mirror of
https://github.com/achlipala/frap.git
synced 2024-11-12 17:17:50 +00:00
235 lines
6.3 KiB
Coq
235 lines
6.3 KiB
Coq
|
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||
|
* Chapter 11: Deep and Shallow Embeddings
|
||
|
* Author: Adam Chlipala
|
||
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||
|
|
||
|
Require Import Frap.
|
||
|
|
||
|
(** * Shared notations and definitions *)
|
||
|
|
||
|
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
|
||
|
Definition heap := fmap nat nat.
|
||
|
Definition assertion := heap -> Prop.
|
||
|
|
||
|
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||
|
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
|
||
|
|
||
|
Example h0 : heap := $0 $+ (0, 2) $+ (1, 1) $+ (2, 8) $+ (3, 6).
|
||
|
|
||
|
Hint Rewrite max_l max_r using linear_arithmetic.
|
||
|
|
||
|
|
||
|
(** * Shallow embedding of a language very similar to the one we used last chapter *)
|
||
|
|
||
|
Module Shallow.
|
||
|
Definition cmd result := heap -> heap * result.
|
||
|
|
||
|
Definition hoare_triple (P : assertion) {result} (c : cmd result) (Q : result -> assertion) :=
|
||
|
forall h, P h
|
||
|
-> let (h', r) := c h in
|
||
|
Q r h'.
|
||
|
|
||
|
Notation "{{ h ~> P }} c {{ r & h' ~> Q }}" :=
|
||
|
(hoare_triple (fun h => P) c (fun r h' => Q)) (at level 90, c at next level).
|
||
|
|
||
|
Theorem consequence : forall P {result} (c : cmd result) Q
|
||
|
(P' : assertion) (Q' : _ -> assertion),
|
||
|
hoare_triple P c Q
|
||
|
-> (forall h, P' h -> P h)
|
||
|
-> (forall r h, Q r h -> Q' r h)
|
||
|
-> hoare_triple P' c Q'.
|
||
|
Proof.
|
||
|
unfold hoare_triple; simplify.
|
||
|
specialize (H h).
|
||
|
specialize (H0 h).
|
||
|
cases (c h).
|
||
|
auto.
|
||
|
Qed.
|
||
|
|
||
|
Fixpoint array_max (i acc : nat) : cmd nat :=
|
||
|
fun h =>
|
||
|
match i with
|
||
|
| O => (h, acc)
|
||
|
| S i' =>
|
||
|
let h_i' := h $! i' in
|
||
|
array_max i' (max h_i' acc) h
|
||
|
end.
|
||
|
|
||
|
Lemma array_max_ok' : forall len i acc,
|
||
|
{{ h ~> forall j, i <= j < len -> h $! j <= acc }}
|
||
|
array_max i acc
|
||
|
{{ r&h ~> forall j, j < len -> h $! j <= r }}.
|
||
|
Proof.
|
||
|
induct i; unfold hoare_triple in *; simplify; propositional; auto.
|
||
|
|
||
|
specialize (IHi (max (h $! i) acc) h); propositional.
|
||
|
cases (array_max i (max (h $! i) acc)); simplify; propositional; subst.
|
||
|
apply IHi; auto.
|
||
|
simplify.
|
||
|
cases (j0 ==n i); subst; auto.
|
||
|
assert (h $! j0 <= acc) by auto.
|
||
|
linear_arithmetic.
|
||
|
Qed.
|
||
|
|
||
|
Theorem array_max_ok : forall len,
|
||
|
{{ _ ~> True }}
|
||
|
array_max len 0
|
||
|
{{ r&h ~> forall i, i < len -> h $! i <= r }}.
|
||
|
Proof.
|
||
|
simplify.
|
||
|
eapply consequence.
|
||
|
apply array_max_ok' with (len := len).
|
||
|
|
||
|
simplify.
|
||
|
linear_arithmetic.
|
||
|
|
||
|
auto.
|
||
|
Qed.
|
||
|
|
||
|
Example run_array_max0 : array_max 4 0 h0 = (h0, 8).
|
||
|
Proof.
|
||
|
unfold h0.
|
||
|
simplify.
|
||
|
reflexivity.
|
||
|
Qed.
|
||
|
|
||
|
Fixpoint increment_all (i : nat) : cmd unit :=
|
||
|
fun h =>
|
||
|
match i with
|
||
|
| O => (h, tt)
|
||
|
| S i' => increment_all i' (h $+ (i', S (h $! i')))
|
||
|
end.
|
||
|
|
||
|
Lemma increment_all_ok' : forall len h0 i,
|
||
|
{{ h ~> (forall j, j < i -> h $! j = h0 $! j)
|
||
|
/\ (forall j, i <= j < len -> h $! j = S (h0 $! j)) }}
|
||
|
increment_all i
|
||
|
{{ _&h ~> forall j, j < len -> h $! j = S (h0 $! j) }}.
|
||
|
Proof.
|
||
|
induct i; unfold hoare_triple in *; simplify; propositional; auto.
|
||
|
|
||
|
specialize (IHi (h $+ (i, S (h $! i)))); propositional.
|
||
|
cases (increment_all i (h $+ (i, S (h $! i)))); simplify; propositional; subst.
|
||
|
apply H; simplify; auto.
|
||
|
|
||
|
cases (j0 ==n i); subst; auto.
|
||
|
simplify; auto.
|
||
|
simplify; auto.
|
||
|
Qed.
|
||
|
|
||
|
Theorem increment_all_ok : forall len h0,
|
||
|
{{ h ~> h = h0 }}
|
||
|
increment_all len
|
||
|
{{ _&h ~> forall j, j < len -> h $! j = S (h0 $! j) }}.
|
||
|
Proof.
|
||
|
simplify.
|
||
|
eapply consequence.
|
||
|
apply increment_all_ok' with (len := len).
|
||
|
|
||
|
simplify; subst; propositional.
|
||
|
linear_arithmetic.
|
||
|
|
||
|
simplify.
|
||
|
auto.
|
||
|
Qed.
|
||
|
|
||
|
Example run_increment_all0 : increment_all 4 h0 = ($0 $+ (0, 3) $+ (1, 2) $+ (2, 9) $+ (3, 7), tt).
|
||
|
Proof.
|
||
|
unfold h0.
|
||
|
simplify.
|
||
|
f_equal.
|
||
|
maps_equal.
|
||
|
Qed.
|
||
|
End Shallow.
|
||
|
|
||
|
|
||
|
(** * A basic deep embedding *)
|
||
|
|
||
|
Module Deep.
|
||
|
Inductive cmd : Type -> Type :=
|
||
|
| Return {result} (r : result) : cmd result
|
||
|
| Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result
|
||
|
| Read (a : nat) : cmd nat
|
||
|
| Write (a v : nat) : cmd unit.
|
||
|
|
||
|
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
|
||
|
|
||
|
Fixpoint array_max (i acc : nat) : cmd nat :=
|
||
|
match i with
|
||
|
| O => Return acc
|
||
|
| S i' =>
|
||
|
h_i' <- Read i';
|
||
|
array_max i' (max h_i' acc)
|
||
|
end.
|
||
|
|
||
|
Fixpoint increment_all (i : nat) : cmd unit :=
|
||
|
match i with
|
||
|
| O => Return tt
|
||
|
| S i' =>
|
||
|
v <- Read i';
|
||
|
_ <- Write i' (S v);
|
||
|
increment_all i'
|
||
|
end.
|
||
|
|
||
|
Fixpoint interp {result} (c : cmd result) (h : heap) : heap * result :=
|
||
|
match c with
|
||
|
| Return r => (h, r)
|
||
|
| Bind c1 c2 =>
|
||
|
let (h', r) := interp c1 h in
|
||
|
interp (c2 r) h'
|
||
|
| Read a => (h, h $! a)
|
||
|
| Write a v => (h $+ (a, v), tt)
|
||
|
end.
|
||
|
|
||
|
Example run_array_max0 : interp (array_max 4 0) h0 = (h0, 8).
|
||
|
Proof.
|
||
|
unfold h0.
|
||
|
simplify.
|
||
|
reflexivity.
|
||
|
Qed.
|
||
|
|
||
|
Example run_increment_all0 : interp (increment_all 4) h0 = ($0 $+ (0, 3) $+ (1, 2) $+ (2, 9) $+ (3, 7), tt).
|
||
|
Proof.
|
||
|
unfold h0.
|
||
|
simplify.
|
||
|
f_equal.
|
||
|
maps_equal.
|
||
|
Qed.
|
||
|
|
||
|
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
|
||
|
| HtReturn : forall P {result} (v : result),
|
||
|
hoare_triple P (Return v) (fun r h => P h /\ r = v)
|
||
|
| HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R,
|
||
|
hoare_triple P c1 Q
|
||
|
-> (forall r, hoare_triple (Q r) (c2 r) R)
|
||
|
-> hoare_triple P (Bind c1 c2) R
|
||
|
| HtRead : forall P a,
|
||
|
hoare_triple P (Read a) (fun r h => P h /\ r = h $! a)
|
||
|
| HtWrite : forall P a v,
|
||
|
hoare_triple P (Write a v) (fun _ h => exists h', P h' /\ h = h' $+ (a, v))
|
||
|
| HtConsequence : forall {result} (c : cmd result) P Q (P' : assertion) (Q' : _ -> assertion),
|
||
|
hoare_triple P c Q
|
||
|
-> (forall h, P' h -> P h)
|
||
|
-> (forall r h, Q r h -> Q' r h)
|
||
|
-> hoare_triple P' c Q'.
|
||
|
|
||
|
Theorem hoare_triple_sound : forall P {result} (c : cmd result) Q,
|
||
|
hoare_triple P c Q
|
||
|
-> forall h, P h
|
||
|
-> let (h', r) := interp c h in
|
||
|
Q r h'.
|
||
|
Proof.
|
||
|
induct 1; simplify; propositional; eauto.
|
||
|
|
||
|
specialize (IHhoare_triple h).
|
||
|
cases (interp c1 h).
|
||
|
apply H1; eauto.
|
||
|
|
||
|
specialize (IHhoare_triple h).
|
||
|
cases (interp c h).
|
||
|
eauto.
|
||
|
Qed.
|
||
|
|
||
|
Extraction "Deep.ml" array_max increment_all.
|
||
|
End Deep.
|