unimath2024/exercises_tactics.v
2024-08-01 10:32:27 -05:00

209 lines
6.2 KiB
Coq
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(** Exercise sheet for lecture 4: Tactics in Coq.
prepared using material by Ralph Matthes
*)
(** * Exercise 1
Formalize the following types in UniMath and construct elements for them interactively -
if they exist. Give a counter-example otherwise, i.e., give specific parameters and a
proof of the negation of the statement.
[[
1. A × (B + C) → A × B + A × C, given types A, B, C
2. (A → A)(A → A), given type A (for extra credit, write down five elements of this type)
3. Id_nat (0, succ 0)
4. ∑ (A : Universe) (A → empty) → empty
5. ∏ (n : nat), ∑ (m : nat), Id_nat n (2 * m) + Id_nat n (2 * m + 1),
assuming you have got arithmetic
6. ((x : A) B × P x) → B ×(x : A) P x, given types A, B, and P : A → Universe
7. B → (B → A) → A, given types A and B
8. B → ∏ (A : Universe) (B → A) → A, given type B
9. ((A : Universe) (B → A) → A) → B, given type B
10. x = y → y = x, for elements x and y of some type A
11. x = y → y = z → x = z, for elements x, y, and z of some type A
]]
More precise instructions and hints:
1. Use [⨿] in place of the + and pay attention to operator precedence.
2. Write a function that provides different elements for any natural number argument,
not just five elements; for extra credits: state correctly that they are different -
for a good choice of [A]; for more extra credits: prove that they are different.
3. An auxiliary function may be helpful (a well-known trick).
4. The symbol for Sigma-types is [∑], not [Σ].
5. Same as 1; and there is need for module [UniMath.Foundations.NaturalNumbers], e.g.,
for Lemma [natpluscomm].
6.-9. no further particulars
*)
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Foundations.Preamble.
Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.NaturalNumbers.
(* 1. A × (B + C) → A × B + A × C, given types A, B, C *)
Goal (A B C : UU), A × (B ⨿ C) -> (A × B) ⨿ (A × C).
Proof.
intros.
induction X.
induction pr2.
- apply ii1. apply tpair. apply pr1. apply a.
- apply ii2. apply tpair. apply pr1. apply b.
Defined.
(* 2. (A → A)(A → A), given type A (for extra credit, write down five elements of this type) *)
Goal (A : UU), (A -> A) -> (A -> A).
Proof.
intros.
apply X0.
Defined.
(* 3. Id_nat (0, succ 0) *)
Goal (O = S O) -> empty.
Proof.
intros.
exact (transportf (fun c => match c with O => unit | S _ => empty end) X tt).
Defined.
Locate "".
Print total2.
(* 4. ∑ (A : Universe) (A → empty) → empty *)
Goal (A : UU), (A -> empty) -> empty.
Proof.
use tpair.
- exact unit.
- simpl. intros. apply X. exact tt.
Defined.
(* 5. ∏ (n : nat), ∑ (m : nat), Id_nat n (2 * m) + Id_nat n (2 * m + 1), *)
(* assuming you have got arithmetic *)
Goal (n : nat), (m : nat), (paths n (2 * m)) ⨿ (paths n (1 + (2 * m))).
Proof.
intros.
induction n.
- use tpair.
+ exact 0.
+ simpl. apply inl. reflexivity.
- induction IHn. induction pr2.
* use tpair. exact pr1. simpl. apply inr. rewrite a. reflexivity.
* use tpair. exact (S pr1). simpl. apply inl. rewrite b. simpl.
assert (S (pr1 + pr1) = S pr1 + pr1).
+ reflexivity.
+ rewrite X. rewrite natpluscomm. reflexivity.
Defined.
(* 6. ((x : A) B × P x) → B ×(x : A) P x, given types A, B, and P : A → Universe *)
Goal (A B : UU) (P : A -> UU), ( (x : A), B × P x) -> B × (x : A), P x.
Proof.
intros.
induction X. induction pr2.
use tpair.
* exact pr0.
* simpl. use tpair.
+ exact pr1.
+ simpl. exact pr2.
Defined.
(* 7. B → (B → A) → A, given types A and B *)
Goal (A B : UU), B -> (B -> A) -> A.
Proof.
intros.
apply X0. exact X.
Defined.
(* 8. B → ∏ (A : Universe) (B → A) → A, given type B *)
Goal (B : UU), B -> (A : UU), (B -> A) -> A.
Proof.
intros.
apply X0. exact X.
Defined.
(* 9. ((A : Universe) (B → A) → A) → B, given type B *)
Goal (B : UU), ( (A : UU), (B -> A) -> A) -> B.
Proof.
intros.
exact (X B (fun x => x)).
Defined.
(* 10. x = y → y = x, for elements x and y of some type A *)
Goal (A : UU) (x y : A), x = y -> y = x.
Proof.
intros.
induction X.
apply idpath.
Defined.
(* 11. x = y → y = z → x = z, for elements x, y, and z of some type A *)
Goal (A : UU) (x y z : A), x = y -> y = z -> x = z.
Proof.
intros.
induction X. induction X0.
apply idpath.
Defined.
(** * Exercise 2
Define two computable strict comparison operators for natural numbers based on the fact
that [m < n] iff [n - m <> 0] iff [(m+1) - n = 0]. Prove that the two operators are
equal (using function extensionality, i.e., [funextfunStatement] in the UniMath library).
It may be helpful to use the definitions of the exercises for lecture 2.
The following lemmas on substraction [sub] in the natural numbers may be
useful:
a) [sub n (S m) = pred (sub n m)]
b) [sub 0 n = 0]
c) [pred (sub 1 n) = 0]
d) [sub (S n) (S m) = sub n m]
*)
(** from exercises to Lecture 2: *)
Definition ifbool (A : UU) (x y : A) : bool -> A :=
bool_rect (λ _ : bool, A) x y.
Definition negbool : bool -> bool := ifbool bool false true.
Definition nat_rec (A : UU) (a : A) (f : nat -> A -> A) : nat -> A :=
nat_rect (λ _ : nat, A) a f.
Definition pred : nat -> nat := nat_rec nat 0 (fun x _ => x).
Definition is_zero : nat -> bool := nat_rec bool true (λ _ _, false).
Definition iter (A : UU) (a : A) (f : A A) : nat A :=
nat_rec A a (λ _ y, f y).
Notation "f ̂ n" := (λ x, iter _ x f n) (at level 10).
Definition sub (m n : nat) : nat := pred ̂ n m.
Definition lt1 (m n : nat) : bool := negb (is_zero (sub m n)).
Definition lt2 (m n : nat) : bool := is_zero (sub (S m) n).
Definition lt1_eq_lt2 : lt1 = lt2.
Proof.
rewrite (funextfun lt1 lt2).
- apply idpath.
- intro x. rewrite (funextfun (lt1 x) (lt2 x)).
+ apply idpath.
+ intro y. unfold lt1. unfold lt2.
induction x.
induction y.
{ auto. }
{
assert ( (y : nat), sub 0 y = 0) as Sub0.
{ intros. induction y0. { auto. } { simpl. unfold pred. rewrite IHy0. auto. } }
rewrite Sub0. cbn.
}