mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 16:44:14 +00:00
AbstractInterpretation: more even-odd examples
This commit is contained in:
parent
5ae0e6641e
commit
062119d6a2
1 changed files with 93 additions and 20 deletions
|
@ -93,19 +93,19 @@ Module SimpleAbstractInterpreter.
|
|||
| While e body => Some ($0 $+ (wrap Skip, s) $+ (wrap (Sequence body (While e body)), s))
|
||||
end.
|
||||
|
||||
Definition compatible1 a (s : astate a) (v : valuation) : Prop :=
|
||||
Definition compatible a (s : astate a) (v : valuation) : Prop :=
|
||||
forall x xa, s $? x = Some xa
|
||||
-> exists n, v $? x = Some n
|
||||
/\ a.(Represents) n xa.
|
||||
|
||||
Theorem absint_interp_ok : forall a, absint_sound a
|
||||
-> forall (s : astate a) v e,
|
||||
compatible1 s v
|
||||
compatible s v
|
||||
-> a.(Represents) (interp e v) (absint_interp e s).
|
||||
Proof.
|
||||
induct e; simplify; eauto.
|
||||
cases (s $? x); auto.
|
||||
unfold compatible1 in H0.
|
||||
unfold compatible in H0.
|
||||
apply H0 in Heq.
|
||||
invert Heq.
|
||||
propositional.
|
||||
|
@ -113,17 +113,17 @@ Module SimpleAbstractInterpreter.
|
|||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma compatible1_add : forall a (s : astate a) v x na n,
|
||||
compatible1 s v
|
||||
Lemma compatible_add : forall a (s : astate a) v x na n,
|
||||
compatible s v
|
||||
-> a.(Represents) n na
|
||||
-> compatible1 (s $+ (x, na)) (v $+ (x, n)).
|
||||
-> compatible (s $+ (x, na)) (v $+ (x, n)).
|
||||
Proof.
|
||||
unfold compatible1; simplify.
|
||||
unfold compatible; simplify.
|
||||
cases (x ==v x0); simplify; eauto.
|
||||
invert H1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve compatible1_add absint_interp_ok.
|
||||
Hint Resolve compatible_add absint_interp_ok.
|
||||
|
||||
Lemma command_equal : forall c1 c2 : cmd, sumbool (c1 = c2) (c1 <> c2).
|
||||
Proof.
|
||||
|
@ -131,11 +131,11 @@ Module SimpleAbstractInterpreter.
|
|||
Qed.
|
||||
|
||||
Theorem absint_step_ok : forall a, absint_sound a
|
||||
-> forall (s : astate a) v, compatible1 s v
|
||||
-> forall (s : astate a) v, compatible s v
|
||||
-> forall c v' c', step (v, c) (v', c')
|
||||
-> forall wrap, exists ss s', absint_step s c wrap = Some ss
|
||||
/\ ss $? wrap c' = Some s'
|
||||
/\ compatible1 s' v'.
|
||||
/\ compatible s' v'.
|
||||
Proof.
|
||||
induct 2; simplify.
|
||||
|
||||
|
@ -190,7 +190,7 @@ Module SimpleAbstractInterpreter.
|
|||
|
||||
Inductive Rabsint a : valuation * cmd -> astate a * cmd -> Prop :=
|
||||
| RAbsint : forall v s c,
|
||||
compatible1 s v
|
||||
compatible s v
|
||||
-> Rabsint (v, c) (s, c).
|
||||
|
||||
Hint Constructors abs_step Rabsint.
|
||||
|
@ -205,7 +205,7 @@ Module SimpleAbstractInterpreter.
|
|||
exists ($0, c); propositional.
|
||||
subst.
|
||||
constructor.
|
||||
unfold compatible1.
|
||||
unfold compatible.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
|
@ -735,12 +735,6 @@ Module SimpleAbstractInterpreter.
|
|||
|
||||
Hint Resolve merge_astates_fok merge_astates_fok2.
|
||||
|
||||
Definition easy :=
|
||||
"n" <- 10;;
|
||||
while "n" loop
|
||||
"n" <- "n" - 2
|
||||
done.
|
||||
|
||||
Lemma subsumeds_empty : forall a (ss : astates a),
|
||||
subsumeds $0 ss.
|
||||
Proof.
|
||||
|
@ -771,12 +765,12 @@ Module SimpleAbstractInterpreter.
|
|||
| repeat (apply subsumeds_add_left || apply subsumeds_empty); (simplify; equality) ].
|
||||
|
||||
Lemma final_even : forall (s s' : astate parity_absint) v x,
|
||||
compatible1 s v
|
||||
compatible s v
|
||||
-> subsumed s s'
|
||||
-> s' $? x = Some Even
|
||||
-> exists n, v $? x = Some n /\ isEven n.
|
||||
Proof.
|
||||
unfold compatible1, subsumed; simplify.
|
||||
unfold compatible, subsumed; simplify.
|
||||
specialize (H x); specialize (H0 x).
|
||||
cases (s $? x); simplify.
|
||||
|
||||
|
@ -793,6 +787,85 @@ Module SimpleAbstractInterpreter.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Definition simple :=
|
||||
"a" <- 7;;
|
||||
"b" <- 8;;
|
||||
"a" <- "a" + "b";;
|
||||
"b" <- "a" * "b".
|
||||
|
||||
Theorem simple_even : forall v,
|
||||
invariantFor (trsys_of v simple) (fun p => snd p = Skip
|
||||
-> exists n, fst p $? "b" = Some n /\ isEven n).
|
||||
Proof.
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
|
||||
unfold simple.
|
||||
eapply invariant_simulates.
|
||||
apply absint_simulates with (a := parity_absint).
|
||||
apply parity_sound.
|
||||
|
||||
apply interpret_sound.
|
||||
apply parity_sound.
|
||||
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret_done.
|
||||
|
||||
invert 1.
|
||||
first_order.
|
||||
invert H0; simplify.
|
||||
invert H1.
|
||||
eapply final_even; eauto; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Definition branchy :=
|
||||
"a" <- 8;;
|
||||
when "c" then
|
||||
"b" <- "a" + 4
|
||||
else
|
||||
"b" <- 7
|
||||
done.
|
||||
|
||||
Theorem branchy_even : forall v,
|
||||
invariantFor (trsys_of v branchy) (fun p => snd p = Skip
|
||||
-> exists n, fst p $? "a" = Some n /\ isEven n).
|
||||
Proof.
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
|
||||
unfold branchy.
|
||||
eapply invariant_simulates.
|
||||
apply absint_simulates with (a := parity_absint).
|
||||
apply parity_sound.
|
||||
|
||||
apply interpret_sound.
|
||||
apply parity_sound.
|
||||
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret_done.
|
||||
|
||||
invert 1.
|
||||
first_order.
|
||||
invert H0; simplify.
|
||||
invert H1.
|
||||
eapply final_even; eauto; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Definition easy :=
|
||||
"n" <- 10;;
|
||||
while "n" loop
|
||||
"n" <- "n" - 2
|
||||
done.
|
||||
|
||||
Theorem easy_even : forall v,
|
||||
invariantFor (trsys_of v easy) (fun p => snd p = Skip
|
||||
-> exists n, fst p $? "n" = Some n /\ isEven n).
|
||||
|
|
Loading…
Reference in a new issue