mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Tweak OperationalSemantics_template.v
This commit is contained in:
parent
c8322773a4
commit
0e06d062d1
1 changed files with 4 additions and 70 deletions
|
@ -367,7 +367,7 @@ Theorem big_small : forall v c v', eval v c v'
|
||||||
Proof.
|
Proof.
|
||||||
Admitted.
|
Admitted.
|
||||||
|
|
||||||
Theorem small_big_snazzy : forall v c v', step^* (v, c) (v', Skip)
|
Theorem small_big : forall v c v', step^* (v, c) (v', Skip)
|
||||||
-> eval v c v'.
|
-> eval v c v'.
|
||||||
Proof.
|
Proof.
|
||||||
Admitted.
|
Admitted.
|
||||||
|
@ -741,33 +741,8 @@ Module Concurrent.
|
||||||
Proof.
|
Proof.
|
||||||
eexists; propositional.
|
eexists; propositional.
|
||||||
unfold prog.
|
unfold prog.
|
||||||
|
Admitted.
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := CPar1 (CSeq Hole _) _); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := CPar2 _ (CSeq Hole _)); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := CPar1 Hole _); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := CPar2 _ Hole); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := CPar1 Hole _); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := Hole); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
eapply CStep with (C := Hole); eauto.
|
|
||||||
|
|
||||||
econstructor.
|
|
||||||
|
|
||||||
simplify.
|
|
||||||
equality.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
(** Proving equivalence with non-contextual semantics *)
|
(** Proving equivalence with non-contextual semantics *)
|
||||||
|
|
||||||
|
@ -806,49 +781,8 @@ Module Concurrent.
|
||||||
Hint Constructors step.
|
Hint Constructors step.
|
||||||
|
|
||||||
(* Now, an automated proof of equivalence. Actually, it's *exactly* the same
|
(* Now, an automated proof of equivalence. Actually, it's *exactly* the same
|
||||||
* proof we used for the old feature set! *)
|
* proof we used for the old feature set! For full dramatic effect, copy and
|
||||||
|
* paste here from above. *)
|
||||||
Theorem step_cstep : forall v c v' c',
|
|
||||||
step (v, c) (v', c')
|
|
||||||
-> cstep (v, c) (v', c').
|
|
||||||
Proof.
|
|
||||||
induct 1; repeat match goal with
|
|
||||||
| [ H : forall a b c d, _ = _ -> _ = _ -> _ |- _ ] =>
|
|
||||||
specialize (H _ _ _ _ eq_refl eq_refl)
|
|
||||||
| [ H : cstep _ _ |- _ ] => invert H
|
|
||||||
end; eauto.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Hint Resolve step_cstep.
|
|
||||||
|
|
||||||
Lemma step0_step : forall v c v' c',
|
|
||||||
step0 (v, c) (v', c')
|
|
||||||
-> step (v, c) (v', c').
|
|
||||||
Proof.
|
|
||||||
induct 1; eauto.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Hint Resolve step0_step.
|
|
||||||
|
|
||||||
Lemma cstep_step' : forall C c0 c,
|
|
||||||
plug C c0 c
|
|
||||||
-> forall v' c'0 v c', step0 (v, c0) (v', c'0)
|
|
||||||
-> plug C c'0 c'
|
|
||||||
-> step (v, c) (v', c').
|
|
||||||
Proof.
|
|
||||||
induct 1; simplify; repeat match goal with
|
|
||||||
| [ H : plug _ _ _ |- _ ] => invert1 H
|
|
||||||
end; eauto.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Hint Resolve cstep_step'.
|
|
||||||
|
|
||||||
Theorem cstep_step : forall v c v' c',
|
|
||||||
cstep (v, c) (v', c')
|
|
||||||
-> step (v, c) (v', c').
|
|
||||||
Proof.
|
|
||||||
induct 1; eauto.
|
|
||||||
Qed.
|
|
||||||
End Concurrent.
|
End Concurrent.
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue