#import "@preview/ctheorems:1.1.3": * #let template(title: "", content) = { set text( font: "New Computer Modern Math", size: 12pt, ) set page( "us-letter", margin: 1in, ) set par( // leading: 1.3em, // spacing: 2.4em, // first-line-indent: 1.8em, justify: true, ) set heading( numbering: "1.1", ) show: thmrules show link: body => underline(text(fill: olive, body)) // show heading: set block(above: 1.4em, below: 1em) heading(outlined: false, numbering: none)[#title] outline(indent: true, depth: 2) page( numbering: "1", // TODO: Remove content, ) heading(outlined: false, numbering: none)[References] bibliography("main.bib", title: none) } #let TODO(c) = [#text(fill: red)[*TODO:* #c]] #let agdaCubicalLink(s) = link("https://github.com/agda/cubical/blob/2f085f5675066c0e1708752587ae788c036ade87/" + s.split(".").join("/") + ".agda", raw(s)) // ctheorems #let theorem = thmbox("theorem", "Theorem", fill: rgb("#eeffee")) #let corollary = thmplain( "corollary", "Corollary", base: "theorem", titlefmt: strong ) #let definition = thmbox("definition", "Definition") #let axiom = thmplain("axiom", "Axiom") #let example = thmplain("example", "Example").with(numbering: none) #let proof = thmproof("proof", "Proof") // Notation #let emptyType = $bot$ #let arro(..a) = $#a.pos().join($op(arrow)$)$ #let judgCtx(a) = $#a sans("ctx")$ #let isTyp(a, b) = $#a op(:) #b$ #let judgTyp(G, a, A) = $#G tack.r isTyp(#a, #A)$ #let propEqSym = $equiv$ #let propEq(a, b) = $#a #propEqSym #b$ #let eqv(a, b) = $#a tilde.eq #b$ #let defEq(a, b) = $#a := #b$ #let judgEqTyp(G, a, b, A) = $#G tack.r isTyp(#a equiv #b, #A)$ #let imOf(f) = $sans("Im")(#f)$ #let kerOf(f) = $sans("Ker")(#f)$ #let ind = $sans("ind")$ #let ap = $sans("ap")$ #let ua = $sans("ua")$ #let uaEqv = $sans("uaEqv")$ #let isEquiv = $sans("isEquiv")$ #let typ = $sans("Type")$ #let abst(n, b) = $(#n) arrow.r.double #b$ #let typ0 = $typ_0$ #let unitType = link(<unitType>)[$bb(1)$] #let tt = $sans("tt")$ #let boolType = link(<boolType>)[$bb(2)$] #let bTrue = $sans("true")$ #let bFalse = $sans("false")$ #let S1 = link(<circle>)[$S^1$] #let base = $sans("base")$ #let loop = $sans("loop")$ #let AbGroup = $sans("AbGroup")$ #let hom(a, b) = $#a arrow.r.double #b$ #let homComp(a, b) = $#a op(circle.small) #b$