From 0047d49139e5a05721b9d8edd8a63692c530930f Mon Sep 17 00:00:00 2001 From: Adam Chlipala Date: Sun, 18 Feb 2018 20:15:10 -0500 Subject: [PATCH] FirstClassFunctions: flattenKD_ok --- FirstClassFunctions.v | 124 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 124 insertions(+) diff --git a/FirstClassFunctions.v b/FirstClassFunctions.v index 00384d5..8c198e5 100644 --- a/FirstClassFunctions.v +++ b/FirstClassFunctions.v @@ -343,3 +343,127 @@ Proof. rewrite mapK_ok with (f_base := AppearedInYear); trivial. apply fold_leftK_ok with (f_base := max); trivial. Qed. + + +(** * Tree traversals *) + +Inductive tree {A} := +| Leaf +| Node (l : tree) (d : A) (r : tree). +Arguments tree : clear implicits. + +Fixpoint depth {A} (t : tree A) : nat := + match t with + | Leaf => 0 + | Node l _ r => 2 + depth l + depth r + end. + +Fixpoint flatten {A} (t : tree A) : list A := + match t with + | Leaf => [] + | Node l d r => flatten l ++ d :: flatten r + end. + +Fixpoint flattenAcc {A} (t : tree A) (acc : list A) : list A := + match t with + | Leaf => acc + | Node l d r => flattenAcc l (d :: flattenAcc r acc) + end. + +Theorem flattenAcc_ok : forall {A} (t : tree A) acc, + flattenAcc t acc = flatten t ++ acc. +Proof. + induct t; simplify; try equality. + + rewrite IHt1, IHt2. + rewrite <- app_assoc. + simplify. + equality. +Qed. + +Fixpoint flattenK {A R} (t : tree A) (acc : list A) (k : list A -> R) : R := + match t with + | Leaf => k acc + | Node l d r => flattenK r acc (fun acc' => + flattenK l (d :: acc') k) + end. + +Theorem flattenK_ok : forall {A R} (t : tree A) acc (k : list A -> R), + flattenK t acc k = k (flattenAcc t acc). +Proof. + induct t; simplify; try equality. + + rewrite IHt2, IHt1. + equality. +Qed. + +Inductive flatten_continuation {A} := +| KDone +| KMore (l : tree A) (d : A) (k : flatten_continuation). +Arguments flatten_continuation : clear implicits. + +Definition apply_continuation {A} (acc : list A) (k : flatten_continuation A) + (flattenKD : tree A -> list A -> flatten_continuation A -> list A) + : list A := + match k with + | KDone => acc + | KMore l d k' => flattenKD l (d :: acc) k' + end. + +Fixpoint flattenKD {A} (fuel : nat) (t : tree A) (acc : list A) + (k : flatten_continuation A) : list A := + match fuel with + | O => [] + | S fuel' => + match t with + | Leaf => apply_continuation acc k (flattenKD fuel') + | Node l d r => flattenKD fuel' r acc (KMore l d k) + end + end. + +Fixpoint continuation_depth {A} (k : flatten_continuation A) : nat := + match k with + | KDone => 0 + | KMore l d k' => 1 + depth l + continuation_depth k' + end. + +Fixpoint flatten_cont {A} (k : flatten_continuation A) : list A := + match k with + | KDone => [] + | KMore l d k' => flatten_cont k' ++ flatten l ++ [d] + end. + +Lemma flattenKD_ok' : forall {A} fuel fuel' (t : tree A) acc k, + depth t + continuation_depth k < fuel' < fuel + -> flattenKD fuel' t acc k + = flatten_cont k ++ flatten t ++ acc. +Proof. + induct fuel; simplify; cases fuel'; simplify; try linear_arithmetic. + + cases t; simplify; trivial. + + cases k; simplify; trivial. + rewrite IHfuel; try linear_arithmetic. + repeat rewrite <- app_assoc. + simplify. + equality. + + rewrite IHfuel. + simplify. + repeat rewrite <- app_assoc. + simplify. + equality. + simplify. + linear_arithmetic. +Qed. + +Theorem flattenKD_ok : forall {A} (t : tree A), + flattenKD (depth t + 1) t [] KDone = flatten t. +Proof. + simplify. + rewrite flattenKD_ok' with (fuel := depth t + 2). + simplify. + apply app_nil_r. + simplify. + linear_arithmetic. +Qed.