mirror of
https://github.com/achlipala/frap.git
synced 2025-01-22 06:16:12 +00:00
Rename [map] to [fmap]
This commit is contained in:
parent
9720a6e0c6
commit
087e9334d8
3 changed files with 41 additions and 41 deletions
|
@ -26,7 +26,7 @@ Example ex2 := Plus (Var "y") (Times (Var "x") (Const 3)).
|
|||
* We need to consider the meaning to be a function over a valuation
|
||||
* to the variables, which in turn is itself a finite map from variable
|
||||
* names to numbers. We use the book library's [map] type family. *)
|
||||
Definition valuation := map var nat.
|
||||
Definition valuation := fmap var nat.
|
||||
(* That is, the domain is [var] (a synonym for [string]) and the codomain/range
|
||||
* is [nat]. *)
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Inductive arith : Set :=
|
|||
Example ex1 := Const 42.
|
||||
Example ex2 := Plus (Var "y") (Times (Var "x") (Const 3)).
|
||||
|
||||
Definition valuation := map var nat.
|
||||
Definition valuation := fmap var nat.
|
||||
(* A valuation is a finite map from [var] to [nat]. *)
|
||||
|
||||
(* The interpreter is a fairly innocuous-looking recursive function. *)
|
||||
|
|
78
Map.v
78
Map.v
|
@ -3,13 +3,13 @@ Require Import Classical Sets ClassicalEpsilon FunctionalExtensionality.
|
|||
Set Implicit Arguments.
|
||||
|
||||
Module Type S.
|
||||
Parameter map : Type -> Type -> Type.
|
||||
Parameter fmap : Type -> Type -> Type.
|
||||
|
||||
Parameter empty : forall A B, map A B.
|
||||
Parameter add : forall A B, map A B -> A -> B -> map A B.
|
||||
Parameter join : forall A B, map A B -> map A B -> map A B.
|
||||
Parameter lookup : forall A B, map A B -> A -> option B.
|
||||
Parameter includes : forall A B, map A B -> map A B -> Prop.
|
||||
Parameter empty : forall A B, fmap A B.
|
||||
Parameter add : forall A B, fmap A B -> A -> B -> fmap A B.
|
||||
Parameter join : forall A B, fmap A B -> fmap A B -> fmap A B.
|
||||
Parameter lookup : forall A B, fmap A B -> A -> option B.
|
||||
Parameter includes : forall A B, fmap A B -> fmap A B -> Prop.
|
||||
|
||||
Notation "$0" := (empty _ _).
|
||||
Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity).
|
||||
|
@ -17,51 +17,51 @@ Module Type S.
|
|||
Infix "$?" := lookup (at level 50, no associativity).
|
||||
Infix "$<=" := includes (at level 90).
|
||||
|
||||
Parameter dom : forall A B, map A B -> set A.
|
||||
Parameter dom : forall A B, fmap A B -> set A.
|
||||
|
||||
Axiom map_ext : forall A B (m1 m2 : map A B),
|
||||
Axiom fmap_ext : forall A B (m1 m2 : fmap A B),
|
||||
(forall k, m1 $? k = m2 $? k)
|
||||
-> m1 = m2.
|
||||
|
||||
Axiom lookup_empty : forall A B k, empty A B $? k = None.
|
||||
|
||||
Axiom includes_lookup : forall A B (m m' : map A B) k v,
|
||||
Axiom includes_lookup : forall A B (m m' : fmap A B) k v,
|
||||
m $? k = Some v
|
||||
-> m $<= m'
|
||||
-> lookup m' k = Some v.
|
||||
|
||||
Axiom includes_add : forall A B (m m' : map A B) k v,
|
||||
Axiom includes_add : forall A B (m m' : fmap A B) k v,
|
||||
m $<= m'
|
||||
-> add m k v $<= add m' k v.
|
||||
|
||||
Axiom lookup_add_eq : forall A B (m : map A B) k1 k2 v,
|
||||
Axiom lookup_add_eq : forall A B (m : fmap A B) k1 k2 v,
|
||||
k1 = k2
|
||||
-> add m k1 v $? k2 = Some v.
|
||||
|
||||
Axiom lookup_add_ne : forall A B (m : map A B) k k' v,
|
||||
Axiom lookup_add_ne : forall A B (m : fmap A B) k k' v,
|
||||
k' <> k
|
||||
-> add m k v $? k' = m $? k'.
|
||||
|
||||
Axiom lookup_join1 : forall A B (m1 m2 : map A B) k,
|
||||
Axiom lookup_join1 : forall A B (m1 m2 : fmap A B) k,
|
||||
k \in dom m1
|
||||
-> (m1 $++ m2) $? k = m1 $? k.
|
||||
|
||||
Axiom lookup_join2 : forall A B (m1 m2 : map A B) k,
|
||||
Axiom lookup_join2 : forall A B (m1 m2 : fmap A B) k,
|
||||
~k \in dom m1
|
||||
-> (m1 $++ m2) $? k = m2 $? k.
|
||||
|
||||
Axiom join_comm : forall A B (m1 m2 : map A B),
|
||||
Axiom join_comm : forall A B (m1 m2 : fmap A B),
|
||||
dom m1 \cap dom m2 = {}
|
||||
-> m1 $++ m2 = m2 $++ m1.
|
||||
|
||||
Axiom join_assoc : forall A B (m1 m2 m3 : map A B),
|
||||
Axiom join_assoc : forall A B (m1 m2 m3 : fmap A B),
|
||||
(m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3).
|
||||
|
||||
Axiom empty_includes : forall A B (m : map A B), empty A B $<= m.
|
||||
Axiom empty_includes : forall A B (m : fmap A B), empty A B $<= m.
|
||||
|
||||
Axiom dom_empty : forall A B, dom (empty A B) = {}.
|
||||
|
||||
Axiom dom_add : forall A B (m : map A B) (k : A) (v : B),
|
||||
Axiom dom_add : forall A B (m : fmap A B) (k : A) (v : B),
|
||||
dom (add m k v) = {k} \cup dom m.
|
||||
|
||||
Hint Extern 1 => match goal with
|
||||
|
@ -74,7 +74,7 @@ Module Type S.
|
|||
Hint Rewrite lookup_add_eq lookup_add_ne using congruence.
|
||||
|
||||
Ltac maps_equal :=
|
||||
apply map_ext; intros;
|
||||
apply fmap_ext; intros;
|
||||
repeat (subst; autorewrite with core; try reflexivity;
|
||||
match goal with
|
||||
| [ |- context[lookup (add _ ?k _) ?k' ] ] => destruct (classic (k = k')); subst
|
||||
|
@ -84,9 +84,9 @@ Module Type S.
|
|||
End S.
|
||||
|
||||
Module M : S.
|
||||
Definition map (A B : Type) := A -> option B.
|
||||
Definition fmap (A B : Type) := A -> option B.
|
||||
|
||||
Definition empty A B : map A B := fun _ => None.
|
||||
Definition empty A B : fmap A B := fun _ => None.
|
||||
|
||||
Section decide.
|
||||
Variable P : Prop.
|
||||
|
@ -102,20 +102,20 @@ Module M : S.
|
|||
epsilon decided (fun _ => True).
|
||||
End decide.
|
||||
|
||||
Definition add A B (m : map A B) (k : A) (v : B) : map A B :=
|
||||
Definition add A B (m : fmap A B) (k : A) (v : B) : fmap A B :=
|
||||
fun k' => if decide (k' = k) then Some v else m k'.
|
||||
Definition join A B (m1 m2 : map A B) : map A B :=
|
||||
Definition join A B (m1 m2 : fmap A B) : fmap A B :=
|
||||
fun k => match m1 k with
|
||||
| None => m2 k
|
||||
| x => x
|
||||
end.
|
||||
Definition lookup A B (m : map A B) (k : A) := m k.
|
||||
Definition includes A B (m1 m2 : map A B) :=
|
||||
Definition lookup A B (m : fmap A B) (k : A) := m k.
|
||||
Definition includes A B (m1 m2 : fmap A B) :=
|
||||
forall k v, m1 k = Some v -> m2 k = Some v.
|
||||
|
||||
Definition dom A B (m : map A B) : set A := fun x => m x <> None.
|
||||
Definition dom A B (m : fmap A B) : set A := fun x => m x <> None.
|
||||
|
||||
Theorem map_ext : forall A B (m1 m2 : map A B),
|
||||
Theorem fmap_ext : forall A B (m1 m2 : fmap A B),
|
||||
(forall k, lookup m1 k = lookup m2 k)
|
||||
-> m1 = m2.
|
||||
Proof.
|
||||
|
@ -127,7 +127,7 @@ Module M : S.
|
|||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem includes_lookup : forall A B (m m' : map A B) k v,
|
||||
Theorem includes_lookup : forall A B (m m' : fmap A B) k v,
|
||||
lookup m k = Some v
|
||||
-> includes m m'
|
||||
-> lookup m' k = Some v.
|
||||
|
@ -135,7 +135,7 @@ Module M : S.
|
|||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem includes_add : forall A B (m m' : map A B) k v,
|
||||
Theorem includes_add : forall A B (m m' : fmap A B) k v,
|
||||
includes m m'
|
||||
-> includes (add m k v) (add m' k v).
|
||||
Proof.
|
||||
|
@ -143,7 +143,7 @@ Module M : S.
|
|||
destruct (decide (k0 = k)); auto.
|
||||
Qed.
|
||||
|
||||
Theorem lookup_add_eq : forall A B (m : map A B) k1 k2 v,
|
||||
Theorem lookup_add_eq : forall A B (m : fmap A B) k1 k2 v,
|
||||
k1 = k2
|
||||
-> lookup (add m k1 v) k2 = Some v.
|
||||
Proof.
|
||||
|
@ -152,7 +152,7 @@ Module M : S.
|
|||
congruence.
|
||||
Qed.
|
||||
|
||||
Theorem lookup_add_ne : forall A B (m : map A B) k k' v,
|
||||
Theorem lookup_add_ne : forall A B (m : fmap A B) k k' v,
|
||||
k' <> k
|
||||
-> lookup (add m k v) k' = lookup m k'.
|
||||
Proof.
|
||||
|
@ -160,7 +160,7 @@ Module M : S.
|
|||
destruct (decide (k' = k)); intuition.
|
||||
Qed.
|
||||
|
||||
Theorem lookup_join1 : forall A B (m1 m2 : map A B) k,
|
||||
Theorem lookup_join1 : forall A B (m1 m2 : fmap A B) k,
|
||||
k \in dom m1
|
||||
-> lookup (join m1 m2) k = lookup m1 k.
|
||||
Proof.
|
||||
|
@ -168,7 +168,7 @@ Module M : S.
|
|||
destruct (m1 k); congruence.
|
||||
Qed.
|
||||
|
||||
Theorem lookup_join2 : forall A B (m1 m2 : map A B) k,
|
||||
Theorem lookup_join2 : forall A B (m1 m2 : fmap A B) k,
|
||||
~k \in dom m1
|
||||
-> lookup (join m1 m2) k = lookup m2 k.
|
||||
Proof.
|
||||
|
@ -177,11 +177,11 @@ Module M : S.
|
|||
exfalso; apply H; congruence.
|
||||
Qed.
|
||||
|
||||
Theorem join_comm : forall A B (m1 m2 : map A B),
|
||||
Theorem join_comm : forall A B (m1 m2 : fmap A B),
|
||||
dom m1 \cap dom m2 = {}
|
||||
-> join m1 m2 = join m2 m1.
|
||||
Proof.
|
||||
intros; apply map_ext; unfold join, lookup; intros.
|
||||
intros; apply fmap_ext; unfold join, lookup; intros.
|
||||
apply (f_equal (fun f => f k)) in H.
|
||||
unfold dom, intersection, constant in H; simpl in H.
|
||||
destruct (m1 k), (m2 k); auto.
|
||||
|
@ -189,14 +189,14 @@ Module M : S.
|
|||
intuition congruence.
|
||||
Qed.
|
||||
|
||||
Theorem join_assoc : forall A B (m1 m2 m3 : map A B),
|
||||
Theorem join_assoc : forall A B (m1 m2 m3 : fmap A B),
|
||||
join (join m1 m2) m3 = join m1 (join m2 m3).
|
||||
Proof.
|
||||
intros; apply map_ext; unfold join, lookup; intros.
|
||||
intros; apply fmap_ext; unfold join, lookup; intros.
|
||||
destruct (m1 k); auto.
|
||||
Qed.
|
||||
|
||||
Theorem empty_includes : forall A B (m : map A B), includes (empty (A := A) B) m.
|
||||
Theorem empty_includes : forall A B (m : fmap A B), includes (empty (A := A) B) m.
|
||||
Proof.
|
||||
unfold includes, empty; intuition congruence.
|
||||
Qed.
|
||||
|
@ -206,7 +206,7 @@ Module M : S.
|
|||
unfold dom, empty; intros; sets idtac.
|
||||
Qed.
|
||||
|
||||
Theorem dom_add : forall A B (m : map A B) (k : A) (v : B),
|
||||
Theorem dom_add : forall A B (m : fmap A B) (k : A) (v : B),
|
||||
dom (add m k v) = {k} \cup dom m.
|
||||
Proof.
|
||||
unfold dom, add; simpl; intros.
|
||||
|
|
Loading…
Reference in a new issue