unimath2024/Lecture1.typ
2024-07-29 17:45:35 -05:00

342 lines
No EOL
10 KiB
Text

#import "prooftree.typ": *
#import "@preview/showybox:2.0.1": showybox
#set page(width: 5.6in, height: 9in, margin: 0.4in)
= Type theory crash course
== MLTT + Sets
Important features in MLTT:
#let Nat = $sans("Nat")$
#let Vect = $sans("Vect")$
#let Bool = $sans("Bool")$
#let tru = $sans("true")$
#let fls = $sans("false")$
- Dependent types and functions.
e.g $ "concatenate": Pi_(m,n:"Nat") Vect(m) -> Vect(n) -> Vect(m+n) $
- Function arrows always associate to the right.
- All functions are total.
Goal: to write well-typed programs. (implementing an algorithm and proving a mathematical statement are the same)
=== Judgements
$ "context" tack.r "conclusion" $
#let defeq = $equiv$
#table(
columns: 2,
stroke: gray,
$Gamma$, [sequence of variable declarations (contexts are always well-formed)],
$Gamma tack.r A$, [$A$ is well-formed *type* in context $Gamma$],
$Gamma tack.r a : A$, [*term* $a$ is well-formed and of type $A$],
$Gamma tack.r A defeq B$, [types $A$ and $B$ are *convertible*],
$Gamma tack.r a defeq b : A$, [$a$ is convertible to $b$ in type $A$],
)
Example:
#let isZero = $sans("isZero?")$
$ isZero& : Nat -> Bool \
isZero& (n) :defeq "??"
$
At this point, looking for $(n: Nat) tack.r isZero(n) : Bool$.
=== Inference rules
#prooftree(
axiom($J_1$),
axiom($J_2$),
axiom($J_3$),
rule(n: 3, $J$),
)
For example:
#prooftree(
axiom($Gamma tack.r a defeq b : A$),
rule($Gamma tack.r b defeq a : A$),
)
#let subst(name, replacement, expr) = $#expr [ #replacement \/ #name ]$
=== Interpreting types as sets
You can interpret types as sets, where $a : A$ is interpreted as $floor(a) : floor(A)$.
- Univalent mathematics can _not_ be interpreted as sets. There are extra axioms that breaks the interpretation.
- The judgement $a : A$ cannot be proved or disproved.
- For ex. 2 of natural numbers and 2 of integers can be converted but are inherently different values.
=== Convertibility
If $x : A$ and $A defeq B$, then $x : B$. We are thinking of these types as literally the same.
If $a defeq a'$ then $f @ a defeq f @ a'$.
=== Declaring types and terms
4 types of rules:
#let typeIntroTable(formation, introduction, elimination, computation) = table(
columns: 2,
stroke: 0in,
[#text(fill: blue, [Formation])], [#formation],
[#text(fill: blue, [Introduction])], [#introduction],
[#text(fill: blue, [Elimination])], [#elimination],
[#text(fill: blue, [Computation])], [#computation],
)
#typeIntroTable(
[a way to construct a new type],
[way to construct *canonical terms* of the type],
[how to use a term of the new type to construct terms of other types],
[what happens when one does Introduction followed by Elimination],
)
Example (context $Gamma$ are elided):
=== Functions
#typeIntroTable(
[If $A$ and $B$ are types, then $A -> B$ is a type
#prooftree(axiom($Gamma tack.r A$), axiom($Gamma tack.r B$), rule(n: 2, $Gamma tack.r A -> B$))],
[If $(x : A) tack.r b : B$, then $tack.r lambda (x : A) . b(x) : A -> B$
- $b$ is an expression that might involve $x$],
[If we have a function $f : A -> B$, and $a : A$, then $f @ a : B$ (or $f(a) : B$)],
[What is the result of the application? \
$(lambda(x : A) . b(x)) @ a defeq subst(a, x, b)$
- Substitution $subst(a, x, b)$ is built-in],
)
Questions:
- *What does the lambda symbol mean?* Lambda is just notation. It could also be written $tack.r "lambda"((x:A), b(x)) : A -> B$.
Another example: the singleton type
=== Unit type
#let unit = $bb(1)$
#let tt = $star$
#let rec = $sans("rec")$
#let ind = $sans("ind")$
#typeIntroTable(
[$unit$ is a type],
[$tt : unit$],
[If $x : unit$ and $C$ is a type and $c : C$, then $rec_unit (C, c, x) : C$],
[$rec_unit (C, c, t) defeq c$
- Interpretation in sets: a one-element set],
)
- Question: *How to construct this using lambda abstraction?*
- (Structural rule: having $tack.r c : C$ means $x : unit tack.r c : C$, which by the lambda introduction rule gives us $lambda x.c : unit -> C$)
=== Booleans
#typeIntroTable(
[$Bool$ is a type],
[$tru : Bool$ and $fls : Bool$],
[If $x : Bool$ and $C$ is a type and $c, c' : C$, then $rec_Bool (C, c, c', x) : C$],
[$rec_Bool (C, c, c', tru) defeq c$ and $rec_Bool (C, c, c', fls) defeq c'$],
)
=== Empty type
#let empty = $bb(0)$
#typeIntroTable(
[$empty$ is a type],
[_(no introduction rule)_],
[If $x : empty$ and $C$ is a type, then $rec_empty (C, x) : C$],
[_(no computation rule)_],
)
=== Natural numbers
#let zero = $sans("zero")$
#let suc = $sans("suc")$
#typeIntroTable(
[$Nat$ is a type],
[- $zero : Nat$
- If $n : Nat$, then $suc(n) : Nat$],
[If $C$ is a type and $c_0:C$ and $c_s:C->C$ and $x: Nat$, then $rec_Nat (C,c_0,c_s,x) : C$],
[- $rec_Nat (C, c_0, c_s, zero) defeq c_0$
- $rec_Nat (C, c_0, c_s, suc(n)) defeq c_s @ (rec_Nat (C, c_0, c_s, n))$
We can define computation rule on naturals using a universal property],
)
=== Pattern matching
*Exercise.* Define a function $isZero : Nat -> Bool$.
*Solution.* $isZero :defeq lambda (x : Nat) . rec_Nat (Bool , tru, lambda (x : Bool) . fls , x)$.
This is cumbersome and prone to mistakes. Instead we use pattern matching. A function $A -> C$ is completely specified if it's specified on the *canonical elements* of $A$.
$ isZero& : Nat -> Bool \
isZero& zero defeq tru \
isZero& suc (n) defeq fls \
$
=== Pairs
#let pair = $sans("pair")$
#typeIntroTable(
[If $A$ and $B$ are types, then $A times B$ is a type],
[If $a : A$ and $b : B$, then $pair(a, b) : A times B$],
[If $C$ is a type, and $p : A -> B -> C$ and $t : A times B$, then $rec_times (A, B, C, p, t) : C$],
[...],
)
#let fst = $sans("fst")$
#let snd = $sans("snd")$
#let swap = $sans("swap")$
#let assoc = $sans("assoc")$
*Exercise.* Define $snd : A times B -> A$ and $snd : A times B -> B$.
*Exercise.* Given types $A$ and $B$, write a function $swap$ of type $A times B -> B times A$.
*Exercise.* What is the type of $swap @ pair (tt , fls)$?
*Exercise.* Write a function $assoc$ of type $(A times B) times C -> A times (B times C)$
=== Type dependency
In particular: dependent type $B$ over $A$. (read "family $B$ of types indexed by $A$")
Example: type of vectors.
$ n : Nat tack.r Vect(n) $
=== Universes
#let Type = $sans("Type")$
There is a type $Type$. Its elements are types ($A : Type$). The dependent function $x : A tack.r B$ can be considered a function $lambda x . B : A -> Type$.
What is the type of $Type$? $Type$ is in an indexed hierarchy to avoid type-in-type paradox. We usually omit the index: $Type_i : Type_(i + 1)$
=== Dependent functions $product_(x : A) B$
#typeIntroTable(
[If $A$ is a type, and $B$ is a type family indexed by $A$, then there is a type $product_(x : A) B$],
[If $(x : A) tack.r b : B$, then $lambda (x : A) . b : product_(x : A) B$],
[If $f : product_(x : A) B$ and $a : A$, then $f(a) : subst(x, a, B)$],
[$(lambda (x : A) . b) ( a) defeq subst(x, a, b)$
- The case $A -> B$ is a special case of the dependent function, where $B$ doesn't depend on $x : A$],
)
=== Dependent pairs $Sigma_(x : A) B$
#typeIntroTable(
[If $x : A tack.r B$, then there is a type $Sigma_(x : A) B$],
[If $a : A$ and $b : B(a)$, then $pair (a, b) : Sigma_(x : A) B$],
[...],
[...
- The case $A times B$ is a special case of the dependent function, where $B$ doesn't depend on $x : A$],
)
=== Identity type
#let Id = $sans("Id")$
#let refl = $sans("refl")$
#let propeq = $=$
#typeIntroTable(
[If $a : A$ and $b : A$, then $Id_A (a, b)$ is a type],
[If $a : A$, then $refl(a) : Id_A (a, a)$],
[
- If $(x, y : A), (p : Id_A (x, y)) tack.r C (x, y, p)$
- and $(x : A) tack.r t(x) : C(x, x, refl(x))$
- then $(x, y : A), (p : Id_A (x, y)) tack.r ind_Id (t; x, y, p) : C(x, y, p)$],
[...],
)
- (There are dependent versions of each of the previous elimination rules that resulted in $C$)
- $ind$ "induction" is used more when the $C$ is dependent, while $rec$ is better for non-dependent $C$'s.
For example, to define:
#let sym = $sans("sym")$
$ sym : product_(x, y : A) Id(x, y) -> Id(y, x) $
it suffices to just specify its image on $(x, x, refl)$
#prooftree(
axiom($x : A tack.r refl(x) : Id(x, x)$),
rule($(x, y : A) , (p : Id(x, y)) tack.r Id(y, x)$),
rule($x, y : A tack.r Id(x, y) -> Id(y, x)$),
rule($sym : product_(x, y : A) Id(x, y) -> Id(y, x)$)
)
So $sym(x, x, refl(x)) :defeq refl(x)$
#let transport = $sans("transport")$
*Exercise.* Define $transport^B : product_(x, y : A) Id(x, y) -> B(x) -> B(y)$.
*Exercise: swap is involutive.* Given types $A$ and $B$, write a function $product_(t : A times B) Id(swap(swap(t)), t)$
=== Disjoint sum
#let inl = $sans("inl")$
#let inr = $sans("inr")$
#typeIntroTable(
[If $A$ and $B$ are types, then $A + B$ is a type],
[
- If $a : A$, then $inl(a) : A + B$
- If $b : B$, then $inr(b) : A + B$
],
[If $f : A -> C$ and $g : B ->C $ then $rec_+ (C, f, g) : A + B -> C$],
[
- $rec_+ (C, f, g)( inl(a)) defeq f(a)$
- $rec_+ (C, f, g)( inr(b)) defeq g(a)$
],
)
=== Interpreting types as sets and propositions
#table(
columns: 3,
stroke: 0in,
[$A$], [set $A$], [proposition $A$],
[$a:A$], [$a in A$], [$a$ is a proof of $A$],
[$unit$], [], [$top$],
[$empty$], [], [$bot$],
[$A times B$], [cartesian product], [$A and B$],
[$A + B$], [disjoint unions $A product.co B$], [$A or B$],
[$A -> B$], [set of functions $A -> B$], [$A => B$],
[$x : A tack.r B(x)$], [], [predicate $B$ on $A$],
[$sum_(x : A) B(x)$], [], [$exists x in A, B(x)$],
[$product_(x : A) B(x)$], [], [$forall x in A, B(x)$],
[$Id_A (a, b)$], [], [equality $a = b$],
)
The connectives $forall$ and $exists$ behave constructively.
The interpretation into propositions is known as the *Curry-Howard correspondence*.
=== Negation
$ not A :defeq A -> empty $
*Exercise.* Construct a term of type $A -> not not A$.
*Exercise ($tru eq.not fls$).* Construct a term of type $not Id(tru, fls)$.
*Solution.* Let $B :defeq rec_Bool (Type, unit, empty)$. Then $B(tru) defeq unit$ and $B(fls) defeq empty$. Then:
$ lambda (p : Id(tru, fls)) . transport^B (p, tt) : Id(tru, fls) -> empty $