mirror of
https://github.com/achlipala/frap.git
synced 2024-12-01 00:26:18 +00:00
TransitionSystems_template
This commit is contained in:
parent
d04037a84f
commit
0123f45d21
3 changed files with 370 additions and 7 deletions
|
@ -142,8 +142,7 @@ Inductive reachable {state} (sys : trsys state) (st : state) : Prop :=
|
|||
|
||||
(* To prove that our state machine is correct, we rely on the crucial technique
|
||||
* of *invariants*. What is an invariant? Here's a general definition, in
|
||||
* terms of an arbitrary *transition system* defined by a set of states,
|
||||
* an initial-state relation, and a step relation. *)
|
||||
* terms of an arbitrary transition system. *)
|
||||
Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) :=
|
||||
forall s, sys.(Initial) s
|
||||
-> forall s', sys.(Step)^* s s'
|
||||
|
@ -355,11 +354,6 @@ Inductive increment_step : increment_state -> increment_state -> Prop :=
|
|||
{| Shared := {| Locked := false; Global := g |};
|
||||
Private := Done |}.
|
||||
|
||||
Inductive increment_final : increment_state -> Prop :=
|
||||
| IncFinal : forall l g,
|
||||
increment_final {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Done |}.
|
||||
|
||||
Definition increment_sys := {|
|
||||
Initial := increment_init;
|
||||
Step := increment_step
|
||||
|
|
368
TransitionSystems_template.v
Normal file
368
TransitionSystems_template.v
Normal file
|
@ -0,0 +1,368 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 4: Transition Systems
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
(* This command will treat type arguments to functions as implicit, like in
|
||||
* Haskell or ML. *)
|
||||
|
||||
|
||||
(* Here's a classic recursive, functional program for factorial. *)
|
||||
Fixpoint fact (n : nat) : nat :=
|
||||
match n with
|
||||
| O => 1
|
||||
| S n' => fact n' * S n'
|
||||
end.
|
||||
|
||||
(* But let's reformulate factorial relationally, as an example to explore
|
||||
* treatment of inductive relations in Coq. First, these are the states of our
|
||||
* state machine. *)
|
||||
Inductive fact_state :=
|
||||
| AnswerIs (answer : nat)
|
||||
| WithAccumulator (input accumulator : nat).
|
||||
|
||||
(* *Initial* states *)
|
||||
Inductive fact_init (original_input : nat) : fact_state -> Prop :=
|
||||
| FactInit : fact_init original_input (WithAccumulator original_input 1).
|
||||
|
||||
(** *Final* states *)
|
||||
Inductive fact_final : fact_state -> Prop :=
|
||||
| FactFinal : forall ans, fact_final (AnswerIs ans).
|
||||
|
||||
(** The most important part: the relation to step between states *)
|
||||
Inductive fact_step : fact_state -> fact_state -> Prop :=
|
||||
| FactDone : forall acc,
|
||||
fact_step (WithAccumulator O acc) (AnswerIs acc)
|
||||
| FactStep : forall n acc,
|
||||
fact_step (WithAccumulator (S n) acc) (WithAccumulator n (acc * S n)).
|
||||
|
||||
(* We care about more than just single steps. We want to run factorial to
|
||||
* completion, for which it is handy to define a general relation of
|
||||
* *transitive-reflexive closure*, like so. *)
|
||||
Inductive trc {A} (R : A -> A -> Prop) : A -> A -> Prop :=
|
||||
| TrcRefl : forall x, trc R x x
|
||||
| TrcFront : forall x y z,
|
||||
R x y
|
||||
-> trc R y z
|
||||
-> trc R x z.
|
||||
|
||||
(* Transitive-reflexive closure is so common that it deserves a shorthand notation! *)
|
||||
Notation "R ^*" := (trc R) (at level 0).
|
||||
|
||||
(* Now let's use it to execute the factorial program. *)
|
||||
Example factorial_3 : fact_step^* (WithAccumulator 3 1) (AnswerIs 6).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* It will be useful to give state machines more first-class status, as
|
||||
* *transition systems*, formalized by this record type. It has one type
|
||||
* parameter, [state], which records the type of states. *)
|
||||
Record trsys state := {
|
||||
Initial : state -> Prop;
|
||||
Step : state -> state -> Prop
|
||||
}.
|
||||
|
||||
(* The example of our factorial program: *)
|
||||
Definition factorial_sys (original_input : nat) : trsys fact_state := {|
|
||||
Initial := fact_init original_input;
|
||||
Step := fact_step
|
||||
|}.
|
||||
|
||||
(* A useful general notion for transition systems: reachable states *)
|
||||
Inductive reachable {state} (sys : trsys state) (st : state) : Prop :=
|
||||
| Reachable : forall st0,
|
||||
sys.(Initial) st0
|
||||
-> sys.(Step)^* st0 st
|
||||
-> reachable sys st.
|
||||
|
||||
(* To prove that our state machine is correct, we rely on the crucial technique
|
||||
* of *invariants*. What is an invariant? Here's a general definition, in
|
||||
* terms of an arbitrary transition system. *)
|
||||
Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) :=
|
||||
forall s, sys.(Initial) s
|
||||
-> forall s', sys.(Step)^* s s'
|
||||
-> invariant s'.
|
||||
(* That is, when we begin in an initial state and take any number of steps, the
|
||||
* place we wind up always satisfies the invariant. *)
|
||||
|
||||
(* Here's a simple lemma to help us apply an invariant usefully,
|
||||
* really just restating the definition. *)
|
||||
Lemma use_invariant' : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop) s s',
|
||||
invariantFor sys invariant
|
||||
-> sys.(Initial) s
|
||||
-> sys.(Step)^* s s'
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
unfold invariantFor.
|
||||
simplify.
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem use_invariant : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop) s,
|
||||
invariantFor sys invariant
|
||||
-> reachable sys s
|
||||
-> invariant s.
|
||||
Proof.
|
||||
simplify.
|
||||
invert H0.
|
||||
eapply use_invariant'.
|
||||
eassumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* What's the most fundamental way to establish an invariant? Induction! *)
|
||||
Lemma invariant_induction' : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop),
|
||||
(forall s, invariant s -> forall s', sys.(Step) s s' -> invariant s')
|
||||
-> forall s s', sys.(Step)^* s s'
|
||||
-> invariant s
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
induct 2; propositional.
|
||||
(* [propositional]: simplify the goal according to the rules of propositional
|
||||
* logic. *)
|
||||
|
||||
apply IHtrc.
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem invariant_induction : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop),
|
||||
(forall s, sys.(Initial) s -> invariant s)
|
||||
-> (forall s, invariant s -> forall s', sys.(Step) s s' -> invariant s')
|
||||
-> invariantFor sys invariant.
|
||||
Proof.
|
||||
unfold invariantFor; intros.
|
||||
eapply invariant_induction'.
|
||||
eassumption.
|
||||
eassumption.
|
||||
apply H.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Definition fact_invariant (original_input : nat) (st : fact_state) : Prop :=
|
||||
True.
|
||||
(* We must fill in a better invariant. *)
|
||||
|
||||
Theorem fact_invariant_ok : forall original_input,
|
||||
invariantFor (factorial_sys original_input) (fact_invariant original_input).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* Therefore, every reachable state satisfies this invariant. *)
|
||||
Theorem fact_invariant_always : forall original_input s,
|
||||
reachable (factorial_sys original_input) s
|
||||
-> fact_invariant original_input s.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply use_invariant.
|
||||
apply fact_invariant_ok.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Therefore, any final state has the right answer! *)
|
||||
Lemma fact_ok' : forall original_input s,
|
||||
fact_final s
|
||||
-> fact_invariant original_input s
|
||||
-> s = AnswerIs (fact original_input).
|
||||
Admitted.
|
||||
|
||||
Theorem fact_ok : forall original_input s,
|
||||
reachable (factorial_sys original_input) s
|
||||
-> fact_final s
|
||||
-> s = AnswerIs (fact original_input).
|
||||
Proof.
|
||||
simplify.
|
||||
apply fact_ok'.
|
||||
assumption.
|
||||
apply fact_invariant_always.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * A simple example of another program as a state transition system *)
|
||||
|
||||
(* We'll formalize this pseudocode for one thread of a concurrent, shared-memory program.
|
||||
lock();
|
||||
local = global;
|
||||
global = local + 1;
|
||||
unlock();
|
||||
*)
|
||||
|
||||
(* This inductive state effectively encodes all possible combinations of two
|
||||
* kinds of *local*state* in a thread:
|
||||
* - program counter
|
||||
* - values of local variables that may be ready eventually *)
|
||||
Inductive increment_program : Set :=
|
||||
| Lock : increment_program
|
||||
| Read : increment_program
|
||||
| Write : nat -> increment_program
|
||||
| Unlock : increment_program
|
||||
| Done : increment_program.
|
||||
|
||||
(* Next, a type for state shared between threads. *)
|
||||
Record inc_state := {
|
||||
Locked : bool; (* Does a thread hold the lock? *)
|
||||
Global : nat (* A shared counter *)
|
||||
}.
|
||||
|
||||
(* The combined state, from one thread's perspective, using a general
|
||||
* definition. *)
|
||||
Record threaded_state shared private := {
|
||||
Shared : shared;
|
||||
Private : private
|
||||
}.
|
||||
|
||||
Definition increment_state := threaded_state inc_state increment_program.
|
||||
|
||||
(* Now a routine definition of the three key relations of a transition system.
|
||||
* The most interesting logic surrounds saving the counter value in the local
|
||||
* state after reading. *)
|
||||
|
||||
Inductive increment_init : increment_state -> Prop :=
|
||||
| IncInit :
|
||||
increment_init {| Shared := {| Locked := false; Global := O |};
|
||||
Private := Lock |}.
|
||||
|
||||
Inductive increment_step : increment_state -> increment_state -> Prop :=
|
||||
| IncLock : forall g,
|
||||
increment_step {| Shared := {| Locked := false; Global := g |};
|
||||
Private := Lock |}
|
||||
{| Shared := {| Locked := true; Global := g |};
|
||||
Private := Read |}
|
||||
| IncRead : forall l g,
|
||||
increment_step {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Read |}
|
||||
{| Shared := {| Locked := l; Global := g |};
|
||||
Private := Write g |}
|
||||
| IncWrite : forall l g v,
|
||||
increment_step {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Write v |}
|
||||
{| Shared := {| Locked := l; Global := S v |};
|
||||
Private := Unlock |}
|
||||
| IncUnlock : forall l g,
|
||||
increment_step {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Unlock |}
|
||||
{| Shared := {| Locked := false; Global := g |};
|
||||
Private := Done |}.
|
||||
|
||||
Definition increment_sys := {|
|
||||
Initial := increment_init;
|
||||
Step := increment_step
|
||||
|}.
|
||||
|
||||
|
||||
(** * Running transition systems in parallel *)
|
||||
|
||||
(* That last example system is a cop-out: it only runs a single thread. We want
|
||||
* to run several threads in parallel, sharing the global state. Here's how we
|
||||
* can do it for just two threads. The key idea is that, while in the new
|
||||
* system the type of shared state remains the same, we take the Cartesian
|
||||
* product of the sets of private state. *)
|
||||
|
||||
Inductive parallel1 shared private1 private2
|
||||
(init1 : threaded_state shared private1 -> Prop)
|
||||
(init2 : threaded_state shared private2 -> Prop)
|
||||
: threaded_state shared (private1 * private2) -> Prop :=
|
||||
| Pinit : forall sh pr1 pr2,
|
||||
init1 {| Shared := sh; Private := pr1 |}
|
||||
-> init2 {| Shared := sh; Private := pr2 |}
|
||||
-> parallel1 init1 init2 {| Shared := sh; Private := (pr1, pr2) |}.
|
||||
|
||||
Inductive parallel2 shared private1 private2
|
||||
(step1 : threaded_state shared private1 -> threaded_state shared private1 -> Prop)
|
||||
(step2 : threaded_state shared private2 -> threaded_state shared private2 -> Prop)
|
||||
: threaded_state shared (private1 * private2)
|
||||
-> threaded_state shared (private1 * private2) -> Prop :=
|
||||
| Pstep1 : forall sh pr1 pr2 sh' pr1',
|
||||
(* First thread gets to run. *)
|
||||
step1 {| Shared := sh; Private := pr1 |} {| Shared := sh'; Private := pr1' |}
|
||||
-> parallel2 step1 step2 {| Shared := sh; Private := (pr1, pr2) |}
|
||||
{| Shared := sh'; Private := (pr1', pr2) |}
|
||||
| Pstep2 : forall sh pr1 pr2 sh' pr2',
|
||||
(* Second thread gets to run. *)
|
||||
step2 {| Shared := sh; Private := pr2 |} {| Shared := sh'; Private := pr2' |}
|
||||
-> parallel2 step1 step2 {| Shared := sh; Private := (pr1, pr2) |}
|
||||
{| Shared := sh'; Private := (pr1, pr2') |}.
|
||||
|
||||
Definition parallel shared private1 private2
|
||||
(sys1 : trsys (threaded_state shared private1))
|
||||
(sys2 : trsys (threaded_state shared private2)) := {|
|
||||
Initial := parallel1 sys1.(Initial) sys2.(Initial);
|
||||
Step := parallel2 sys1.(Step) sys2.(Step)
|
||||
|}.
|
||||
|
||||
(* Example: composing two threads of the kind we formalized earlier *)
|
||||
Definition increment2_sys := parallel increment_sys increment_sys.
|
||||
|
||||
(* Let's prove that the counter is always 2 when the composed program terminates. *)
|
||||
|
||||
(** We must write an invariant. *)
|
||||
Inductive increment2_invariant :
|
||||
threaded_state inc_state (increment_program * increment_program) -> Prop :=
|
||||
| Inc2Inv : forall sh pr1 pr2,
|
||||
increment2_invariant {| Shared := sh; Private := (pr1, pr2) |}.
|
||||
(* This isn't it yet! *)
|
||||
|
||||
(* Now, to show it really is an invariant. *)
|
||||
Theorem increment2_invariant_ok : invariantFor increment2_sys increment2_invariant.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* Now, to prove our final result about the two incrementing threads, let's use
|
||||
* a more general fact, about when one invariant implies another. *)
|
||||
Theorem invariant_weaken : forall {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop),
|
||||
invariantFor sys invariant1
|
||||
-> (forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor sys invariant2.
|
||||
Proof.
|
||||
unfold invariantFor; simplify.
|
||||
apply H0.
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Here's another, much weaker invariant, corresponding exactly to the overall
|
||||
* correctness property we want to establish for this system. *)
|
||||
Definition increment2_right_answer
|
||||
(s : threaded_state inc_state (increment_program * increment_program)) :=
|
||||
s.(Private) = (Done, Done)
|
||||
-> s.(Shared).(Global) = 2.
|
||||
|
||||
(** Now we can prove that the system only runs to happy states. *)
|
||||
Theorem increment2_sys_correct : forall s,
|
||||
reachable increment2_sys s
|
||||
-> increment2_right_answer s.
|
||||
Proof.
|
||||
Admitted.
|
||||
(*simplify.
|
||||
eapply use_invariant.
|
||||
apply invariant_weaken with (invariant1 := increment2_invariant).
|
||||
(* Note the use of a [with] clause to specify a quantified variable's
|
||||
* value. *)
|
||||
|
||||
apply increment2_invariant_ok.
|
||||
|
||||
simplify.
|
||||
invert H0.
|
||||
unfold increment2_right_answer; simplify.
|
||||
invert H0.
|
||||
(* Here we use inversion on an equality, to derive more primitive
|
||||
* equalities. *)
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
assumption.
|
||||
Qed.*)
|
|
@ -9,4 +9,5 @@ BasicSyntax_template.v
|
|||
BasicSyntax.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
TransitionSystems_template.v
|
||||
TransitionSystems.v
|
||||
|
|
Loading…
Reference in a new issue