follows from closure of n-types under equivalence. On the
other hand, if A is an n-type, we can define ext(id4) : ||Al|, = A. Then
we have ext(idg) o |-|, = idg : A — A by definition. In order to prove
that |~[, oext(id4) = id) 4 , we only need to prove that ||, o ext(ida) o
||, =id) 4y, © [-[4- This is again true:

|_|n
A——|Al,

id4 Jext(idA)
A idjay,

N

1Al O

The category of n-types also has some special properties not pos-
sessed by all reflective subcategories. For instance, the reflector ||—||,,
preserves finite products.
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Theorem 7.3.8. For any types A and B, the induced map || A x B||,, — || A]],, X
|B||,, is an equivalence.

Proof. Tt suffices to show that ||Al|,, x ||B||,, has the same universal prop-
erty as ||A x BJ|,,. Thus, let C be an n-type; we have

(1Al > 1Bl = ©) = (|4l ~ (1B, = ©))
= (Il 4ll, ~ (B = ©))
=(A—=(B—=0()

= (

AxB—C)

using the universal properties of ||B||, and ||A||,, along with the fact
that B — Cis an n-type since C is. It is straightforward to verify that this
equivalence is given by composing with |-|, x |-|,, as needed. O

The following related fact about dependent sums is often useful.

Theorem 7.3.9. Let P : A — U be a family of types. Then there is an equiva-

lence
|Z 1P|, = | P
x:A x:A

n

Proof. We use the induction principle of n-truncation several times to
construct functions

o: [ IP@I|, = |2 P
v [ P@], = |E P,

n

n

and homotopies H : g o ~ id and K : ¢ o ¢ ~ id exhibiting them as
quasi-inverses. We define ¢ by setting ¢(|(x, |u|,)],) := |(x,u)],. We de-
fine ¢ by setting ¢(|(x, u)|,,) := |(x,|u|,)|,- Then we define H(|(x,u)|,) :=
reﬂl(x,u)‘n and K(|(x, |u|n)|n) = reﬂl(x"uhl” O

n

Corollary 7.3.10. If A is an n-type and P : A — U is any type family, then
EIP@), = || )|
a:A a:A n

Proof. If A is an n-type, then the left-hand type above is already an n-
type, hence equivalent to its n-truncation; thus this follows from Theo-
rem 7.3.9. O
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We can characterize the path spaces of a truncation using the same
method that we used in §§2.12 and 2.13 for coproducts and natural num-
bers (and which we will use in Chapter 8 to calculate homotopy groups).
Unsurprisingly, the path spaces in the (7 4 1)-truncation of A are the n-
truncations of the path spaces of A. Indeed, for any x,y : A there is a
canonical map

folle=avl, = (¥l =jai,., W) (7.3.11)
defined by
fAply) :=ap-  (p)-
This definition uses the recursion principle for ||-||,, which is correct

because ||A||,,; is (7 + 1)-truncated, so that the codomain of f is n-
truncated.

Theorem 7.3.12. Forany Aand x,y : Aand n > —2, the map (7.3.11) is an
equivalence; thus we have

¥ =a yll, = (el =g W)

Proof. The proof is a simple application of the encode-decode method:
As in previous situations, we cannot directly define a quasi-inverse to
the map (7.3.11) because there is no way to induct on an equality between
|x| .41 and |y[, ;. Thus, instead we generalize its type, in order to have
general elements of the type ||A||,,; instead of |x|,,; and [y, ;. Define
P:[|All,1q = [[All,4q — n-Type by

Pl 1Ylaa) = lIx =avll,

This definition is correct because || x =4 y||,, is n-truncated, and n-Type is
(n + 1)-truncated by Theorem 7.1.11. Now for every u,v : [|Al|, ., there
is a map

decode : P(u,v) — (u =l v)

defined for u = |x|,,; and v = |y|, ., and p : x = y by

decode(|p|,) == ||, (p)-

Since the codomain of decode is n-truncated, it suffices to define it only
for u and v of this form, and then it’s just the same definition as before.
We also define a function

ro [T Pluu)

w:l| ALy
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by induction on u, where r(|x|, ;) = |refly|,.
Now we can define an inverse map

encode : (u =|\al,,, ©) = P(u,0)

by
encode(p) = transport® P 9) (p, r(u)).

To show that the composite

(1 =a),, ) S P(1,0) 25 (0=, 0)
is the identity function, by path induction it suffices to check it for refl,, :
u = u, in which case what we need to know is that decode(r(u)) = refl,,.
But since this is an (n — 1)-type, hence also an (n + 1)-type, we may
assume u = |x|,, in which case it follows by definition of r and decode.
Finally, to show that

decode encode
P(u,v) —— (u =|All, v) —— P(u,v)

is the identity function, since this goal is again an (n — 1)-type, we may
assume that u = [x[,,; and v = |y|,,, and that we are considering
Pl s P(|x],41,¥l,q) for some p : x = y. Then we have

encode(decode(|p|,)) = encode(ap|_|n+1 (»)

= transporthP(‘ﬂrﬁrl/U)(ap|_| . (p), |refly|,)
= transport!1¥=Vlu (p, |refl,| )

= |transport? (=) (p, refl,)
n

= |p|n’

using Lemmas 2.3.10 and 2.3.11. (Alternatively, we could do path in-
duction on p; the desired equality would then hold judgmentally.) This
completes the proof that decode and encode are quasi-inverses. The stated
result is then the special case where u = |x|,  ; and v = |y|, ;. O

Corollary 7.3.13. Let n > —2 and (A, a) be a pointed type. Then
1A, a)l,, = QI(A a)l],11)

Proof. This is a special case of the previous lemma where x =y =a. O
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Corollary 7.3.14. Let n > —2and k > 0 and (A, a) a pointed type. Then
195 (A, )], = A (I(A, 2) |4 -

Proof. By induction on k, using the recursive definition of QF. O

We also observe that “truncations are cumulative”: if we truncate to
an n-type and then to a k-type with k < n, then we might as well have
truncated directly to a k-type.

Lemma 7.3.15. Let k,n > —2withk < nand A : U. Then ||[|A|,[, =
1Al

Proof. We define two maps f : ||[|All,ll, — [|Ally and g : ||Ally —
I1[A[L 115 by

fllalyle) = lale — and  g(laly) = [[al,];-

The map f is well-defined because || A||,. is k-truncated and also n-truncated
(because k < n), and the map g is well-defined because ||||Al|,, |, is k-
truncated.

The composition fo g : |A|;, — | All; satisfies (f o g)(|al;) = |al;
hence f o g = id)) . Similarly, we have (g o f)([lal,|;) = |lal,|, and
hence g Of = IdHHA”n”k O

7.4 Colimits of n-types

Recall that in §6.8, we used higher inductive types to define pushouts
of types, and proved their universal property. In general, a (homotopy)
colimit of n-types may no longer be an n-type (for an extreme counterex-
ample, see Exercise 7.2). However, if we n-truncate it, we obtain an n-
type which satisfies the correct universal property with respect to other
n-types.

In this section we prove this for pushouts, which are the most impor-
tant and nontrivial case of colimits. Recall the following definitions from
§6.8.

Definition 7.4.1. A spanisa 5-tuple 2 = (A,B,C,f,g) withf:C — A
and g: C — B.

L}B

C
9 = fl

A
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Definition 7.4.2. Givenaspan 2 = (A, B,C, f,g) and a type D, a cocone
under 7 with base D is a triple (i,j,h) withi: A — D,j: B — D and

h:Tec) i(f() = j(g(e)):

CL

B
fl g l

A——

1

—

We denote by coconeg (D) the type of all such cocones.

The type of cocones is (covariantly) functorial. For instance, given
D,E and amap t: D — E, there is a map

coconey (D) —  coconeg(E)
¢ —— toc

defined by:
to(i,j,h) = (toitojap;oh).

And given D, E, F, functions t : D — E, u : E — F and c : coconeg (D),
we have

idpoc=c (7.4.3)
(uot)oc=wuo(toc). (7.4.4)

Definition 7.4.5. Given a span 2 of n-types, an n-type D, and a cocone
¢ : coconey (D), the pair (D, c) is said to be a pushout of Z in n-types if
for every n-type E, the map

(D—E) — coconeg(E)
t — toc

is an equivalence.

In order to construct pushouts of n-types, we need to explain how to
reflect spans and cocones.

Definition 7.4.6. Let
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be a span. We denote by || Z||,, the following span of n-types:

gl
ICll, — 1B,

1211, := ml
Al
Definition 7.4.7. Let D : U/ and ¢ = (i, ], h) : coconey (D). We define
llell = (Nl 1711, %) = coconey gy (I1D],,)

where k is the composite homotopy
il o Lf 1l ~ N0 flly ~ M7 o gl ~ 171l o N8l
using Lemma 7.3.5 and the functoriality of ||-|,,.

We now observe that the maps from each type to its n-truncation as-
semble into a map of spans, in the following sense.

Definition 7.4.8. Let

g g

C——B c—=—>B
9 = fl and ' = fﬂ
A Al

be spans. A map of spans 2 — 2’ consists of functions « : A — A/,
B:B — B,and vy : C — C’ and homotopies ¢ : o f ~ f o+ and
p:pog~gon

Thus, for any span &, we have a map of spans |-|7 : 2 — ||2],,
consisting of |-|4, |-|8, |-|$, and the naturality homotopies natj,; and
natd from (7.3.4).

We also need to know that maps of spans behave functorially. Namely,
if (0, 8,7,¢,¢) : 2 — 2'isamap of spans and D any type, then we have

{ coconeg (D) — coconey (D)
(i,jh) —— (ioa,jopB,k)
where k : [](..c)i(a(f(z))) = j(B(g(2))) is the composite

api(9) h(v(2)) . ap;(y)

i(a(f(2))) == i(f"((2)))

j(B(8(2)))-

(7.4.9)
We denote this cocone by (i, j, h) o (&, B, v, ¢, ). Moreover, this functorial
action commutes with the other functoriality of cocones:
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Lemma 7.4.10. Given («,B,7y,¢,9) : 2 — 9" and t : D — E, the following
diagram commutes:

coconeyy (D) —== coconey (E)

| |

coconeg (D) Tcocone@(E)

Proof. Given (i,j,h) : coconegy/ (D), note that both composites yield a
cocone whose first two components are toiox and tojo . Thus, it
remains to verify that the homotopies agree. For the top-right composite,
the homotopy is (7.4.9) with (i, j, h) replaced by (toi,t o j,ap; o h):

APtoi

(¢) bifl oz ap; (h(7(2)))

ap, o'(w)
tiafz tjg’yzritjﬁgz
(For brevity, we are omitting the parentheses around the arguments of
functions.) On the other hand, for the left-bottom composite, the homo-
topy is ap; applied to (7.4.9). Since ap respects path-concatenation, this is
equal to

; } ap:(ap;(¥))
tiafz ap;(ap;i(¢9)) bifl oz ap:(h(v(2))) tig vz P+(ap; tiBgz.
But ap; 0 ap; = ap;.; and similarly for j, so these two homotopies are
equal. O

Finally, note that since we defined |c|[,, : coconejg (||D]|,) using
Lemma 7.3.5, the additional condition (7.3.6) implies

=17 oc=licll, o -1i- (7.4.11)
for any c : coconey (D). Now we can prove our desired theorem.

Theorem 7.4.12. Let 9 be a span and (D, c) its pushout. Then (||D||,,, ||c||,,)
is a pushout of || 2||,, in n-types.
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Proof. Let E be an n-type, and consider the following diagram:

-o|-|?
(IDIl,, = E) (D —E)
_O|C|nl J{‘OC
-o|~|7
cocone| g (E) coconeg (E)

il pz

(II1All, = E) x(cy,—E) (IBll, = E) —— (A = E) X(c) (B = E)

The upper horizontal arrow is an equivalence since E is an n-type, while
- o is an equivalence since c is a pushout cocone. Thus, by the 2-out-
of-3 property, to show that — o ||c||,, is an equivalence, it will suffice to
show that the upper square commutes and that the middle horizontal
arrow is an equivalence. To see that the upper square commutes, let
t:||DJ|,, = E; then

(tollell,) o |=17 =to(lell, o |-I7) (by Lemma 7.4.10)
=to(]-|Poc) (by (7.4.11))
= (to]-|))oc. (by (7.4.4))

To show that the middle horizontal arrow is an equivalence, consider the
lower square. The two lower vertical arrows are simply applications of

happly:

(i, j,p) = (i, ], happly(p))
(i, j, p) := (i, j, happly(p))

and hence are equivalences by function extensionality. The lowest hori-
zontal arrow is defined by

(ijop) = (ol=I7, jol=In q)
where g is the composite
io|-|4of=io o|-|S by f t(A i tf( ))))
io|=[fof =iol|fl, o |-IS (by funext(Az. ap;(nat} (2

=jolgll,ol-Is (by ap_,_c(p))
=jol-|Bog. (by funext(Az. apj(nat‘g(z))))
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This is an equivalence, because it is induced by an equivalence of cospans.
Thus, by 2-out-of-3, it will suffice to show that the lower square com-

mutes. But the two composites around the lower square agree defini-

tionally on the first two components, so it suffices to show that for (i, j, p)

in the lower left corner and z : C, the path

happly(q,2) = i(|f(2)[,) = j(Ig(2)],.)

(with g as above) is equal to the composite

i(lf2),) = il £l (Iz]) (by ap;(nat}(2)))
= j(lIgll(Izl,)) (by happly(p, |z[,,))
= j(18(2)],,)- (by ap;(natji(2)))

However, since happly is functorial, it suffices to check equality for the
three component paths:

happly (funext(Az. ap;(nat}(2))),z) = ap;(nat,(z))
happly(ap__ic(p),z) = happly(p, |2[,)

ap]-(nat‘g(z)).

The first and third of these are just the fact that happly is quasi-inverse

to funext, while the second is an easy general lemma about happly and
precomposition. O

happly (funext(Az. ap]-(natﬁ (2))),2)

7.5 Connectedness

An n-type is one that has no interesting information above dimension 7.
By contrast, an n-connected type is one that has no interesting information
below dimension #n. It turns out to be natural to study a more general
notion for functions as well.

Definition 7.5.1. A function f : A — B is said to be n-connected if for
all b : B, the type ||fibs(b)|| is contractible:

conn,(f) =] [ isContr(Hfibf(b)Hn).

b:B

A type A is said to be n-connected if the unique function A — 1 is n-
connected, i.e. if || A||, is contractible.
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Thus, a function f : A — B is n-connected if and only if fibf(b) is n-
connected for every b : B. Of course, every function is (—2)-connected.
At the next level, we have:

Lemma 7.5.2. A function f is (—1)-connected if and only if it is surjective in
the sense of §4.6.

Proof. We defined f to be surjective if |[fibs(b)| _, is inhabited for all
b. But since it is a mere proposition, inhabitation is equivalent to con-
tractibility. O

Thus, n-connectedness of a function for n > 0 can be thought of as
a strong form of surjectivity. Category-theoretically, (—1)-connectedness
corresponds to essential surjectivity on objects, while n-connectedness
corresponds to essential surjectivity on k-morphisms for k < n + 1.

Lemma 7.5.2 also implies that a type A is (—1)-connected if and only
if it is merely inhabited. When a type is 0-connected we may simply
say that it is connected, and when it is 1-connected we say it is simply
connected.

Remark 7.5.3. While our notion of n-connectedness for types agrees with
the standard notion in homotopy theory, our notion of n-connectedness
for functions is off by one from a common indexing in classical homotopy
theory. Whereas we say a function f is n-connected if all its fibers are n-
connected, some classical homotopy theorists would call such a function
(n+1)-connected. (This is due to a historical focus on cofibers rather than
fibers.)

We now observe a few closure properties of connected maps.

Lemma 7.5.4. Suppose that g is a retract of a n-connected function f. Then g
is n-connected.

Proof. This is a direct consequence of Lemma 4.7.3. O

Corollary 7.5.5. If g is homotopic to a n-connected function f, then g is n-
connected.

Lemma 7.5.6. Suppose that f : A — B is n-connected. Then g : B — C is
n-connected if and only if g o f is n-connected.
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Proof. For any c : C, we have

Ifibger ()], = || X fibs(priw)]| (by Exercise 4.4)
w:fibg (c) n
~| ¥ lfibpenw)], | (by Theorem 7.3.9)
w:fibg (c) 1
=~ ||fibg(c)]],,- (since ||fibs(pryw)||  is contractible)

It follows that ||fibg(c) |, is contractible if and only if |[fibgor(c) || is con-
tractible. n

Importantly, n-connected functions can be equivalently characterized
as those which satisfy an “induction principle” with respect to n-types.
This idea will lead directly into our proof of the Freudenthal suspension
theorem in §8.6.

Lemma 7.5.7. For f : A — Band P : B — U, consider the following function:
As.so f: (]‘[ p(b)) - (1‘[ P(f(a))).
b:B a:A

For a fixed f and n > —2, the following are equivalent.

(i) f is n-connected.
(ii) Forevery P : B — n-Type, the map As.s o f is an equivalence.
(iii) For every P : B — n-Type, the map As.s o f has a section.

Proof. Suppose that f is n-connected and let P : B — n-Type. Then we
have the equivalences

[1P®) ~]] (Hﬁbf(b)Hn — P(b)) (since ||fibs(b)|| is contractible)
b:B b:B
~ H (fibf(b) — P(b)) (since P(b) is an n-type)

b:B
~TT IT II P®
(b:B) (a:A) (p:f(a)=b)
(by the left universal property of X-types)

~ ] P(f(a)). (by the left universal property of path types)
a:A

We omit the proof that this equivalence is indeed given by As.s o f.
Thus, (i)=-(ii), and clearly (ii)=-(iii). To show (iii)=>(i), consider the type
family

P(b) = |fibs (b)) -
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Then (iii) yields a map ¢ : [T(p.p)||fibs (D) ||, with c(f(a)) = |(a, refl())| .
To show that each ||fib (D) Hn is contractible, we will find a function of

type
w = c(b).
(b:B) (w:||fibs (b))

By Theorem 7.3.2, for this it suffices to find a function of type

I[TII II Hapl,=c)

(0:B) (a:A) (p:f(a)=D)

But by rearranging variables and path induction, this is equivalent to the

type
1—“({1, reflf(a>)‘n =c(f(a)).
a:A
This property holds by our choice of ¢(f(a)). 0O

Corollary 7.5.8. For any A, the canonical function |-|, : A — ||A], is
n-connected.

Proof. By Theorem 7.3.2 and the associated uniqueness principle, the
condition of Lemma 7.5.7 holds. O

For instance, when n = —1, Corollary 7.5.8 says that the map A —
|A|| from a type to its propositional truncation is surjective.

Corollary 7.5.9. A type A is n-connected if and only if the map
Ab.Aa.b:B — (A — B)

is an equivalence for every n-type B. In other words, “every map from A to an
n-type is constant”.

Proof. By Lemma 7.5.7 applied to a function with codomain 1. O

Lemma 7.5.10. Let B be an n-type and let f : A — B be a function. Then
the induced function g : ||Al|,, — B is an equivalence if and only if f is n-
connected.

Proof. By Corollary 7.5.8, ||, is n-connected. Thus, since f = go|-|,,
by Lemma 7.5.6 f is n-connected if and only if g is n-connected. But
since g is a function between n-types, its fibers are also n-types. Thus, g
is n-connected if and only if it is an equivalence. O

We can also characterize connected pointed types in terms of connec-
tivity of the inclusion of their basepoint.
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Lemma 7.5.11. Let A be a type and ag : 1 — A a basepoint, with n > —1.
Then A is n-connected if and only if the map ag is (n — 1)-connected.

Proof. First suppose ap : 1 — A is (n — 1)-connected and let B be an n-
type; we will use Corollary 7.5.9. The map Ab.Aa.b: B — (A — B) hasa
retraction given by f — f(ay), so it suffices to show it also has a section,
i.e. that for any f : A — B thereis b : B such that f = Aa.b. We choose
b := f(ap). Define P : A — U by P(a) := (f(a) = f(ap)). Then P is
a family of (n — 1)-types and we have P(ag); hence we have [],.4) P(a)
sinceap : 1 — Ais (n — 1)-connected. Thus, f = Aa. f(ag) as desired.
Now suppose A is n-connected, and let P : A — (n —1)-Type and
u : P(ap) be given. By Lemma 7.5.7, it will suffice to construct f :
[T(a:a) P(a) such that f(ap) = u. Now (n —1)-Type is an n-type and
A is n-connected, so by Corollary 7.5.9, there is an n-type B such that
P = Aa.B. Hence, we have a family of equivalences g : [](,.4)(P(a) ~
B). Define f(a) := g~ ' (gay(#)); then f : [(.4) P(a) and f(ag) = u as
desired. O

In particular, a pointed type (A, ap) is 0-connected if and only if 4y :
1 — A s surjective, which is to say [](y.4)[lx = ao||. For a similar result
in the not-necessarily-pointed case, see Exercise 7.6.

A useful variation on Lemma 7.5.6 is:

Lemma 7.5.12. Let f : A — Bbea functionand P: A - Uand Q: B = U
be type families. Suppose that g : T1(,.4) P(a) — Q(f(a)) is a fiberwise n-
connected family of functions, i.e. each function g, : P(a) — Q(f(a)) is n-
connected. If f is also n-connected, then so is the function

v: (L P@) (bg; Q)
pla,u) = (f(a), ga(u)).

Conversely, if ¢ and each g, are n-connected, and moreover Q is fiberwise
merely inhabited (i.e. we have || Q(b)|| for all b : B), then f is n-connected.

Proof. Forany b : Band v : Q(b) we have

[fiby((b,0)) ~HZ Y. pe(ga(w) =0
P(a)) (pf (@)=b) "

> | Z Y o) = o) L(0)

(wiiby (b)) (u:P(pr (w))) '
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~| X o (rafw) " 0))

w'fibf( )

M Hﬂb (pry) (Pr2() ", (2)

n

nlin

w:fi
~ Hflbf Hn

where the transportations along f(p) and f(p)~! are with respect to Q.
Therefore, if either is contractible, so is the other.

In particular, if f is #-connected, then ||fib¢(b)|| is contractible for all
b : B, and hence so is [fiby((b,0))]|, for all (b,v) : ¥ 4.5) Q(b). On the
other hand, if ¢ is n-connected, then' |fiby((b,0))], is contractlble for all
(b,v), hence so is Hflbf ||71 for any b : B such that there exists some
v : Q(b). Finally, since contractibility is a mere proposition, it suffices to
merely have such a v. O

The converse direction of Lemma 7.5.12 can fail if Q is not fiberwise
merely inhabited. For example, if P and Q are both constant at 0, then ¢
and each g, are equivalences, but f could be arbitrary.

In the other direction, we have

Lemma 7.5.13. Let P,Q : A — U be type families and consider a fiberwise
transformation
£ TT(P@) = Q@)
a:A

from P to Q. Then the induced map total(f) : Yz.a) P(a) = L(a:a) Qla) is
n-connected if and only if each f(a) is n-connected.

Of course, the “only if” direction is also a special case of Lemma 7.5.12.

Proof. By Theorem 4.7.6, we have fibyoa(f) ((x,0)) = fibg(,(v) for each
x:Aandv: Q(x). Hence ||fibt0ta|(f)((x, v)) Hn is contractible if and only
if [|fibs(y)(v)| | is contractible. O

Another useful fact about connected maps is that they induce an
equivalence on n-truncations:

Lemma 7.5.14. If f : A — B is n-connected, then it induces an equivalence
1Al = 1B,

Proof. Let c be the proof that f is n-connected. From left to right, we
use the map ||f||,, : ||All, — [/B]|,- To define the map from right to
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left, by the universal property of truncations, it suffices to give a map
back : B — ||Al|,,- We can define this map as follows:

back(y) := |lpr1l,,(pr1(c(y))).

By definition, ¢(y) has type isContr(||fibs(y)|| ), so its first component
has type ||fibs(y)
projection.

Next, we show that the composites are the identity. In both directions,
because the goal is a path in an n-truncated type, it suffices to cover the
case of the constructor |-|,.

In one direction, we must show that for all x : A,

[Iprell, (prie(f(x)))) = |x[,-

But | (x, refly(y))| : [[fibs(f(x))
tractible, so

,» and we can obtain an element of || Al|, from this by

»and c(f(x)) says that this type is con-

pri(c(f(x))) = [(x, refl) ..

Applying ||pr1]|,, to both sides of this equation gives the result.
In the other direction, we must show that forally : B,

£ Cllerall, (pra(e()))) = [yl,,-

pri(c(y)) has type ||fibs(y) - and the path we want is essentially the sec-
ond component of the fibf(y), but we need to make sure the truncations
work out.

In general, suppose we are given p : [Ly.4) B(x)|| and wish to

prove P(||pr{||,,(p)). By truncation induction, it suffices to prove P(|a|,)
foralla : Aand b : B(a). Applying this principle in this case, it suffices
to prove

A1 Clal,) = 1y,
givena : Aand b : f(a) = y. But the left-hand side equals |f(a)|,, so
applying |-|,, to both sides of b gives the result. O

One might guess that this fact characterizes the n-connected maps,
but in fact being n-connected is a bit stronger than this. For instance, the
inclusion 0z : 1 — 2 induces an equivalence on (—1)-truncations, but is
not surjective (i.e. (—1)-connected). In §8.4 we will see that the difference
in general is an analogous extra bit of surjectivity.
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7.6 Orthogonal factorization

In set theory, the surjections and the injections form a unique factoriza-
tion system: every function factors essentially uniquely as a surjection
followed by an injection. We have seen that surjections generalize natu-
rally to n-connected maps, so it is natural to inquire whether these also
participate in a factorization system. Here is the corresponding general-
ization of injections.

Definition 7.6.1. A function f : A — B is n-truncated if the fiber fib(b)
is an n-type for all b : B.

In particular, f is (—2)-truncated if and only if it is an equivalence.
And of course, A is an n-type if and only if A — 1 is n-truncated. More-
over, n-truncated maps could equivalently be defined recursively, like
n-types.

Lemma 7.6.2. Forany n > —2, a function f : A — B is (n + 1)-truncated

if and only if for all x,y : A, the map aps : (x = y) — (f(x) = f(y)) is
n-truncated. In particular, f is (—1)-truncated if and only if it is an embedding
in the sense of §4.6.

Proof. Note that for any (x, p), (v, q) : fibs(b), we have

(xp)=Ww)= Y, (p=aps(r)*q)

rix=y

=Y (Gpi(r)=prq")

rix=y
= fibap, (prq~").

Thus, any path space in any fiber of f is a fiber of ap;. On the other hand,

choosing b := f(y) and q := refl¢(,) we see that any fiber of apy is a path

space in a fiber of f. The result follows, since f is (n + 1)-truncated if all
path spaces of its fibers are n-types. O

We can now construct the factorization, in a fairly obvious way.

Definition 7.6.3. Let f : A — B be a function. The n-image of f is
defined as

ima(f) =) Hﬁbf(b>||n'
b:B

When n = —1, we write simply im(f) and call it the image of f.
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Lemma 7.6.4. For any function f : A — B, the canonical function f : A —
imy, (f) is n-connected. Consequently, any function factors as an n-connected
function followed by an n-truncated function.

Proof. Note that A =~ Y .5 fibs(b). The function f is the function on
total spaces induced by the canonical fiberwise transformation

p (fibf(b) — Hfibf(b)Hn).

:B

Since each map fibs(b) — ||fibs(b) Hn is n-connected by Corollary 7.5.8, f
is n-connected by Lemma 7.5.13. Finally, the projection prq : im,(f) — B
is n-truncated, since its fibers are equivalent to the n-truncations of the
fibers of f. O

In the following lemma we set up some machinery to prove the unique
factorization theorem.

Lemma 7.6.5. Suppose we have a commutative diagram of functions

ALXl

P

X, —— B
hy

with H : hy o g1 ~ hy o g», where g1 and g, are n-connected and where hy and
hy are n-truncated. Then there is an equivalence

E(H,b) : fiby, (b) ~ fiby, (b)
forany b : B, such that for any a : A we have an identification

E(H,a) : E(H,In(g1(0)))(g1(a), refly, (4, a))) = (82(a), H(a) ).

Proof. Let b : B. Then we have the following equivalences:

fiby, (b) ~ ) |lfibg, (pryw)]| (since g is n-connected)
wifiby,, (b)
~ H ) fibgl(prlw)H
wfiby, (b) "

(by Corollary 7.3.10, since k4 is n-truncated)
~ ||fiby, ogr (b) Hn (by Exercise 4.4)
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and likewise for iy and g». Also, since we have a homotopy H : hj 0 g1 ~
hy o g, there is an obvious equivalence fiby, oq, (b) = fiby,.g,(b). Hence
we obtain
ﬁbhl (b) =~ ﬁbhz (b)

for any b : B. By analyzing the underlying functions, we get the follow-
ing representation of what happens to the element (g1(a), refly, (4, (s)))
after applying each of the equivalences of which E is composed. Some of
the identifications are definitional, but others (marked with a = below)
are only propositional; putting them together we obtain E(H, a).

((gl(a), reﬂh1(g1 (u)))/ (a, reﬂg1(ﬂ)) ’n)
(81(a), refly, (g, a))), (@, reflg, )],

(81(a), refly, (¢, (a)))

The first equality is because for general b, the map

fib, (b) = 3~ fibg, (priw)]l,
wfiby, (b)

inserts the center of contraction for |[fibg, (priw)|| supplied by the as-
sumption that g; is n-truncated; whereas in the case in question this
(a,refly, () |n‘, Which by c.ont.ractibility
must be equal to the center. The second propositional equality is because
the equivalence fib, o, (b) = fibj,og, (b) concatenates the second compo-
nents with H(a) ', and we have H(a) ' *refl = H(a)'. The reader may
check that the other equalities are definitional (assuming a reasonable
solution to Exercise 4.4). O

Combining Lemmas 7.6.4 and 7.6.5, we have the following unique
factorization result:

Theorem 7.6.6. For each f : A — B, the space fact, (f) defined by
Z Y Y. (hog~ f) x conny(g) x trunc,(h)

U) (§:A—X) (h:X—B)
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is contractible. Its center of contraction is the element

(ima(f), f,pr1,6, @, ) : factu(f)

arising from Lemma 7.6.4, where 0 : pry o f ~ f is the canonical homotopy,
where ¢ is the proof of Lemma 7.6.4, and where  is the obvious proof that
pri @ imy(f) — B has n-truncated fibers.

Proof. By Lemma 7.6.4 we know that there is an element of fact,(f),
hence it is enough to show that fact, (f) is a mere proposition. Suppose
we have two n-factorizations

(X1,81, 0, Hy, 1,91)  and  (X2,82,h2, Ho, 92, 2)
of f. Then we have the pointwise-concatenated homotopy
H:= (Aa. Hy(a)*Hy '(a)) : (nogi~hyog).

By univalence and the characterization of paths and transport in >-types,
function types, and path types, it suffices to show that

(i) thereis an equivalence e : X; ~ Xo,
(i) there is a homotopy { :eo g1 ~ g2,
(iii) thereis a homotopy # : hpoe ~ hy,
(iv) for any a : A we have aphz(é(a))_1 *717(g1(a)) * Hi(a) = Hy(a).

We prove these four assertions in that order.

(i) By Lemma 7.6.5, we have a fiberwise equivalence
E(H) : ] fiby, (b) ~ fiby, (b).
b:B
This induces an equivalence of total spaces, i.e. we have

(% fibhl(b)) ~ (g ﬁbhz(b)).

Of course, we also have the equivalences X; =~ ) ,p) fiby, (b) and
Xo =~ L) fiby, (b) from Lemma 4.8.2. This gives us our equiva-
lence e : X; ~ X5; the reader may verify that the underlying func-
tion of e is given by

e(x) = pry(E(H, h(x)) (x, refly, ().
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(i) By Lemma 7.6.5, we may choose {(a) := apy, (E(H, a)) : e(g1(a)) =
82(4)-

(iii) For every x : X;, we have

pra(E(H, hy(x))(x, refly, () = ha(e(x)) = h1(x),

giving us a homotopy 77 : hp oe ~ hjy.

(iv) By the characterization of paths in fibers (Lemma 4.2.5), the path
E(H,a) from Lemma 7.6.5 gives us 17(g1(a)) = apy, ({(a)) - H(a)™".
The desired equality follows by substituting the definition of H and
rearranging paths. O

By standard arguments, this yields the following orthogonality prin-
ciple.

Theorem 7.6.7. Let e : A — B be n-connected and m : C — D be n-
truncated. Then the map

p:(B—=C) — Y Y, (moh~koe)
(h:A—C) (k:B—D)

is an equivalence.

Sketch of proof. For any (h,k, H) in the codomain, let h = hy o hy and k =
ko o ki, where h; and k; are n-connected and h, and k; are n-truncated.
Then f = (mohy)ohy and f = ky o (ky o e) are both n-factorizations of
moh = koe. Thus, there is a unique equivalence between them. It is
straightforward (if a bit tedious) to extract from this that fib, ( (%, k, H)) is
contractible. O

We end by showing that images are stable under pullback.

Lemma 7.6.8. Suppose that the square

A——C

1k
B——D

h

is a pullback square and let b : B. Then fibs(b) =~ fibg (h(D)).
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Proof. This follows from pasting of pullbacks (Exercise 2.12), since the
type X in the diagram

——A——C

1k
B

b h D

=

is the pullback of the left square if and only if it is the pullback of the
outer rectangle, while fib¢(b) is the pullback of the square on the left and
fibg (h(D)) is the pullback of the outer rectangle. O

Theorem 7.6.9. Consider functions f : A — B, g : C — D and the diagram

—C

|+

imy (f) ——imy(g)

lpﬁ

— D

Pri

&

If the outer rectangle is a pullback, then so is the bottom square (and hence
so is the top square, by Exercise 2.12). Consequently, images are stable under
pullbacks.

Proof. Assuming the outer square is a pullback, we have equivalences

Bxpimu(g)= Y. Y h(b)=prw
(b:B) (w:imy(g))

Yo ) Y, h(b)=d

(b:B) (d:D) (w:||fibg(d)]],,)
=~ ) llfibg (R (B))]],,
b:B

~ ) |fibe(b)] (by Lemma 7.6.8)
b:B

12

Elmn(f) O
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7.7 Modalities

Nearly all of the theory of n-types and connectedness can be done in
much greater generality. This section will not be used in the rest of the
book.

Our first thought regarding generalizing the theory of n-types might
be to take Lemma 7.3.3 as a definition.

Definition 7.7.1. A reflective subuniverse is a predicate P : I/ — Prop
such that for every A : U we have a type OA such that P(OA) and a
map 174 : A = OA, with the property that for every B : U with P(B), the
following map is an equivalence:

{(OA—>B) — (A—B)
fo— fona

We write Up := { A: U | P(A) },s0 A : Up means that A : U and we
have P(A). We also write recs, for the quasi-inverse of the above map.
The notation O may seem slightly odd, but it will make more sense soon.

For any reflective subuniverse, we can prove all the familiar facts
about reflective subcategories from category theory, in the usual way.
For instance, we have:

* Atype AliesinUp if and only if 74 : A — OA is an equivalence.

® Up is closed under retracts. In particular, A lies in {/p as soon as 174
admits a retraction.

® The operation O is a functor in a suitable up-to-coherent-homotopy
sense, which we can make precise at as high levels as necessary.

¢ The types in Up are closed under all limits such as products and
pullbacks. In particular, for any A : Up and x,y : A, the identity
type (x =4 y) is also in Up, since it is a pullback of two functions
1— A

* Colimits in Up can be constructed by applying O to ordinary col-
imits of types.

Importantly, closure under products extends also to “infinite prod-
ucts”, i.e. dependent function types.

Theorem 7.7.2. If B : A — Up is any family of types in a reflective subuni-
verse Up, then [](x. ) B(x) is also in Up.
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Proof. For any x : A, consider the function evy : ([Tyx.4) B(x)) — B(x)
defined by evy(f) := f(x). Since B(x) lies in P, this extends to a function

reco(evy) : O(I;I B(x)) — B(x).

Thus we can define h : O([T(x.4) B(x)) — Tl(x:a) B(x) by h(z)(x) =
reco(evy)(z). Then h is a retraction of M. B(x)7 SO that [T(x.4) B(x) is
in Z/[p. O

In particular, if B : Up and A is any type, then (A — B) is in Up.
In categorical language, this means that any reflective subuniverse is an
exponential ideal. This, in turn, implies by a standard argument that the
reflector preserves finite products.

Corollary 7.7.3. For any types A and B and any reflective subuniverse, the
induced map O(A x B) — O(A) x O(B) is an equivalence.

Proof. It suffices to show that O(A) x O(B) has the same universal prop-
erty as O(A x B). It lies in Up by the above remark that types in Up are
closed under limits. Now let C : Up; we have

using the universal properties of O(B) and O(A), along with the fact
that B — C is in Up since C is. It is straightforward to verify that this
equivalence is given by composing with 774 X 7, as needed. O

It may seem odd that every reflective subcategory of types is auto-
matically an exponential ideal, with a product-preserving reflector. How-
ever, this is also the case classically in the category of sefs, for the same
reasons. It’s just that this fact is not usually remarked on, since the clas-
sical category of sets—in contrast to the category of homotopy types—
does not have many interesting reflective subcategories.

Two basic properties of n-types are not shared by general reflective
subuniverses: Theorem 7.1.8 (closure under X-types) and Theorem 7.3.2
(truncation induction). However, the analogues of these two properties
are equivalent to each other.

Theorem 7.7.4. For a reflective subuniverse Up, the following are logically
equivalent.
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(i) If A:Upand B: A — Up, then Y. o) B(x) is in Up.
(ii) for every A : U, type family B : OA — Up, and map g : T1(,.4) B(n(a)),
there exists f : T1(z.0a) B(2) such that f(y(a)) = g(a) forall a: A.

Proof. Suppose (i). Then in the situation of (i), the type Y (..04) B(z)
lies in Up, and we have g’ : A — Y.(,.0a) B(z) defined by g( ) =
(n(a),g(a)). Thus, we have reco(g’) : OA — Y(z0a) B(z) such that
reco(¢') (@) = ((a), g(a)).

Now consider the functions prq o reco(g’) : OA — OA and idoa.
By assumption, these become equal when precomposed with 7. Thus,
by the universal property of O, they are equal already, i.e. we have p; :
prq(reco(g’)(z)) = z for all z. Now we can define

f(2) = pz, (pra(reco(8')(2))),

Using the adjunction property of the equivalence of definition 7.7.1, one
can show that the first component of

reco (8')(17(a)) = ((a), g(a))

is equal to p,(,). Thus, its second component yields f(77(a)) = g(a), as
needed.

Conversely, suppose (ii), and that A : Up and B : A — Up. Let h be
the composite

(2 B(x ) Obra), 4 )

Then for z : ¥ (,.4) B(x) we have

Denote this path by p,. Now if we define C : O(¥(x.4) B(x)) — U by
C(w) := B(h(w)), we have

8:= Az p=(pra(2) + [T c@@).

Thus, the assumption yields

fo Il Cw

w:o():(x:A) B(x))
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such that f(#(z)) = g(z). Together, h and f give a function
O()_ B(x)) = ) _ B(x)
x:A x:A

defined by k(w) := (h(w), f(w)), while p, and the equality f(1(z)) =
g(z) show that k is a retraction of 7y~ (o) B)* Therefore, Y (,.4) B(x) is in
Up. O

Note the similarity to the discussion in §5.5. The universal property
of the reflector of a reflective subuniverse is like a recursion principle
with its uniqueness property, while Theorem 7.7.4(ii) is like the corre-
sponding induction principle. Unlike in §5.5, the two are not equivalent
here, because of the restriction that we can only eliminate into types that
lie in Up. Condition (i) of Theorem 7.7.4 is what fixes the disconnect.

Unsurprisingly, of course, if we have the induction principle, then
we can derive the recursion principle. We can also derive its uniqueness
property, as long as we allow ourselves to eliminate into path types. This
suggests the following definition. Note that any reflective subuniverse
can be characterized by the operation O : &Y — U and the functions
a1 A — OA, since we have P(A) = isequiv(7]4).

Definition 7.7.5. A modality is an operation O : ¢/ — U for which there
are
(i) functions 175‘) : A — O(A) for every type A.
(ii) for every A : U and every type family B : O(A) — U, a function
indo : (1_[ O(B(59 (a) ) [] o
a:A z:0(A)
(i) A path indo(f)(15(a)) = f(a) for each f : T(ea) O(B(15 (@))).
(iv) Forany z,z' : O(A), the function 7, : (z=2') = O(z =2') isan

equivalence.

We say that A is modal for O if 17% : A — O(A) is an equivalence, and
we write
Uo = {X:U | Xis O-modal } (7.7.6)

for the type of modal types.

Conditions (ii) and (iii) are very similar to Theorem 7.7.4(ii), but phrased
using OB(z) rather than assuming B to be valued in Up. This allows us
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to state the condition purely in terms of the operation O, rather than
requiring the predicate P : &/ — Prop to be given in advance. (It is
not entirely satisfactory, since we still have to refer to P not-so-subtly
in clause (iv). We do not know whether (iv) follows from (i)—(iii).) How-
ever, the stronger-looking property of Theorem 7.7.4(ii) follows from Def-
inition 7.7.5(ii) and (iii), since for any C : OA — Uy we have C(z) ~
OC(z), and we can pass back across this equivalence.

As with other induction principles, this implies a universal property.

Theorem 7.7.7. Let A be a type and let B : O(A) — Ug. Then the function
—enf): I1 s () — (TT BUS (@)
a:A

is an equivalence.

Proof. By definition, the operation indo is a right inverse to (- o 79).
Thus, we only need to find a homotopy

H s(z) = indo(s o 17%)(2)

z:0(A)

for each s : []..0(a)) B(z), exhibiting it as a left inverse as well. By as-
sumption, each B(z) is modal, and hence each type s(z) = R§ (s 09)(z)
is also modal. Thus, it suffices to find a function of type

];I s(17(a)) = indo (s 0 17 (175 (a))

which follows from Definition 7.7.5(iii). O

In particular, for every type A and every modal type B, we have an
equivalence (OA — B) ~ (A — B).

Corollary 7.7.8. For any modality O, the O-modal types form a reflective sub-
universe satisfying the equivalent conditions of Theorem 7.7.4.

Thus, modalities can be identified with reflective subuniverses closed
under X-types. The name modality comes, of course, from modal logic,
which studies logic where we can form statements such as “possibly A”
(usually written ©A) or “necessarily A” (usually written 0A). The sym-
bol O is somewhat common for an arbitrary modal operator. Under the
propositions-as-types principle, a modality in the sense of modal logic
corresponds to an operation on types, and Definition 7.7.5 seems a rea-
sonable candidate for how such an operation should be defined. (More
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precisely, we should perhaps call these idempotent, monadic modalities;
see the Notes.) As mentioned in §3.10, we may in general use adverbs to
speak informally about such modalities, such as “merely” for the propo-
sitional truncation and “purely” for the identity modality (i.e. the one
defined by OA := A).

For any modality O, we define a map f : A — B to be O-connected
if O(fibs (b)) is contractible for all b : B, and to be O-truncated if fibs(b)
is modal for all b : B. All of the theory of §§7.5 and 7.6 which doesn’t
involve relating n-types for different values of n applies verbatim in this
generality. In particular, we have an orthogonal factorization system.

An important class of modalities which does not include the n-trun-
cations is the left exact modalities: those for which the functor O pre-
serves pullbacks as well as finite products. These are a categorification
of “Lawvere-Tierney topologies” in elementary topos theory, and corre-
spond in higher-categorical semantics to sub-(oo, 1)-toposes. However,
this is beyond the scope of this book.

Some particular examples of modalities other than n-truncation can
be found in the exercises.

Notes

The notion of homotopy n-type in classical homotopy theory is quite old.
It was Voevodsky who realized that the notion can be defined recursively
in homotopy type theory, starting from contractibility.

The property “Axiom K” was so named by Thomas Streicher, as a
property of identity types which comes after J, the latter being the tradi-
tional name for the eliminator of identity types. Theorem 7.2.5 is due to
Hedberg [Hed98]; [KECA13] contains more information and generaliza-
tions.

The notions of n-connected spaces and functions are also classical in
homotopy theory, although as mentioned before, our indexing for con-
nectedness of functions is off by one from the classical indexing. The
importance of the resulting factorization system has been emphasized
by recent work in higher topos theory by Rezk, Lurie, and others. In
particular, the results of this chapter should be compared with [Lur09,
§6.5.1]. In §8.6, the theory of n-connected maps will be crucial to our
proof of the Freudenthal suspension theorem.

Modal operators in simple type theory have been studied extensively;
see e.g. [dAPGMO04]. In the setting of dependent type theory, [AB04] treats
the special case of propositional truncation ((—1)-truncation) as a modal



CHAPTER 7 EXERCISES 325

operator. The development presented here greatly extends and general-
izes this work, while drawing also on ideas from topos theory.

Generally, modal operators come in (at least) two flavors: those such
as ¢ (“possibly”) for which A = ¢A, and those such as O (“necessarily”)
for which DA = A. When they are also idempotent (i.e. A = ¢0A or
0A = 0O0A), the former may be identified with reflective subcategories
(or equivalently, idempotent monads), and the latter with coreflective
subcategories (or idempotent comonads). However, in dependent type
theory it is trickier to deal with the comonadic sort, since they are more
rarely stable under pullback, and thus cannot be interpreted as oper-
ations on the universe /. Sometimes there are ways around this (see
e.g. [SS12]), but for simplicity, here we stick to the monadic sort.

On the computational side, monads (and hence modalities) are used
to model computational effects in functional programming [Mog89]. A
computation is said to be pure if its execution results in no side effects
(such as printing a message to the screen, playing music, or sending data
over the Internet). There exist “purely functional” programming lan-
guages, such as Haskell, in which it is technically only possible to write
pure functions: side effects are represented by applying “monads” to
output types. For instance, a function of type Int — Int is pure, while a
function of type Int — [0(Int) may perform input and output along the
way to computing its result; the operation 10 is a monad. (This is the
origin of our use of the adverb “purely” for the identity monad, since
it corresponds computationally to pure functions with no side-effects.)
The modalities we have considered in this chapter are all idempotent,
whereas those used in functional programming rarely are, but the ideas
are still closely related.

Exercises

Exercise 7.1.

(i) Use Theorem 7.2.2 to show that if ||A|| — A for every type A, then
every type is a set.

(ii) Show that if every surjective function (purely) splits, i.e. if
[Tllfibg(0)|| =TT fibg(b)
b:B b:B

for every f : A — B, then every type is a set.
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Exercise 7.2. For this exercise, we consider the following general notion
of colimit. Define a graph I' to consist of a type I'y and a family I'y :
I'o = I'o — U. A diagram (of types) over a graph I consists of a family
F : Ty — U together with for each x,y : T, a function Fyy : T'(x,y) —
F(x) — F(y). The colimit of such a diagram is the higher inductive type
colim(F) generated by

e for each x : Ty, a function incy : F(x) — colim(F), and
e foreachx,y:Tpand+y : T1(x,y)and a : F(x),apathinc,(Fyy(y,a)) =
incy(a).

There are more general kinds of colimits as well (see e.g. Exercise 7.16),
but this is good enough for many purposes.

(i) Exhibita graph I such that colimits of I'-diagrams can be identified
with pushouts as defined in §6.8. In other words, each span should
induce a diagram over I' whose colimit is the pushout of the span.

(ii) Exhibit a graph I' and a diagram F over I’ such that F(x) = 1 for
all x, but such that colim(F) = S2. Note that 1 is a (—2)-type, while
S? is not expected to be an n-type for any finite n. See also Exer-
cise 7.16.

Exercise 7.3. Show that if A is an n-type and B : A — n-Type is a family
of n-types, where n > —1, then the W-type W(,.4)B(a) (see §5.3) is also
an n-type.

Exercise 7.4. Use Lemma 7.5.13 to extend Lemma 7.5.11 to any section-
retraction pair.

Exercise 7.5. Show that Corollary 7.5.9 also works as a characterization
in the other direction: B is an n-type if and only if every map into B from
an n-connected type is constant. Ideally, your proof should work for any
modality as in §7.7.

Exercise 7.6. Prove that for n > —1, a type A is n-connected if and only
if it is merely inhabited and for all a,b : A the typea =4 bis (n — 1)-
connected. Thus, since every type is (—2)-connected, n-connectedness
of types can be defined inductively using only propositional truncations.
(In particular, A is 0-connected if and only if [|A|| and [T, 4.4)lla = b]|.)

Exercise 7.7. For —1 < n,m < oo, let LEM,, ;, denote the statement

[T lA+-Al,
A:n-Type

where co-Type := U and || X||, := X. Show that:
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(i) If n = =1 or m = —1, then LEM,, 55, is equivalent to LEM from §3.4.
(ii) If n > 0 and m > 0, then LEM,, ,, is inconsistent with univalence.

Exercise 7.8. For —1 < n,m < oo, let AC,, , denote the statement

[T I (ITI@l) = [TTve],

(X:Set) (Y:X—n-Type) x:X

7

with conventions as in Exercise 7.7. Thus ACq _; is the axiom of choice
from §3.8, while AC o is the identity function. (If we had formulated
AC;; ;, analogously to (3.8.1) rather than (3.8.3), ACe,c0 would be like The-
orem 2.15.7.) It is known that AC,, _; is consistent with univalence, since
it holds in Voevodsky’s simplicial model.

(i) Without using univalence, show that LEM,, o, implies AC;, ;,; for all
m. (On the other hand, in §10.1.5 we will show that AC = ACy_;
implies LEM = LEM_; _1.)

(ii) Of course, ACy,, = ACy,, if k < n. Are there any other implica-
tions between the principles AC, ;,? Is AC,,;; consistent with uni-
valence for any m > 0 and any n? (These are open questions.)

Exercise 7.9. Show that AC,, _; implies that for any n-type A, there merely
exists a set B and a surjection B — A.
Exercise 7.10. Define the n-connected axiom of choice to be the statement

If Xisasetand Y : X — Uf is a family of types such that each
Y (x) is n-connected, then [](,.x) Y (x) is n-connected.

Note that the (—1)-connected axiom of choice is ACs, 1 from Exercise 7.8.

(i) Prove that the (—1)-connected axiom of choice implies the n-con-
nected axiom of choice for all n > —1.

(ii) Are there any other implications between the n-connected axioms
of choice and the principles AC,, ,? (This is an open question.)
Exercise 7.11. Show that the n-truncation modality is not left exact for
any n > —1. That is, exhibit a pullback which it fails to preserve.
Exercise 7.12. Show that X — (——X) is a modality.
Exercise 7.13. Let P be a mere proposition.

(i) Show that X — (P — X) is a left exact modality. This is called the
open modality associated to P.
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(if) Show that X — P * X is a left exact modality, where * denotes the
join (see §6.8). This is called the closed modality associated to P.

Exercise 7.14. Let f : A — B be a map; a type Z is f-local if (— o f) :
(B— Z) — (A — Z) is an equivalence.

(i) Prove that the f-local types form a reflective subuniverse. You will
want to use a higher inductive type to define the reflector (localiza-
tion).

(ii) Prove thatif B = 1, then this subuniverse is a modality.

Exercise 7.15. Show that in contrast to Remark 6.7.1, we could equiv-
alently define ||Al|,, to be generated by a function |-|, : A — |A]],
together with for each r : §"*1 — ||A||, and each x : S"*1, a path
sr(x) : r(x) = r(base).

Exercise 7.16. In this exercise, we consider a slightly fancier notion of
colimit than in Exercise 7.2. Define a graph with composition I to be
a graph as in Exercise 7.2 together with for each x,y,z : I, a function
I'1(y,z) = I'1(x,y) = I'1(x,z), written as § — 7 — J o . (For instance,
any precategory as in Chapter 9 is a graph with composition.) A dia-
gram F over a graph with composition I' consists of a diagram over the
underlying graph, together with for each x,y,z : I'g and 7y : I'1(x,y) and
¢ : I'1(y,z), a homotopy cmp,, . (J,7) : Fyz(0) o Fry(r) ~ Frz(607).
The colimit of such a diagram is the higher inductive type colim(F) gen-
erated by

e for each x : [y, a function incy : F(x) — colim(F),

e foreachx,y : Topand v : I'1(x,y) and a : F(x), a path glue, (7, 4a) :
incy(Fyy(v,a)) = ince(a), and

e foreachx,y,z: Tgpand v : T'1(x,y) and ¢ : T'1(y,z) and a : F(x), a
path

inc; (Cmpx,y,z (5/ Y, a)) - gluex,z (5 o, ﬂ) = gluey,z (5/ PX,y(PYr a)) ' gluex,y(')//

(This is a “second-order approximation” to a fully homotopy-theoretic
notions of diagram and colimit, which ought to involve “coherence paths”
of this sort at all higher levels. Defining such things in type theory is an
important open problem.)

Exhibit a graph with composition I' such that I'y is a set and each type
I'1 (x, y) is a mere proposition, and a diagram F over I' such that F(x) =1
for all x, for which colim(F) = S2.
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Exercise 7.17. Comparing Lemmas 7.5.12 and 7.5.13, one might be tempted
to conjecture that if f : A — B is n-connected and g : [](,.4) P(a) —

Q(f(a)) induces an n-connected map (Z(Q:A) P(a)) — (Z(b:B) Q(b)),
then g is fiberwise n-connected. Give a counterexample to show that this

is false. (In fact, when generalized to modalities, this property character-
izes the left exact ones; see Exercise 7.13.)

Exercise 7.18. Show thatif f : A — B is n-connected, then ||f||, : ||Al|, —
|| B|| is also n-connected.

Exercise 7.19. We say a type A is categorically connected if for every
types B, C the canonical map eqpc : (A - B)+ (A = C)) —» (A —
B + C) defined by

eapc(inl(g)) := Ax.inl(g(x)),
eapc(inr(g)) := Ax.inr(g(x))
is an equivalence.

(i) Show that any connected type is categorically connected.

(ii) Show that all categorically connected types are connected if and
only if LEM holds. (Hint: consider A := %P such that -—P holds.)
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Chapter 8
Homotopy theory

In this chapter, we develop some homotopy theory within type theory.
We use the synthetic approach to homotopy theory introduced in Chap-
ter 2: Spaces, points, paths, and homotopies are basic notions, which
are represented by types and elements of types, particularly the identity
type. The algebraic structure of paths and homotopies is represented by
the natural co-groupoid structure on types, which is generated by the
rules for the identity type. Using higher inductive types, as introduced
in Chapter 6, we can describe spaces directly by their universal proper-
ties.

There are several interesting aspects of this synthetic approach. First,
it combines advantages of concrete models (such as topological spaces
or simplicial sets) with advantages of abstract categorical frameworks
for homotopy theory (such as Quillen model categories). On the one
hand, our proofs feel elementary, and refer concretely to points, paths,
and homotopies in types. On the other hand, our approach nevertheless
abstracts away from any concrete presentation of these objects — for ex-
ample, associativity of path concatenation is proved by path induction,
rather than by reparametrization of maps [0,1] — X or by horn-filling
conditions. Type theory seems to be a very convenient way to study
the abstract homotopy theory of co-groupoids: by using the rules for
the identity type, we can avoid the complicated combinatorics involved
in many definitions of co-groupoids, and explicate only as much of the
structure as is needed in any particular proof.

The abstract nature of type theory means that our proofs apply au-
tomatically in a variety of settings. In particular, as mentioned previ-
ously, homotopy type theory has one interpretation in Kan simplicial
sets, which is one model for the homotopy theory of co-groupoids. Thus,
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our proofs apply to this model, and transferring them along the geomet-
ric realization functor from simplicial sets to topological spaces gives
proofs of corresponding theorems in classical homotopy theory. How-
ever, though the details are work in progress, we can also interpret type
theory in a wide variety of other categories that look like the category
of co-groupoids, such as (oo, 1)-toposes. Thus, proving a result in type
theory will show that it holds in these settings as well. This sort of ex-
tra generality is well-known as a property of ordinary categorical logic:
univalent foundations extends it to homotopy theory as well.

Second, our synthetic approach has suggested new type-theoretic meth-
ods and proofs. Some of our proofs are fairly direct transcriptions of clas-
sical proofs. Others have a more type-theoretic feel, and consist mainly
of calculations with co-groupoid operations, in a style that is very simi-
lar to how computer scientis