mirror of
https://github.com/achlipala/frap.git
synced 2024-12-01 00:26:18 +00:00
SubsetTypes_template
This commit is contained in:
parent
31b0b6e9e5
commit
119996a90c
1 changed files with 203 additions and 0 deletions
203
SubsetTypes_template.v
Normal file
203
SubsetTypes_template.v
Normal file
|
@ -0,0 +1,203 @@
|
||||||
|
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||||
|
* Supplementary Coq material: subset types
|
||||||
|
* Author: Adam Chlipala
|
||||||
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/
|
||||||
|
* Much of the material comes from CPDT <http://adam.chlipala.net/cpdt/> by the same author. *)
|
||||||
|
|
||||||
|
Require Import FrapWithoutSets.
|
||||||
|
(* We import a pared-down version of the book library, to avoid notations that
|
||||||
|
* clash with some we want to use here. *)
|
||||||
|
|
||||||
|
Set Implicit Arguments.
|
||||||
|
Set Asymmetric Patterns.
|
||||||
|
|
||||||
|
|
||||||
|
(** * Introducing Subset Types *)
|
||||||
|
|
||||||
|
Definition pred (n : nat) : nat :=
|
||||||
|
match n with
|
||||||
|
| O => O
|
||||||
|
| S n' => n'
|
||||||
|
end.
|
||||||
|
|
||||||
|
Extraction pred.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
(** * Decidable Proposition Types *)
|
||||||
|
|
||||||
|
Print sumbool.
|
||||||
|
|
||||||
|
Notation "'Yes'" := (left _ _).
|
||||||
|
Notation "'No'" := (right _ _).
|
||||||
|
Notation "'Reduce' x" := (if x then Yes else No) (at level 50).
|
||||||
|
|
||||||
|
Definition eq_nat_dec : forall n m : nat, {n = m} + {n <> m}.
|
||||||
|
Admitted.
|
||||||
|
|
||||||
|
Compute eq_nat_dec 2 2.
|
||||||
|
Compute eq_nat_dec 2 3.
|
||||||
|
|
||||||
|
Extraction eq_nat_dec.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Section In_dec.
|
||||||
|
Variable A : Set.
|
||||||
|
Variable A_eq_dec : forall x y : A, {x = y} + {x <> y}.
|
||||||
|
|
||||||
|
(* The final function is easy to write using the techniques we have developed
|
||||||
|
* so far. *)
|
||||||
|
|
||||||
|
Definition In_dec : forall (x : A) (ls : list A), {In x ls} + {~ In x ls}.
|
||||||
|
Admitted.
|
||||||
|
End In_dec.
|
||||||
|
|
||||||
|
Compute In_dec eq_nat_dec 2 (1 :: 2 :: nil).
|
||||||
|
Compute In_dec eq_nat_dec 3 (1 :: 2 :: nil).
|
||||||
|
|
||||||
|
Extraction In_dec.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
(** * Partial Subset Types *)
|
||||||
|
|
||||||
|
Inductive maybe (A : Set) (P : A -> Prop) : Set :=
|
||||||
|
| Unknown : maybe P
|
||||||
|
| Found : forall x : A, P x -> maybe P.
|
||||||
|
|
||||||
|
Notation "{{ x | P }}" := (maybe (fun x => P)).
|
||||||
|
Notation "??" := (Unknown _).
|
||||||
|
Notation "[| x |]" := (Found _ x _).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Print sumor.
|
||||||
|
|
||||||
|
Notation "!!" := (inright _ _).
|
||||||
|
Notation "[|| x ||]" := (inleft _ [x]).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
(** * Monadic Notations *)
|
||||||
|
|
||||||
|
Notation "x <- e1 ; e2" := (match e1 with
|
||||||
|
| Unknown => ??
|
||||||
|
| Found x _ => e2
|
||||||
|
end)
|
||||||
|
(right associativity, at level 60).
|
||||||
|
|
||||||
|
Definition doublePred : forall n1 n2 : nat, {{p | n1 = S (fst p) /\ n2 = S (snd p)}}.
|
||||||
|
Admitted.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Notation "x <-- e1 ; e2" := (match e1 with
|
||||||
|
| inright _ => !!
|
||||||
|
| inleft (exist x _) => e2
|
||||||
|
end)
|
||||||
|
(right associativity, at level 60).
|
||||||
|
|
||||||
|
Definition doublePred' : forall n1 n2 : nat,
|
||||||
|
{p : nat * nat | n1 = S (fst p) /\ n2 = S (snd p)}.
|
||||||
|
Admitted.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
(** * A Type-Checking Example *)
|
||||||
|
|
||||||
|
Inductive exp :=
|
||||||
|
| Nat (n : nat)
|
||||||
|
| Plus (e1 e2 : exp)
|
||||||
|
| Bool (b : bool)
|
||||||
|
| And (e1 e2 : exp).
|
||||||
|
|
||||||
|
Inductive type := TNat | TBool.
|
||||||
|
|
||||||
|
Inductive hasType : exp -> type -> Prop :=
|
||||||
|
| HtNat : forall n,
|
||||||
|
hasType (Nat n) TNat
|
||||||
|
| HtPlus : forall e1 e2,
|
||||||
|
hasType e1 TNat
|
||||||
|
-> hasType e2 TNat
|
||||||
|
-> hasType (Plus e1 e2) TNat
|
||||||
|
| HtBool : forall b,
|
||||||
|
hasType (Bool b) TBool
|
||||||
|
| HtAnd : forall e1 e2,
|
||||||
|
hasType e1 TBool
|
||||||
|
-> hasType e2 TBool
|
||||||
|
-> hasType (And e1 e2) TBool.
|
||||||
|
|
||||||
|
Definition typeCheck : forall e : exp, {{t | hasType e t}}.
|
||||||
|
Admitted.
|
||||||
|
|
||||||
|
Compute typeCheck (Nat 0).
|
||||||
|
Compute typeCheck (Plus (Nat 1) (Nat 2)).
|
||||||
|
Compute typeCheck (Plus (Nat 1) (Bool false)).
|
||||||
|
|
||||||
|
Extraction typeCheck.
|
Loading…
Reference in a new issue