From d3fda0f2f4bd94926cda3af9a5f325aa8e9d8910 Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Mon, 29 Jul 2024 10:31:49 -0500 Subject: [PATCH] lecture 1 --- .envrc | 1 - .gitignore | 3 +- Lecture1.typ | 168 +++++++++++++++++++++ Test.v | 3 +- prooftree.typ | 405 ++++++++++++++++++++++++++++++++++++++++++++++++++ 5 files changed, 576 insertions(+), 4 deletions(-) create mode 100644 Lecture1.typ create mode 100644 prooftree.typ diff --git a/.envrc b/.envrc index 8392d15..e69de29 100644 --- a/.envrc +++ b/.envrc @@ -1 +0,0 @@ -use flake \ No newline at end of file diff --git a/.gitignore b/.gitignore index 78dbd13..ce0eb4f 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,3 @@ .direnv -.*.aux \ No newline at end of file +.*.aux +*.pdf \ No newline at end of file diff --git a/Lecture1.typ b/Lecture1.typ new file mode 100644 index 0000000..ee595d0 --- /dev/null +++ b/Lecture1.typ @@ -0,0 +1,168 @@ +#import "prooftree.typ": * +#import "@preview/showybox:2.0.1": showybox +#set page(width: 5.6in, height: 9in, margin: 0.4in) + += Type theory crash course + +== MLTT + Sets + +Important features in MLTT: + +#let Nat = $sans("Nat")$ +#let Vect = $sans("Vect")$ + +- Dependent types and functions. + e.g $ "concatenate": Pi_(m,n:"Nat") Vect(m) -> Vect(n) -> Vect(m+n) $ + - Function arrows always associate to the right. +- All functions are total. + +Goal: to write well-typed programs. (implementing an algorithm and proving a mathematical statement are the same) + +=== Judgements + +$ "context" tack.r "conclusion" $ + +#let defeq = $equiv$ + +#table( + columns: 2, + stroke: gray, + $Gamma$, [sequence of variable declarations (contexts are always well-formed)], + $Gamma tack.r A$, [$A$ is well-formed *type* in context $Gamma$], + $Gamma tack.r a : A$, [*term* $a$ is well-formed and of type $A$], + $Gamma tack.r A defeq B$, [types $A$ and $B$ are *convertible*], + $Gamma tack.r a defeq b : A$, [$a$ is convertible to $b$ in type $A$], +) + +Example: + +$ "isZero?"& : Nat -> "Bool" \ + "isZero?"& (n) :defeq "??" +$ + +At this point, looking for $(n: Nat) tack.r "isZero?"(n) : "Bool"$. + +=== Inference rules + +#prooftree( + axiom($J_1$), + axiom($J_2$), + axiom($J_3$), + rule(n: 3, $J$), +) + +For example: + +#prooftree( + axiom($Gamma tack.r a defeq b : A$), + rule($Gamma tack.r b defeq a : A$), +) + +#let subst(name, replacement, expr) = $#expr [ #replacement \/ #name ]$ + +=== Interpreting types as sets + +You can interpret types as sets, where $a : A$ is interpreted as $floor(a) : floor(A)$. + +- Univalent mathematics can _not_ be interpreted as sets. There are extra axioms that breaks the interpretation. +- The judgement $a : A$ cannot be proved or disproved. +- For ex. 2 of natural numbers and 2 of integers can be converted but are inherently different values. + +=== Convertibility + +If $x : A$ and $A defeq B$, then $x : B$. We are thinking of these types as literally the same. + +If $a defeq a'$ then $f @ a defeq f @ a'$. + +=== Declaring types and terms + +4 types of rules: + +#let typeIntroTable(formation, introduction, elimination, computation) = table( + columns: 2, + stroke: 0in, + [#text(fill: blue, [Formation])], [#formation], + [#text(fill: blue, [Introduction])], [#introduction], + [#text(fill: blue, [Elimination])], [#elimination], + [#text(fill: blue, [Computation])], [#computation], +) + +#typeIntroTable( + [a way to construct a new type], + [way to construct *canonical terms* of the type], + [how to use a term of the new type to construct terms of other types], + [what happens when one does Introduction followed by Elimination], +) + +Example (context $Gamma$ are elided): + +#typeIntroTable( + [If $A$ and $B$ are types, then $A -> B$ is a type + #prooftree(axiom($Gamma tack.r A$), axiom($Gamma tack.r B$), rule(n: 2, $Gamma tack.r A -> B$))], + [If $(x : A) tack.r b : B$, then $tack.r lambda (x : A) . b(x) : A -> B$ + - $b$ is an expression that might involve $x$], + [If we have a function $f : A -> B$, and $a : A$, then $f @ a : B$ (or $f(a) : B$)], + [What is the result of the application? $(lambda(x : A) . b(x)) @ a defeq subst(a, x, b)$ + - Substitution $subst(a, x, b)$ is built-in], +) + +Questions: + +- *What does the lambda symbol mean?* Lambda is just notation. It could also be written $tack.r "lambda"((x:A), b(x)) : A -> B$. + +Another example: the singleton type + +#let unit = $bb(1)$ +#let tt = $t t$ +#let rec = $sans("rec")$ + +#typeIntroTable( + [$unit$ is a type], + [$tt : unit$], + [If $x : unit$ and $C$ is a type and $c : C$, then $rec_unit (C, c, x) : C$], + [$rec_unit (C, c, t) defeq c$ + - Interpretation in sets: a one-element set], +) + +- Question: *How to construct this using lambda abstraction?* + - (Structural rule: having $tack.r c : C$ means $x : unit tack.r c : C$, which by the lambda introduction rule gives us $lambda x.c : unit -> C$) + +Booleans + +#let Bool = $sans("Bool")$ +#let tru = $sans("true")$ +#let fls = $sans("false")$ + +#typeIntroTable( + [$Bool$ is a type], + [$tru : Bool$ and $fls : Bool$], + [If $x : Bool$ and $C$ is a type and $c, c' : C$, then $rec_Bool (C, c, c', x) : C$], + [$rec_Bool (C, c, c', tru) defeq c$ and $rec_Bool (C, c, c', fls) defeq c'$], +) + +Empty type + +#let empty = $bb(0)$ + +#typeIntroTable( + [$empty$ is a type], + [_(no introduction rule)_], + [If $x : empty$ and $C$ is a type, then $rec_empty (C, x) : C$], + [_(no computation rule)_], +) + +Natural numbers + +#let zero = $sans("zero")$ +#let suc = $sans("suc")$ + +#typeIntroTable( + [$Nat$ is a type], + [- $zero : Nat$ + - If $n : Nat$, then $suc(n) : Nat$], + [If $C$ is a type and $c_0:C$ and $c_s:C->C$ and $x: Nat$, then $rec_Nat (C,c_0,c_s,x) : C$], + [- $rec_Nat (C, c_0, c_s, zero) defeq c_0$ + - $rec_Nat (C, c_0, c_s, suc(n)) defeq c_s @ (rec_Nat (C, c_0, c_s, n))$ + We can define computation rule on naturals using a universal property], +) + diff --git a/Test.v b/Test.v index 3284ede..ffa24fd 100644 --- a/Test.v +++ b/Test.v @@ -3,5 +3,4 @@ Require Export UniMath.Foundations.All. Lemma myfirstlemma : 2 + 2 = 4. Proof. apply idpath. -Defined. - +Defined. \ No newline at end of file diff --git a/prooftree.typ b/prooftree.typ new file mode 100644 index 0000000..20707d3 --- /dev/null +++ b/prooftree.typ @@ -0,0 +1,405 @@ +#let prooftree( + spacing: ( + horizontal: 1em, + vertical: 0.5em, + lateral: 0.5em, + ), + label: ( + // TODO: split offset into horizontal and vertical + offset: -0.1em, + side: left, + padding: 0.2em, + ), + line-stroke: 0.5pt, + ..rules +) = context { + // Check parameters and compute normalized settings + let settings = { + // Check basic validity of `rules`. + if rules.pos().len() == 0 { + panic("The `rules` argument cannot be empty.") + } + + + // Check the types of the parameters. + assert( + type(spacing) == "dictionary", + message: "The value `" + repr(spacing) + "` of the `spacing` argument was expected" + + "to have type `dictionary` but instead had type `" + type(spacing) + "`." + ) + assert( + type(label) == "dictionary", + message: "The value `" + repr(label) + "` of the `label` argument was expected" + + "to have type `dictionary` but instead had type `" + type(label) + "`." + ) + assert( + type(line-stroke) == "length", + message: "The value `" + repr(line-stroke) + "` of the `line-stroke` argument was expected" + + "to have type `length` but instead had type `" + type(line-stroke) + "`." + ) + + // Check validity of `spacing`'s keys. + for (key, value) in spacing { + if key not in ("horizontal", "vertical", "lateral", "h", "v", "l") { + panic("The key `" + key + "` in the `spacing` argument `" + repr(spacing) + "` was not expected.") + } + if type(value) != "length" { + panic( + "The value `" + repr(value) + "` of the key `" + key + "` in the `spacing` argument `" + repr(spacing) + + "` was expected to have type `length` but instead had type `" + type(value) + "`." + ) + } + } + + // Check exclusivity of `spacing`'s keys. + let mutually_exclusive(key1, key2, keys) = { + assert( + key1 not in keys or key2 not in keys, + message: "The keys `" + key1 + "` and `" + key2 + "` in the `spacing` argument `" + + repr(spacing) + "` are mutually exclusive." + ) + } + mutually_exclusive("horizontal", "h", spacing.keys()) + mutually_exclusive("vertical", "v", spacing.keys()) + mutually_exclusive("lateral", "l", spacing.keys()) + + // Check validity of `label`'s keys. + let expected = ("offset": "length", "side": "alignment", "padding": "length") + for (key, value) in label { + if key not in expected { + panic("The key `" + key + "` in the `label` argument `" + repr(label) + "` was not expected.") + } + if type(value) != expected.at(key) { + panic( + "The value `" + repr(value) + "` of the key `" + key + "` in the `label` argument `" + repr(label) + + "` was expected to have type `" + type.at(key) + "` but instead had type `" + type(value) + "`." + ) + } + } + if "side" in label { + assert( + label.side == left or label.side == right, + message: "The value for the key `side` in the argument `label` can only be either " + + "`left` (default) or `right`, but instead was `" + repr(label.side) + "`." + ) + } + + ( + spacing: ( + horizontal: spacing.at("horizontal", default: spacing.at("h", default: 1.5em)).to-absolute(), + vertical: spacing.at("vertical", default: spacing.at("v", default: 0.5em)).to-absolute(), + lateral: spacing.at("lateral", default: spacing.at("l", default: 0.5em)).to-absolute(), + ), + label: ( + offset: label.at("offset", default: -0.1em).to-absolute(), + side: label.at("side", default: left), + padding: label.at("padding", default: 0.2em).to-absolute(), + ), + line-stroke: line-stroke.to-absolute(), + ) + } + + // Holds the current "pending" rules, i.e. those without a parent + let stack = () + // Holds all the measures + let layouts = () + + // First pass: compute the layout of each rule given the one of its children + for (i, rule) in rules.pos().enumerate() { + let to_pop = rule.__prooftree_to_pop + let measure_func = rule.__prooftree_measure_func + + assert( + to_pop <= stack.len(), + message: "The rule `" + repr(rule.__prooftree_raw) + "` was expecting at least " + + str(to_pop) + " rules in the stack, but only " + str(stack.len()) + " were present." + ) + + // Remove the children from the stack + let children = stack.slice(stack.len() - to_pop) + stack = stack.slice(0, stack.len() - to_pop) + + // Compute the layout and push + let layout = measure_func(i, settings, children) + stack.push(layout) + layouts.push(layout) + } + + assert( + stack.len() == 1, + message: "Some rule remained unmatched: " + str(stack.len()) + " roots were found but only 1 was expected." + ) + + let last = stack.pop() + + let content = { + let offsets = range(rules.pos().len()).map(_ => (0pt, 0pt)) + + // Second pass: backward draw each rule and compute offset of children + for (i, rule) in rules.pos().enumerate().rev() { + let (dx, dy) = offsets.at(i) + let layout = layouts.at(i) + + // Update the offsets of the children + for (j, cdx, cdy) in layout.at("children_offsets", default: ()) { + offsets.at(j) = (dx + cdx, dy + cdy) + } + + // Draw at the correct offset + let draw_func = rule.__prooftree_draw_func + place(left + bottom, dx: dx, dy: -dy, draw_func(settings, layout)) + } + } + + block(width: last.width, height: last.height, content) +} + +#let axiom(label: none, body) = { + // Check arguments + { + // Check the type of `label`. + assert( + type(label) in ("string", "content", "none"), + message: "The type of the `label` argument `" + repr(label) + "` was expected to be " + + "`none`, `string` or `content` but was instead `" + type(label) + "`." + ) + } + + // TODO: allow the label to be aligned on left, right or center (default and current). + + ( + __prooftree_raw: body, + __prooftree_to_pop: 0, + __prooftree_measure_func: (i, settings, children) => { + // Compute the size of the body + let body_size = measure(body) + let body_width = body_size.width.to-absolute() + let body_height = body_size.height.to-absolute() + + // Compute width of the base (including space) + let base_width = body_width + 2 * settings.spacing.lateral + + // Update layout if a label is present + let (width, height) = (base_width, body_height) + let base_side = 0pt + let (label_left, label_bottom) = (0pt, 0pt) + if label != none { + // Compute the size of the label + let label_size = measure(label) + let label_width = label_size.width + let label_height = label_size.height + + // Update width and offsets from the left + width = calc.max(base_width, label_width) + base_side = (width - base_width) / 2 + label_left = (width - label_width) / 2 + + // Compute bottom offset and update height + label_bottom = height + 1.5 * settings.spacing.vertical + height = label_bottom + label_height + } + + return ( + index: i, + width: width, + height: height, + base_left: base_side, + base_right: base_side, + main_left: base_side, + main_right: base_side, + + // Extra for draw + body_left: base_side + settings.spacing.lateral, + label_left: label_left, + label_bottom: label_bottom, + ) + }, + __prooftree_draw_func: (settings, l) => { + // Draw body + place(left + bottom, dx: l.body_left, body) + + // Draw label + if label != none { + place(left + bottom, dx: l.label_left, dy: -l.label_bottom, label) + } + } + ) +} + +#let rule( + n: 1, + label: none, + root +) = { + // Check arguments + { + // Check validity of the `n` parameter + assert( + type(n) == "integer", + message: "The type of the `n` argument `" + repr(n) + "` was expected to be " + + "`integer` but was instead `" + type(n) + "`." + ) + + // Check the type of `label`. + assert( + type(label) in ("string", "dictionary", "content", "none"), + message: "The type of the `label` argument `" + repr(label) + "` was expected to be " + + "`none`, `string`, `content` or `dictionary` but was instead `" + type(label) + "`." + ) + // If the type of `label` was string then it's good, otherwise we need to check its keys. + if type(label) == "dictionary" { + for (key, value) in label { + // TODO: maybe consider allowing `top`, `top-left` and `top-right` if `rule(n: 0)` gets changed. + if key not in ("left", "right") { + panic("The key `" + key + "` in the `label` argument `" + repr(label) + "` was not expected.") + } + if type(value) not in ("string", "content") { + panic( + "The value `" + repr(value) + "` of the key `" + key + "` in the `label` argument `" + repr(label) + + "` was expected to have type `string` or `content` but instead had type `" + type(value) + "`." + ) + } + } + } + } + + ( + __prooftree_raw: root, + __prooftree_to_pop: n, + __prooftree_measure_func: (i, settings, children) => { + let width(it) = measure(it).width.to-absolute() + let height(it) = measure(it).height.to-absolute() + + let label = label + if type(label) == "none" { + label = (left: none, right: none) + } + if type(label) in ("string", "content") { + label = ( + left: if settings.label.side == left { label } else { none }, + right: if settings.label.side == right { label } else { none } + ) + } + label = ( + left: label.at("left", default: none), + right: label.at("right", default: none), + ) + + // Size of root + let root_width = width(root) + let root_height = height(root) + + // Width of base, which includes spacing as well + let base_width = 2 * settings.spacing.lateral + root_width + + // Bottom offset of the line and children + let line_bottom = root_height + settings.spacing.vertical + let children_bottom = line_bottom + settings.spacing.vertical + + // Left/right offset of bases of extreme children + let (child_base_left, child_base_right) = (0pt, 0pt) + if n != 0 { + child_base_left = children.first().base_left + child_base_right = children.last().base_right + } + + // Width and height of children, and width of their combined bases + let children_width = children + .map(c => c.width) + .intersperse(settings.spacing.horizontal) + .sum() + let children_height = children.map(c => c.height).fold(0pt, calc.max) + let children_base_width = children_width - child_base_left - child_base_right + + // Width of the line + let line_width = calc.max(children_base_width, base_width) + + // Left/right offsets of lateral children main + let (child_main_left, child_main_right) = (0pt, 0pt) + if n != 0 { + child_main_left = children.first().main_left + child_main_right = children.last().main_right + } + + // Offset of bases from line start (same for left/right) + let base_from_line = (line_width - base_width) / 2 + let children_base_from_line = (line_width - children_base_width) / 2 + + // Space for labels + let (label_left_width, label_right_width) = (0pt, 0pt) + let (label_left_height, label_right_height) = (0pt, 0pt) + if label.left != none { + label_left_width = width(label.left) + settings.label.padding + label_left_height = height(label.left) + } + if label.right != none { + label_right_width = width(label.right) + settings.label.padding + label_right_height = height(label.right) + } + + // Left/right offsets of line = max of labels and children main + let line_left = calc.max(label_left_width, child_base_left - children_base_from_line) + let line_right = calc.max(label_right_width, child_base_right - children_base_from_line) + + // Left/right offsets of base + let base_left = line_left + base_from_line + let base_right = line_right + base_from_line + + // Left/right offsets of children + let children_left = line_left + children_base_from_line - child_base_left + let children_right = line_right + children_base_from_line - child_base_right + + // Left/right offsets of main + let main_left = calc.min(line_left, children_left + child_main_left) + let main_right = calc.min(line_right, children_right + child_main_right) + + // Full width and height + let width = line_left + line_width + line_right + let height = children_bottom + children_height + + // Incrementally compute the relative offset of each child + let children_offsets = () + for c in children { + children_offsets.push((c.index, children_left, children_bottom)) + children_left += c.width + settings.spacing.horizontal + } + + ( + index: i, + width: width, + height: height, + base_left: base_left, + base_right: base_right, + main_left: main_left, + main_right: main_right, + children_offsets: children_offsets, + + // Extra for draw + label: label, + root_left: base_left + settings.spacing.lateral, + line_left: line_left, + line_bottom: line_bottom, + line_width: line_width, + label_left: line_left - label_left_width, + label_right: line_left + line_width + settings.label.padding, + label_left_bottom: root_height + settings.spacing.vertical + settings.line-stroke / 2 - label_left_height / 2 - settings.label.offset, + label_right_bottom: root_height + settings.spacing.vertical + settings.line-stroke / 2 - label_right_height / 2 - settings.label.offset, + ) + }, + __prooftree_draw_func: (settings, l) => { + // Draw root content + place(left + bottom, dx: l.root_left, root) + + // Draw line + place(left + bottom, dx: l.line_left, dy: -l.line_bottom, line(length: l.line_width, stroke: settings.line-stroke)) + + // Draw labels + if l.label.left != none { + place(left + bottom, dx: l.label_left, dy: -l.label_left_bottom, l.label.left) + } + if l.label.right != none { + place(left + bottom, dx: l.label_right, dy: -l.label_right_bottom, l.label.right) + } + } + ) +}