mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 16:44:14 +00:00
SessionTypes: deadlock freedom
This commit is contained in:
parent
b9893a0e92
commit
0875f52b12
1 changed files with 76 additions and 1 deletions
|
@ -30,7 +30,7 @@ Inductive hasty : proc -> type -> Prop :=
|
|||
| HtSend : forall ch (A : Set) (v : A) k t,
|
||||
hasty k t
|
||||
-> hasty (Send ch v k) (TSend ch A t)
|
||||
| HtRecv : forall ch (A : Set) (k : A -> _) t,
|
||||
| HtRecv : forall ch (A : Set) (k : A -> _) t (v : A),
|
||||
(forall v, hasty (k v) t)
|
||||
-> hasty (Recv ch k) (TRecv ch A t)
|
||||
| HtDone :
|
||||
|
@ -201,3 +201,78 @@ Proof.
|
|||
rewrite complement_inverse in H.
|
||||
first_order.
|
||||
Qed.
|
||||
|
||||
Lemma notstuck_send : forall pr1 t,
|
||||
hasty pr1 t
|
||||
-> forall pr2, hasty pr2 (complement t)
|
||||
-> forall ch (A : Set) (v : A) pr1', lstep pr1 (Output {| Channel := ch; Value := v |}) pr1'
|
||||
-> exists pr2', lstep pr2 (Input {| Channel := ch; Value := v |}) pr2'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto;
|
||||
match goal with
|
||||
| [ H : lstep _ _ _ |- _ ] => invert H; eauto
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Lemma notstuck_nosilent : forall pr1 t,
|
||||
hasty pr1 t
|
||||
-> forall pr1', lstep pr1 Silent pr1'
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma notstuck_recv : forall pr1 t,
|
||||
hasty pr1 t
|
||||
-> forall pr2, hasty pr2 (complement t)
|
||||
-> forall ch (A : Set) (v : A) pr1', lstep pr1 (Input {| Channel := ch; Value := v |}) pr1'
|
||||
-> exists (v' : A) pr2', lstep pr2 (Output {| Channel := ch; Value := v' |}) pr2'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto;
|
||||
match goal with
|
||||
| [ H : lstep _ _ _ |- _ ] => invert H; eauto
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Lemma one_thread_progress : forall pr t,
|
||||
hasty pr t
|
||||
-> pr = Done \/ exists l pr', lstep pr l pr'.
|
||||
Proof.
|
||||
induct 1; first_order; subst; eauto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_Done : forall t,
|
||||
hasty Done t
|
||||
-> forall pr, hasty pr (complement t)
|
||||
-> pr = Done.
|
||||
Proof.
|
||||
induct 1; invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Theorem no_deadlock : forall pr1 pr2 t,
|
||||
hasty pr1 t
|
||||
-> hasty pr2 (complement t)
|
||||
-> invariantFor (trsys_of (pr1 || pr2))
|
||||
(fun pr => pr = (Done || Done)
|
||||
\/ exists l' pr', lstep pr l' pr').
|
||||
Proof.
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
eapply complementarity_forever; eauto.
|
||||
simplify; first_order; subst.
|
||||
specialize (one_thread_progress H2); first_order; subst.
|
||||
|
||||
eapply hasty_Done in H2; eauto.
|
||||
equality.
|
||||
|
||||
cases x2.
|
||||
exfalso; eauto using notstuck_nosilent.
|
||||
right.
|
||||
cases a; cases m.
|
||||
eapply notstuck_send in H1; [ | eauto | eauto ].
|
||||
first_order; eauto.
|
||||
eapply notstuck_recv in H1; [ | eauto | eauto ].
|
||||
first_order; eauto.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue