#import "@preview/ctheorems:1.1.3": *

#let template(title: "", content) = {
  set text(
    font: "New Computer Modern Math",
    size: 12pt,
  )
  set page(
    "us-letter",
    margin: 1in,
  )
  set par(
    // leading: 1.3em,
    // spacing: 2.4em,
    // first-line-indent: 1.8em,
    justify: true,
  )
  set heading(
    numbering: "1.1",
  )

  show: thmrules
  show link: body => underline(text(fill: olive, body))

  // show heading: set block(above: 1.4em, below: 1em)

  heading(outlined: false, numbering: none)[#title]

  outline(indent: true, depth: 2)

  page(
    numbering: "1", // TODO: Remove
    content,
  )

  heading(outlined: false, numbering: none)[References]
  bibliography("main.bib", title: none)
}

#let TODO(c) = [#text(fill: red)[*TODO:* #c]]
#let agdaCubicalLink(s) = link("https://github.com/agda/cubical/blob/2f085f5675066c0e1708752587ae788c036ade87/" + s.split(".").join("/") + ".agda", raw(s))

// ctheorems
#let theorem = thmbox("theorem", "Theorem", fill: rgb("#eeffee"))
#let corollary = thmplain(
  "corollary",
  "Corollary",
  base: "theorem",
  titlefmt: strong
)
#let definition = thmbox("definition", "Definition")
#let axiom = thmplain("axiom", "Axiom")
#let example = thmplain("example", "Example").with(numbering: none)
#let proof = thmproof("proof", "Proof")

// Notation
#let emptyType = $bot$
#let arro(..a) = $#a.pos().join($op(arrow)$)$
#let judgCtx(a) = $#a sans("ctx")$
#let isTyp(a, b) = $#a op(:) #b$
#let judgTyp(G, a, A) = $#G tack.r isTyp(#a, #A)$
#let propEqSym = $equiv$
#let propEq(a, b) = $#a #propEqSym #b$
#let eqv(a, b) = $#a tilde.eq #b$
#let defEq(a, b) = $#a := #b$
#let judgEqTyp(G, a, b, A) = $#G tack.r isTyp(#a equiv #b, #A)$
#let imOf(f) = $sans("Im")(#f)$
#let kerOf(f) = $sans("Ker")(#f)$
#let ind = $sans("ind")$
#let ap = $sans("ap")$
#let ua = $sans("ua")$
#let uaEqv = $sans("uaEqv")$
#let isEquiv = $sans("isEquiv")$
#let typ = $sans("Type")$
#let abst(n, b) = $(#n) arrow.r.double #b$
#let typ0 = $typ_0$

#let unitType = link(<unitType>)[$bb(1)$]
#let tt = $sans("tt")$

#let boolType = link(<boolType>)[$bb(2)$]
#let bTrue = $sans("true")$
#let bFalse = $sans("false")$

#let S1 = link(<circle>)[$S^1$]
#let base = $sans("base")$
#let loop = $sans("loop")$

#let AbGroup = $sans("AbGroup")$
#let hom(a, b) = $#a arrow.r.double #b$
#let homComp(a, b) = $#a op(circle.small) #b$