unimath2024/Lecture1.typ
2024-07-29 10:31:49 -05:00

168 lines
4.8 KiB
Text

#import "prooftree.typ": *
#import "@preview/showybox:2.0.1": showybox
#set page(width: 5.6in, height: 9in, margin: 0.4in)
= Type theory crash course
== MLTT + Sets
Important features in MLTT:
#let Nat = $sans("Nat")$
#let Vect = $sans("Vect")$
- Dependent types and functions.
e.g $ "concatenate": Pi_(m,n:"Nat") Vect(m) -> Vect(n) -> Vect(m+n) $
- Function arrows always associate to the right.
- All functions are total.
Goal: to write well-typed programs. (implementing an algorithm and proving a mathematical statement are the same)
=== Judgements
$ "context" tack.r "conclusion" $
#let defeq = $equiv$
#table(
columns: 2,
stroke: gray,
$Gamma$, [sequence of variable declarations (contexts are always well-formed)],
$Gamma tack.r A$, [$A$ is well-formed *type* in context $Gamma$],
$Gamma tack.r a : A$, [*term* $a$ is well-formed and of type $A$],
$Gamma tack.r A defeq B$, [types $A$ and $B$ are *convertible*],
$Gamma tack.r a defeq b : A$, [$a$ is convertible to $b$ in type $A$],
)
Example:
$ "isZero?"& : Nat -> "Bool" \
"isZero?"& (n) :defeq "??"
$
At this point, looking for $(n: Nat) tack.r "isZero?"(n) : "Bool"$.
=== Inference rules
#prooftree(
axiom($J_1$),
axiom($J_2$),
axiom($J_3$),
rule(n: 3, $J$),
)
For example:
#prooftree(
axiom($Gamma tack.r a defeq b : A$),
rule($Gamma tack.r b defeq a : A$),
)
#let subst(name, replacement, expr) = $#expr [ #replacement \/ #name ]$
=== Interpreting types as sets
You can interpret types as sets, where $a : A$ is interpreted as $floor(a) : floor(A)$.
- Univalent mathematics can _not_ be interpreted as sets. There are extra axioms that breaks the interpretation.
- The judgement $a : A$ cannot be proved or disproved.
- For ex. 2 of natural numbers and 2 of integers can be converted but are inherently different values.
=== Convertibility
If $x : A$ and $A defeq B$, then $x : B$. We are thinking of these types as literally the same.
If $a defeq a'$ then $f @ a defeq f @ a'$.
=== Declaring types and terms
4 types of rules:
#let typeIntroTable(formation, introduction, elimination, computation) = table(
columns: 2,
stroke: 0in,
[#text(fill: blue, [Formation])], [#formation],
[#text(fill: blue, [Introduction])], [#introduction],
[#text(fill: blue, [Elimination])], [#elimination],
[#text(fill: blue, [Computation])], [#computation],
)
#typeIntroTable(
[a way to construct a new type],
[way to construct *canonical terms* of the type],
[how to use a term of the new type to construct terms of other types],
[what happens when one does Introduction followed by Elimination],
)
Example (context $Gamma$ are elided):
#typeIntroTable(
[If $A$ and $B$ are types, then $A -> B$ is a type
#prooftree(axiom($Gamma tack.r A$), axiom($Gamma tack.r B$), rule(n: 2, $Gamma tack.r A -> B$))],
[If $(x : A) tack.r b : B$, then $tack.r lambda (x : A) . b(x) : A -> B$
- $b$ is an expression that might involve $x$],
[If we have a function $f : A -> B$, and $a : A$, then $f @ a : B$ (or $f(a) : B$)],
[What is the result of the application? $(lambda(x : A) . b(x)) @ a defeq subst(a, x, b)$
- Substitution $subst(a, x, b)$ is built-in],
)
Questions:
- *What does the lambda symbol mean?* Lambda is just notation. It could also be written $tack.r "lambda"((x:A), b(x)) : A -> B$.
Another example: the singleton type
#let unit = $bb(1)$
#let tt = $t t$
#let rec = $sans("rec")$
#typeIntroTable(
[$unit$ is a type],
[$tt : unit$],
[If $x : unit$ and $C$ is a type and $c : C$, then $rec_unit (C, c, x) : C$],
[$rec_unit (C, c, t) defeq c$
- Interpretation in sets: a one-element set],
)
- Question: *How to construct this using lambda abstraction?*
- (Structural rule: having $tack.r c : C$ means $x : unit tack.r c : C$, which by the lambda introduction rule gives us $lambda x.c : unit -> C$)
Booleans
#let Bool = $sans("Bool")$
#let tru = $sans("true")$
#let fls = $sans("false")$
#typeIntroTable(
[$Bool$ is a type],
[$tru : Bool$ and $fls : Bool$],
[If $x : Bool$ and $C$ is a type and $c, c' : C$, then $rec_Bool (C, c, c', x) : C$],
[$rec_Bool (C, c, c', tru) defeq c$ and $rec_Bool (C, c, c', fls) defeq c'$],
)
Empty type
#let empty = $bb(0)$
#typeIntroTable(
[$empty$ is a type],
[_(no introduction rule)_],
[If $x : empty$ and $C$ is a type, then $rec_empty (C, x) : C$],
[_(no computation rule)_],
)
Natural numbers
#let zero = $sans("zero")$
#let suc = $sans("suc")$
#typeIntroTable(
[$Nat$ is a type],
[- $zero : Nat$
- If $n : Nat$, then $suc(n) : Nat$],
[If $C$ is a type and $c_0:C$ and $c_s:C->C$ and $x: Nat$, then $rec_Nat (C,c_0,c_s,x) : C$],
[- $rec_Nat (C, c_0, c_s, zero) defeq c_0$
- $rec_Nat (C, c_0, c_s, suc(n)) defeq c_s @ (rec_Nat (C, c_0, c_s, n))$
We can define computation rule on naturals using a universal property],
)