From 1664ddb531034dfa1f1c3909cd231b0b72a9fc7f Mon Sep 17 00:00:00 2001 From: Adam Chlipala Date: Tue, 30 Mar 2021 16:12:37 -0400 Subject: [PATCH] EvaluationContexts_template --- EvaluationContexts_template.v | 1274 +++++++++++++++++++++++++++++++++ _CoqProject | 1 + 2 files changed, 1275 insertions(+) create mode 100644 EvaluationContexts_template.v diff --git a/EvaluationContexts_template.v b/EvaluationContexts_template.v new file mode 100644 index 0000000..7430e9d --- /dev/null +++ b/EvaluationContexts_template.v @@ -0,0 +1,1274 @@ +Require Import Frap. + + +(** * Evaluation Contexts for Lambda Calculus *) + +Module Stlc. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp). + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + end. + + (* Here's the first difference from last chapter. *) + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context. + + (* Again, note how two of the rules include [value] premises. *) + Inductive plug : context -> exp -> exp -> Prop := + | PlugHole : forall e, plug Hole e e + | PlugPlus1 : forall e e' C e2, + plug C e e' + -> plug (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall e e' C e2, + plug C e e' + -> plug (App1 C e2) e (App e' e2) + | PlugApp2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (App2 v1 C) e (App v1 e'). + + (* Small-step, call-by-value evaluation, using our evaluation contexts *) + + (* First: the primitive reductions *) + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)). + + (* Then: running them in context *) + Inductive step : exp -> exp -> Prop := + | StepRule : forall C e1 e2 e1' e2', + plug C e1 e1' + -> plug C e2 e2' + -> step0 e1 e2 + -> step e1' e2'. + + (* It's easy to wrap everything as a transition system. *) + Definition trsys_of (e : exp) := {| + Initial := {e}; + Step := step + |}. + + + (* Typing details are the same as last chapter. *) + Inductive type := + | Nat (* Numbers *) + | Fun (dom ran : type) (* Functions *). + + Inductive hasty : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty G (Var x) t + | HtConst : forall G n, + hasty G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty G e1 Nat + -> hasty G e2 Nat + -> hasty G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty (G $+ (x, t1)) e1 t2 + -> hasty G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty G e1 (Fun t1 t2) + -> hasty G e2 t1 + -> hasty G (App e1 e2) t2. + + Local Hint Constructors value plug step0 step hasty : core. + + (** * Now we adapt the automated proof of type soundness. *) + + Ltac t0 := match goal with + | [ H : ex _ |- _ ] => invert H + | [ H : _ /\ _ |- _ ] => invert H + | [ |- context[?x ==v ?y] ] => cases (x ==v y) + | [ H : Some _ = Some _ |- _ ] => invert H + + | [ H : step _ _ |- _ ] => invert H + | [ H : step0 _ _ |- _ ] => invert1 H + | [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H + | [ H : hasty _ _ _ |- _ ] => invert1 H + | [ H : plug _ _ _ |- _ ] => invert1 H + end; subst. + + Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6. + + Lemma progress : forall e t, + hasty $0 e t + -> value e + \/ (exists e' : exp, step e e'). + Proof. + induct 1; t. + Qed. + + Lemma weakening_override : forall (G G' : fmap var type) x t, + (forall x' t', G $? x' = Some t' -> G' $? x' = Some t') + -> (forall x' t', G $+ (x, t) $? x' = Some t' + -> G' $+ (x, t) $? x' = Some t'). + Proof. + simplify. + cases (x ==v x'); simplify; eauto. + Qed. + + Local Hint Resolve weakening_override : core. + + Lemma weakening : forall G e t, + hasty G e t + -> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t) + -> hasty G' e t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve weakening : core. + + Lemma hasty_change : forall G e t, + hasty G e t + -> forall G', G' = G + -> hasty G' e t. + Proof. + t. + Qed. + + Local Hint Resolve hasty_change : core. + + Lemma substitution : forall G x t' e t e', + hasty (G $+ (x, t')) e t + -> hasty $0 e' t' + -> hasty G (subst e' x e) t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve substitution : core. + + Lemma preservation0 : forall e1 e2, + step0 e1 e2 + -> forall t, hasty $0 e1 t + -> hasty $0 e2 t. + Proof. + invert 1; t. + Qed. + + Local Hint Resolve preservation0 : core. + + Lemma preservation' : forall C e1 e1', + plug C e1 e1' + -> forall e2 e2' t, plug C e2 e2' + -> step0 e1 e2 + -> hasty $0 e1' t + -> hasty $0 e2' t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve preservation' : core. + + Lemma preservation : forall e1 e2, + step e1 e2 + -> forall t, hasty $0 e1 t + -> hasty $0 e2 t. + Proof. + invert 1; t. + Qed. + + Local Hint Resolve progress preservation : core. + + Theorem safety : forall e t, hasty $0 e t + -> invariantFor (trsys_of e) + (fun e' => value e' + \/ exists e'', step e' e''). + Proof. + simplify. + apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto. + apply invariant_induction; simplify; eauto; equality. + Qed. + + (* It may not be obvious that this way of defining the semantics gives us a + * unique evaluation sequence for every well-typed program. Let's prove + * it. *) + + Lemma plug_not_value : forall C e v, + value v + -> plug C e v + -> C = Hole /\ e = v. + Proof. + invert 1; invert 1; auto. + Qed. + + Lemma step0_value : forall v e, + value v + -> step0 v e + -> False. + Proof. + invert 1; invert 1. + Qed. + + Lemma plug_det : forall C e1 e2 e1' f1 f1', + step0 e1 e1' + -> step0 f1 f1' + -> plug C e1 e2 + -> forall C', plug C' f1 e2 + -> C = C' /\ e1 = f1. + Proof. + induct 3; invert 1; + repeat match goal with + | [ H : step0 _ _ |- _ ] => invert1 H + | [ H : plug _ _ _ |- _ ] => eapply plug_not_value in H; [ | solve [ eauto ] ]; + propositional; subst + | [ IH : step0 _ _ -> _, H : plug _ _ _ |- _ ] => eapply IH in H; [ | solve [ auto ] ]; + equality + | [ _ : value ?v, _ : step0 ?v _ |- _ ] => exfalso; eapply step0_value; eauto + end; equality. + Qed. + + Lemma step0_det : forall e e', step0 e e' + -> forall e'', step0 e e'' + -> e' = e''. + Proof. + invert 1; invert 1; auto. + Qed. + + Lemma plug_func : forall C e e1, + plug C e e1 + -> forall e2, plug C e e2 + -> e1 = e2. + Proof. + induct 1; invert 1; auto; f_equal; auto. + Qed. + + Theorem deterministic : forall e e', step e e' + -> forall e'', step e e'' + -> e' = e''. + Proof. + invert 1; invert 1. + + assert (C = C0 /\ e1 = e0) by (eapply plug_det; eassumption). + propositional; subst. + assert (e2 = e3) by (eapply step0_det; eassumption). + subst. + eapply plug_func; eassumption. + Qed. +End Stlc. + +(** * Pairs *) + +Module StlcPairs. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp). + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + (* A pair of values is a value. (Now this relation finally becomes + * recursive.) *) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + (* Some bureaucratic work here to add predictable cases *) + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + (* Two new context kinds, indicating left-to-right evaluation order for + * pairs *) + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + (* And similar for projections *) + | Fst1 : context -> context + | Snd1 : context -> context. + + Inductive plug : context -> exp -> exp -> Prop := + | PlugHole : forall e, plug Hole e e + | PlugPlus1 : forall e e' C e2, + plug C e e' + -> plug (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall e e' C e2, + plug C e e' + -> plug (App1 C e2) e (App e' e2) + | PlugApp2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (App2 v1 C) e (App v1 e') + + (* Our new plugging rules *) + | PlugPair1 : forall e e' C e2, + plug C e e' + -> plug (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall e e' C, + plug C e e' + -> plug (Fst1 C) e (Fst e') + | PlugSnd1 : forall e e' C, + plug C e e' + -> plug (Snd1 C) e (Snd e'). + + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)) + + (* Reducing projections *) + | FstPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Fst (Pair v1 v2)) v1 + | SndPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Snd (Pair v1 v2)) v2. + + Inductive step : exp -> exp -> Prop := + | StepRule : forall C e1 e2 e1' e2', + plug C e1 e1' + -> plug C e2 e2' + -> step0 e1 e2 + -> step e1' e2'. + + Definition trsys_of (e : exp) := {| + Initial := {e}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) (* "Prod" for "product," as in Cartesian product *). + + Inductive hasty : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty G (Var x) t + | HtConst : forall G n, + hasty G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty G e1 Nat + -> hasty G e2 Nat + -> hasty G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty (G $+ (x, t1)) e1 t2 + -> hasty G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty G e1 (Fun t1 t2) + -> hasty G e2 t1 + -> hasty G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty G e1 t1 + -> hasty G e2 t2 + -> hasty G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Snd e1) t2. + + (* Let's copy and paste the type-soundness proof from above and adapt it. *) +End StlcPairs. + +(** * Variants *) + +Print sum. + +Module StlcSums. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp) + + (* New cases: *) + | Inl (e1 : exp) + | Inr (e2 : exp) + | Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp). + (* The last one roughly means "match e' with inl x1 => e1 | inr x2 => e2". *) + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2) + | VInl : forall v, value v -> value (Inl v) + | VInr : forall v, value v -> value (Inr v). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + (* Some bureaucratic work here to add predictable cases *) + | Inl e2' => Inl (subst e1 x e2') + | Inr e2' => Inr (subst e1 x e2') + | Match e2' x1 e21 x2 e22 => Match (subst e1 x e2') + x1 (if x1 ==v x then e21 else subst e1 x e21) + x2 (if x2 ==v x then e22 else subst e1 x e22) + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + | Fst1 : context -> context + | Snd1 : context -> context + + (* New cases: *) + | Inl1 : context -> context + | Inr1 : context -> context + | Match1 : context -> var -> exp -> var -> exp -> context. + + Inductive plug : context -> exp -> exp -> Prop := + | PlugHole : forall e, plug Hole e e + | PlugPlus1 : forall e e' C e2, + plug C e e' + -> plug (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall e e' C e2, + plug C e e' + -> plug (App1 C e2) e (App e' e2) + | PlugApp2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (App2 v1 C) e (App v1 e') + | PlugPair1 : forall e e' C e2, + plug C e e' + -> plug (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall e e' C, + plug C e e' + -> plug (Fst1 C) e (Fst e') + | PlugSnd1 : forall e e' C, + plug C e e' + -> plug (Snd1 C) e (Snd e') + + (* Our new plugging rules *) + | PlugInl1 : forall e e' C, + plug C e e' + -> plug (Inl1 C) e (Inl e') + | PlugInr1 : forall e e' C, + plug C e e' + -> plug (Inr1 C) e (Inr e') + | PluMatch1 : forall e e' C x1 e1 x2 e2, + plug C e e' + -> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2). + + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)) + | FstPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Fst (Pair v1 v2)) v1 + | SndPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Snd (Pair v1 v2)) v2 + + (* Reducing a [Match] *) + | MatchInl : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1) + | MatchInr : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2). + + Inductive step : exp -> exp -> Prop := + | StepRule : forall C e1 e2 e1' e2', + plug C e1 e1' + -> plug C e2 e2' + -> step0 e1 e2 + -> step e1' e2'. + + Definition trsys_of (e : exp) := {| + Initial := {e}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) + (* New case: *) + | Sum (t1 t2 : type). + + Inductive hasty : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty G (Var x) t + | HtConst : forall G n, + hasty G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty G e1 Nat + -> hasty G e2 Nat + -> hasty G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty (G $+ (x, t1)) e1 t2 + -> hasty G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty G e1 (Fun t1 t2) + -> hasty G e2 t1 + -> hasty G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty G e1 t1 + -> hasty G e2 t2 + -> hasty G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Snd e1) t2 + + (* New cases: *) + | HtInl : forall G e1 t1 t2, + hasty G e1 t1 + -> hasty G (Inl e1) (Sum t1 t2) + | HtInr : forall G e1 t1 t2, + hasty G e1 t2 + -> hasty G (Inr e1) (Sum t1 t2) + | HtMatch : forall G e t1 t2 x1 e1 x2 e2 t, + hasty G e (Sum t1 t2) + -> hasty (G $+ (x1, t1)) e1 t + -> hasty (G $+ (x2, t2)) e2 t + -> hasty G (Match e x1 e1 x2 e2) t. + + (* Type-soundness proof here *) +End StlcSums. + +(** * Exceptions *) + +Module StlcExceptions. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp) + | Inl (e1 : exp) + | Inr (e2 : exp) + | Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp) + + | Throw (e1 : exp) + | Catch (e1 : exp) (x : var) (e2 : exp). + (* The last one roughly means "try e1 catch x => e2". *) + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2) + | VInl : forall v, value v -> value (Inl v) + | VInr : forall v, value v -> value (Inr v). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + | Inl e2' => Inl (subst e1 x e2') + | Inr e2' => Inr (subst e1 x e2') + | Match e2' x1 e21 x2 e22 => Match (subst e1 x e2') + x1 (if x1 ==v x then e21 else subst e1 x e21) + x2 (if x2 ==v x then e22 else subst e1 x e22) + + (* New cases: *) + | Throw e2' => Throw (subst e1 x e2') + | Catch e2' x1 e2'' => Catch (subst e1 x e2') + x1 (if x1 ==v x then e2'' else subst e1 x e2'') + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + | Fst1 : context -> context + | Snd1 : context -> context + | Inl1 : context -> context + | Inr1 : context -> context + | Match1 : context -> var -> exp -> var -> exp -> context + + (* New cases: *) + | Throw1 : context -> context + | Catch1 : context -> var -> exp -> context. + + (* We modify [plug] with a new Boolean argument, to control whether [Catch1] + * context kinds are allowed. *) + Inductive plug : bool -> context -> exp -> exp -> Prop := + | PlugHole : forall ac e, plug ac Hole e e + | PlugPlus1 : forall ac e e' C e2, + plug ac C e e' + -> plug ac (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall ac e e' v1 C, + value v1 + -> plug ac C e e' + -> plug ac (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall ac e e' C e2, + plug ac C e e' + -> plug ac (App1 C e2) e (App e' e2) + | PlugApp2 : forall ac e e' v1 C, + value v1 + -> plug ac C e e' + -> plug ac (App2 v1 C) e (App v1 e') + | PlugPair1 : forall ac e e' C e2, + plug ac C e e' + -> plug ac (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall ac e e' v1 C, + value v1 + -> plug ac C e e' + -> plug ac (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Fst1 C) e (Fst e') + | PlugSnd1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Snd1 C) e (Snd e') + | PlugInl1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Inl1 C) e (Inl e') + | PlugInr1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Inr1 C) e (Inr e') + | PluMatch1 : forall ac e e' C x1 e1 x2 e2, + plug ac C e e' + -> plug ac (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2) + | PlugThrow1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Throw1 C) e (Throw e') + | PlugCatch1 : forall e e' C x1 e1, + plug true C e e' + -> plug true (Catch1 C x1 e1) e (Catch e' x1 e1). + + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)) + | FstPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Fst (Pair v1 v2)) v1 + | SndPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Snd (Pair v1 v2)) v2 + | MatchInl : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1) + | MatchInr : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2) + + | ThrowBubble : forall v C e, + plug false C (Throw v) e + -> value v + -> C <> Hole + -> step0 e (Throw v) + | CatchValue : forall v x1 e1, + value v + -> step0 (Catch v x1 e1) v + | CatchThrow : forall v x1 e1, + value v + -> step0 (Catch (Throw v) x1 e1) (subst v x1 e1). + + Inductive step : exp -> exp -> Prop := + | StepRule : forall C e1 e2 e1' e2', + plug true C e1 e1' + -> plug true C e2 e2' + -> step0 e1 e2 + -> step e1' e2'. + + Definition trsys_of (e : exp) := {| + Initial := {e}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) + | Sum (t1 t2 : type). + + Inductive hasty : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty G (Var x) t + | HtConst : forall G n, + hasty G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty G e1 Nat + -> hasty G e2 Nat + -> hasty G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty (G $+ (x, t1)) e1 t2 + -> hasty G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty G e1 (Fun t1 t2) + -> hasty G e2 t1 + -> hasty G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty G e1 t1 + -> hasty G e2 t2 + -> hasty G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Snd e1) t2 + | HtInl : forall G e1 t1 t2, + hasty G e1 t1 + -> hasty G (Inl e1) (Sum t1 t2) + | HtInr : forall G e1 t1 t2, + hasty G e1 t2 + -> hasty G (Inr e1) (Sum t1 t2) + | HtMatch : forall G e t1 t2 x1 e1 x2 e2 t, + hasty G e (Sum t1 t2) + -> hasty (G $+ (x1, t1)) e1 t + -> hasty (G $+ (x2, t2)) e2 t + -> hasty G (Match e x1 e1 x2 e2) t + + (* New cases: *) + | HtThrow : forall G e1 t, + hasty G e1 Nat + -> hasty G (Throw e1) t + | HtCatch : forall G e x1 e1 t, + hasty G e t + -> hasty (G $+ (x1, Nat)) e1 t + -> hasty G (Catch e x1 e1) t. +End StlcExceptions. + +(** * Mutable Variables *) + +Module StlcMutable. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp) + | Inl (e1 : exp) + | Inr (e2 : exp) + | Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp) + + (* New cases: *) + | GetVar (x : var) + | SetVar (x : var) (e : exp). + (* Note that we are distinguishing between mutable and immutable variables, + * keeping the latter to bind in [Abs] and [Match]. *) + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2) + | VInl : forall v, value v -> value (Inl v) + | VInr : forall v, value v -> value (Inr v). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + | Inl e2' => Inl (subst e1 x e2') + | Inr e2' => Inr (subst e1 x e2') + | Match e2' x1 e21 x2 e22 => Match (subst e1 x e2') + x1 (if x1 ==v x then e21 else subst e1 x e21) + x2 (if x2 ==v x then e22 else subst e1 x e22) + | GetVar y => GetVar y + | SetVar y e2' => SetVar y (subst e1 x e2') + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + | Fst1 : context -> context + | Snd1 : context -> context + | Inl1 : context -> context + | Inr1 : context -> context + | Match1 : context -> var -> exp -> var -> exp -> context + (* New case: *) + | SetVar1 : var -> context -> context. + + Inductive plug : context -> exp -> exp -> Prop := + | PlugHole : forall e, plug Hole e e + | PlugPlus1 : forall e e' C e2, + plug C e e' + -> plug (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall e e' C e2, + plug C e e' + -> plug (App1 C e2) e (App e' e2) + | PlugApp2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (App2 v1 C) e (App v1 e') + | PlugPair1 : forall e e' C e2, + plug C e e' + -> plug (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall e e' C, + plug C e e' + -> plug (Fst1 C) e (Fst e') + | PlugSnd1 : forall e e' C, + plug C e e' + -> plug (Snd1 C) e (Snd e') + | PlugInl1 : forall e e' C, + plug C e e' + -> plug (Inl1 C) e (Inl e') + | PlugInr1 : forall e e' C, + plug C e e' + -> plug (Inr1 C) e (Inr e') + | PluMatch1 : forall e e' C x1 e1 x2 e2, + plug C e e' + -> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2) + + (* Our new plugging rules *) + | PluSetVar1 : forall x e e' C, + plug C e e' + -> plug (SetVar1 x C) e (SetVar x e'). + + Definition valuation := fmap var exp. + + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)) + | FstPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Fst (Pair v1 v2)) v1 + | SndPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Snd (Pair v1 v2)) v2 + | MatchInl : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1) + | MatchInr : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2). + + (* We build an intermediate relation on top of [step0], allowing for + * consultation of the mutable-variable valuation. *) + Inductive step1 : valuation * exp -> valuation * exp -> Prop := + | Lift : forall env e1 e2, + step0 e1 e2 + -> step1 (env, e1) (env, e2) + | Read : forall env x v, + env $? x = Some v + -> step1 (env, GetVar x) (env, v) + | Overwrite : forall env x v, + value v + -> step1 (env, SetVar x v) (env $+ (x, v), v). + + Inductive step : valuation * exp -> valuation * exp -> Prop := + | StepRule : forall C env1 e1 env2 e2 e1' e2', + plug C e1 e1' + -> plug C e2 e2' + -> step1 (env1, e1) (env2, e2) + -> step (env1, e1') (env2, e2'). + + Definition trsys_of (env : valuation) (e : exp) := {| + Initial := {(env, e)}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) + | Sum (t1 t2 : type). + + (* Now there will be two typing contexts, one for mutable variables and one + * for immutable. *) + Inductive hasty (M : fmap var type) : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty M G (Var x) t + | HtConst : forall G n, + hasty M G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty M G e1 Nat + -> hasty M G e2 Nat + -> hasty M G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty M (G $+ (x, t1)) e1 t2 + -> hasty M G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty M G e1 (Fun t1 t2) + -> hasty M G e2 t1 + -> hasty M G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty M G e1 t1 + -> hasty M G e2 t2 + -> hasty M G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty M G e1 (Prod t1 t2) + -> hasty M G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty M G e1 (Prod t1 t2) + -> hasty M G (Snd e1) t2 + | HtInl : forall G e1 t1 t2, + hasty M G e1 t1 + -> hasty M G (Inl e1) (Sum t1 t2) + | HtInr : forall G e1 t1 t2, + hasty M G e1 t2 + -> hasty M G (Inr e1) (Sum t1 t2) + | HtMatch : forall G e t1 t2 x1 e1 x2 e2 t, + hasty M G e (Sum t1 t2) + -> hasty M (G $+ (x1, t1)) e1 t + -> hasty M (G $+ (x2, t2)) e2 t + -> hasty M G (Match e x1 e1 x2 e2) t + + (* New cases: *) + | HtGetVar : forall G x t, + M $? x = Some t + -> hasty M G (GetVar x) t + | HtSetVar : forall G x e t, + M $? x = Some t + -> hasty M G e t + -> hasty M G (SetVar x e) t. +End StlcMutable. + +(** * Concurrency *) + +Module StlcConcur. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp) + | Inl (e1 : exp) + | Inr (e2 : exp) + | Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp) + | GetVar (x : var) + | SetVar (x : var) (e : exp) + + (* New cases: *) + | Par (e1 e2 : exp). + (* This form evaluates both expressions and forms a pair of their + * results, if they terminate. *) + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2) + | VInl : forall v, value v -> value (Inl v) + | VInr : forall v, value v -> value (Inr v). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + | Inl e2' => Inl (subst e1 x e2') + | Inr e2' => Inr (subst e1 x e2') + | Match e2' x1 e21 x2 e22 => Match (subst e1 x e2') + x1 (if x1 ==v x then e21 else subst e1 x e21) + x2 (if x2 ==v x then e22 else subst e1 x e22) + | GetVar y => GetVar y + | SetVar y e2' => SetVar y (subst e1 x e2') + | Par e2' e2'' => Par (subst e1 x e2') (subst e1 x e2'') + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + | Fst1 : context -> context + | Snd1 : context -> context + | Inl1 : context -> context + | Inr1 : context -> context + | Match1 : context -> var -> exp -> var -> exp -> context + | SetVar1 : var -> context -> context + + (* New cases: *) + | Par1 : context -> exp -> context + | Par2 : exp -> context -> context. + + Inductive plug : context -> exp -> exp -> Prop := + | PlugHole : forall e, plug Hole e e + | PlugPlus1 : forall e e' C e2, + plug C e e' + -> plug (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall e e' C e2, + plug C e e' + -> plug (App1 C e2) e (App e' e2) + | PlugApp2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (App2 v1 C) e (App v1 e') + | PlugPair1 : forall e e' C e2, + plug C e e' + -> plug (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall e e' C, + plug C e e' + -> plug (Fst1 C) e (Fst e') + | PlugSnd1 : forall e e' C, + plug C e e' + -> plug (Snd1 C) e (Snd e') + | PlugInl1 : forall e e' C, + plug C e e' + -> plug (Inl1 C) e (Inl e') + | PlugInr1 : forall e e' C, + plug C e e' + -> plug (Inr1 C) e (Inr e') + | PluMatch1 : forall e e' C x1 e1 x2 e2, + plug C e e' + -> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2) + | PluSetVar1 : forall x e e' C, + plug C e e' + -> plug (SetVar1 x C) e (SetVar x e') + + (* Our new plugging rules: *) + | PlugPar1 : forall e e' C e2, + plug C e e' + -> plug (Par1 C e2) e (Par e' e2) + | PlugPar2 : forall e e' e1 C, + plug C e e' + -> plug (Par2 e1 C) e (Par e1 e'). + + Definition valuation := fmap var exp. + + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)) + | FstPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Fst (Pair v1 v2)) v1 + | SndPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Snd (Pair v1 v2)) v2 + | MatchInl : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1) + | MatchInr : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2) + + (* New case: *) + | ParDone : forall v1 v2, + value v1 + -> value v2 + -> step0 (Par v1 v2) (Pair v1 v2). + + Inductive step1 : valuation * exp -> valuation * exp -> Prop := + | Lift : forall env e1 e2, + step0 e1 e2 + -> step1 (env, e1) (env, e2) + | Read : forall env x v, + env $? x = Some v + -> step1 (env, GetVar x) (env, v) + | Overwrite : forall env x v, + value v + -> step1 (env, SetVar x v) (env $+ (x, v), v). + + Inductive step : valuation * exp -> valuation * exp -> Prop := + | StepRule : forall C env1 e1 env2 e2 e1' e2', + plug C e1 e1' + -> plug C e2 e2' + -> step1 (env1, e1) (env2, e2) + -> step (env1, e1') (env2, e2'). + + Definition trsys_of (env : valuation) (e : exp) := {| + Initial := {(env, e)}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) + | Sum (t1 t2 : type). + + Inductive hasty (M : fmap var type) : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty M G (Var x) t + | HtConst : forall G n, + hasty M G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty M G e1 Nat + -> hasty M G e2 Nat + -> hasty M G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty M (G $+ (x, t1)) e1 t2 + -> hasty M G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty M G e1 (Fun t1 t2) + -> hasty M G e2 t1 + -> hasty M G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty M G e1 t1 + -> hasty M G e2 t2 + -> hasty M G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty M G e1 (Prod t1 t2) + -> hasty M G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty M G e1 (Prod t1 t2) + -> hasty M G (Snd e1) t2 + | HtInl : forall G e1 t1 t2, + hasty M G e1 t1 + -> hasty M G (Inl e1) (Sum t1 t2) + | HtInr : forall G e1 t1 t2, + hasty M G e1 t2 + -> hasty M G (Inr e1) (Sum t1 t2) + | HtMatch : forall G e t1 t2 x1 e1 x2 e2 t, + hasty M G e (Sum t1 t2) + -> hasty M (G $+ (x1, t1)) e1 t + -> hasty M (G $+ (x2, t2)) e2 t + -> hasty M G (Match e x1 e1 x2 e2) t + | HtGetVar : forall G x t, + M $? x = Some t + -> hasty M G (GetVar x) t + | HtSetVar : forall G x e t, + M $? x = Some t + -> hasty M G e t + -> hasty M G (SetVar x e) t + + (* New cases: *) + | HtPar : forall G e1 t1 e2 t2, + hasty M G e1 t1 + -> hasty M G e2 t2 + -> hasty M G (Par e1 e2) (Prod t1 t2). + + (* Type-soundness proof *) +End StlcConcur. diff --git a/_CoqProject b/_CoqProject index c070bbf..5361889 100644 --- a/_CoqProject +++ b/_CoqProject @@ -41,6 +41,7 @@ SubsetTypes_template.v SubsetTypes.v LambdaCalculusAndTypeSoundness_template.v LambdaCalculusAndTypeSoundness.v +EvaluationContexts_template.v EvaluationContexts.v DependentInductiveTypes_template.v DependentInductiveTypes.v