mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Start LambdaCalculusAndTypeSoundness: automated soundness proof
This commit is contained in:
parent
5ed670b5a6
commit
23955eb536
1 changed files with 242 additions and 0 deletions
242
LambdaCalculusAndTypeSoundness.v
Normal file
242
LambdaCalculusAndTypeSoundness.v
Normal file
|
@ -0,0 +1,242 @@
|
||||||
|
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||||
|
* Chapter 8: Lambda Calculus and Simple Type Soundness
|
||||||
|
* Author: Adam Chlipala
|
||||||
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||||
|
|
||||||
|
Require Import Frap.
|
||||||
|
|
||||||
|
(* Expression syntax *)
|
||||||
|
Inductive exp : Set :=
|
||||||
|
| Var (x : var)
|
||||||
|
| Const (n : nat)
|
||||||
|
| Plus (e1 e2 : exp)
|
||||||
|
| Abs (x : var) (e1 : exp)
|
||||||
|
| App (e1 e2 : exp).
|
||||||
|
|
||||||
|
(* Values (final results of evaluation) *)
|
||||||
|
Inductive value : exp -> Prop :=
|
||||||
|
| VConst : forall n, value (Const n)
|
||||||
|
| VAbs : forall x e1, value (Abs x e1).
|
||||||
|
|
||||||
|
(* Substitution (not applicable when [e1] isn't closed, to avoid some complexity
|
||||||
|
* that we don't need) *)
|
||||||
|
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
||||||
|
match e2 with
|
||||||
|
| Var y => if y ==v x then e1 else Var y
|
||||||
|
| Const n => Const n
|
||||||
|
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
|
||||||
|
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
|
||||||
|
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
||||||
|
end.
|
||||||
|
|
||||||
|
(* Evaluation contexts *)
|
||||||
|
Inductive context : Set :=
|
||||||
|
| Hole : context
|
||||||
|
| Plus1 : context -> exp -> context
|
||||||
|
| Plus2 : exp -> context -> context
|
||||||
|
| App1 : context -> exp -> context
|
||||||
|
| App2 : exp -> context -> context.
|
||||||
|
|
||||||
|
(* Plugging an expression into a context *)
|
||||||
|
Inductive plug : context -> exp -> exp -> Prop :=
|
||||||
|
| PlugHole : forall e, plug Hole e e
|
||||||
|
| PlugPlus1 : forall e e' C e2,
|
||||||
|
plug C e e'
|
||||||
|
-> plug (Plus1 C e2) e (Plus e' e2)
|
||||||
|
| PlugPlus2 : forall e e' v1 C,
|
||||||
|
value v1
|
||||||
|
-> plug C e e'
|
||||||
|
-> plug (Plus2 v1 C) e (Plus v1 e')
|
||||||
|
| PlugApp1 : forall e e' C e2,
|
||||||
|
plug C e e'
|
||||||
|
-> plug (App1 C e2) e (App e' e2)
|
||||||
|
| PlugApp2 : forall e e' v1 C,
|
||||||
|
value v1
|
||||||
|
-> plug C e e'
|
||||||
|
-> plug (App2 v1 C) e (App v1 e').
|
||||||
|
|
||||||
|
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
|
||||||
|
|
||||||
|
(* First: the primitive reductions *)
|
||||||
|
Inductive step0 : exp -> exp -> Prop :=
|
||||||
|
| Beta : forall x e v,
|
||||||
|
value v
|
||||||
|
-> step0 (App (Abs x e) v) (subst v x e)
|
||||||
|
| Add : forall n1 n2,
|
||||||
|
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
|
||||||
|
|
||||||
|
(* Then: running them in context *)
|
||||||
|
Inductive step : exp -> exp -> Prop :=
|
||||||
|
| StepRule : forall C e1 e2 e1' e2',
|
||||||
|
plug C e1 e1'
|
||||||
|
-> plug C e2 e2'
|
||||||
|
-> step0 e1 e2
|
||||||
|
-> step e1' e2'.
|
||||||
|
|
||||||
|
(* It's easy to wrap everything as a transition system. *)
|
||||||
|
Definition trsys_of (e : exp) := {|
|
||||||
|
Initial := {e};
|
||||||
|
Step := step
|
||||||
|
|}.
|
||||||
|
|
||||||
|
|
||||||
|
(* Syntax of types *)
|
||||||
|
Inductive type : Set :=
|
||||||
|
| Nat
|
||||||
|
| Fun (dom ran : type).
|
||||||
|
|
||||||
|
(* Our typing judgment uses *typing contexts* (not to be confused with
|
||||||
|
* evaluation contexts) to map free variables to their types. *)
|
||||||
|
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
||||||
|
| HtVar : forall G x t,
|
||||||
|
G $? x = Some t
|
||||||
|
-> hasty G (Var x) t
|
||||||
|
| HtConst : forall G n,
|
||||||
|
hasty G (Const n) Nat
|
||||||
|
| HtPlus : forall G e1 e2,
|
||||||
|
hasty G e1 Nat
|
||||||
|
-> hasty G e2 Nat
|
||||||
|
-> hasty G (Plus e1 e2) Nat
|
||||||
|
| HtAbs : forall G x e1 t1 t2,
|
||||||
|
hasty (G $+ (x, t1)) e1 t2
|
||||||
|
-> hasty G (Abs x e1) (Fun t1 t2)
|
||||||
|
| HtApp : forall G e1 e2 t1 t2,
|
||||||
|
hasty G e1 (Fun t1 t2)
|
||||||
|
-> hasty G e2 t1
|
||||||
|
-> hasty G (App e1 e2) t2.
|
||||||
|
|
||||||
|
Hint Constructors value plug step0 step hasty.
|
||||||
|
|
||||||
|
(* Some automation *)
|
||||||
|
|
||||||
|
Ltac t0 := match goal with
|
||||||
|
| [ H : ex _ |- _ ] => destruct H
|
||||||
|
| [ H : _ /\ _ |- _ ] => destruct H
|
||||||
|
| [ |- context[?x ==v ?y] ] => destruct (x ==v y)
|
||||||
|
| [ H : Some _ = Some _ |- _ ] => invert H
|
||||||
|
|
||||||
|
| [ H : step _ _ |- _ ] => invert H
|
||||||
|
| [ H : step0 _ _ |- _ ] => invert1 H
|
||||||
|
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
|
||||||
|
| [ H : hasty _ _ _ |- _ ] => invert1 H
|
||||||
|
| [ H : plug _ _ _ |- _ ] => invert1 H
|
||||||
|
end; subst.
|
||||||
|
|
||||||
|
Ltac t := simplify; propositional; repeat (t0; simplify); try congruence; eauto 6.
|
||||||
|
|
||||||
|
(* Now we're ready for the first of the two key properties, to show that "has
|
||||||
|
* type t in the empty typing context" is an invariant. *)
|
||||||
|
Lemma progress : forall e t,
|
||||||
|
hasty $0 e t
|
||||||
|
-> value e
|
||||||
|
\/ (exists e' : exp, step e e').
|
||||||
|
Proof.
|
||||||
|
induct 1; t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(* Inclusion between typing contexts is preserved by adding the same new mapping
|
||||||
|
* to both. *)
|
||||||
|
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||||
|
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
||||||
|
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
||||||
|
-> G' $+ (x, t) $? x' = Some t').
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
cases (x ==v x'); simplify; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve weakening_override.
|
||||||
|
|
||||||
|
(** Raising a typing derivation to a larger typing context *)
|
||||||
|
Lemma weakening : forall G e t,
|
||||||
|
hasty G e t
|
||||||
|
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
||||||
|
-> hasty G' e t.
|
||||||
|
Proof.
|
||||||
|
induct 1; t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve weakening.
|
||||||
|
|
||||||
|
(* Replacing a typing context with an equal one has no effect (useful to guide
|
||||||
|
* proof search). *)
|
||||||
|
Lemma hasty_change : forall G e t,
|
||||||
|
hasty G e t
|
||||||
|
-> forall G', G' = G
|
||||||
|
-> hasty G' e t.
|
||||||
|
Proof.
|
||||||
|
t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve hasty_change.
|
||||||
|
|
||||||
|
(* Replacing a variable with a properly typed term preserves typing. *)
|
||||||
|
Lemma substitution : forall G x t' e t e',
|
||||||
|
hasty (G $+ (x, t')) e t
|
||||||
|
-> hasty $0 e' t'
|
||||||
|
-> hasty G (subst e' x e) t.
|
||||||
|
Proof.
|
||||||
|
induct 1; t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve substitution.
|
||||||
|
|
||||||
|
(* We're almost ready for the main preservation property. Let's prove it first
|
||||||
|
* for the more basic [step0] relation. *)
|
||||||
|
Lemma preservation0 : forall e1 e2,
|
||||||
|
step0 e1 e2
|
||||||
|
-> forall t, hasty $0 e1 t
|
||||||
|
-> hasty $0 e2 t.
|
||||||
|
Proof.
|
||||||
|
invert 1; t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve preservation0.
|
||||||
|
|
||||||
|
(* We also need this key property, essentially saying that, if [e1] and [e2] are
|
||||||
|
* "type-equivalent," then they remain "type-equivalent" after wrapping the same
|
||||||
|
* context around both. *)
|
||||||
|
Lemma generalize_plug : forall e1 C e1',
|
||||||
|
plug C e1 e1'
|
||||||
|
-> forall e2 e2', plug C e2 e2'
|
||||||
|
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||||
|
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||||
|
Proof.
|
||||||
|
induct 1; t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve generalize_plug.
|
||||||
|
|
||||||
|
(* OK, now we're out of the woods. *)
|
||||||
|
Lemma preservation : forall e1 e2,
|
||||||
|
step e1 e2
|
||||||
|
-> forall t, hasty $0 e1 t
|
||||||
|
-> hasty $0 e2 t.
|
||||||
|
Proof.
|
||||||
|
invert 1; t.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve progress preservation.
|
||||||
|
|
||||||
|
(* Now watch this! Though the syntactic approach to type soundness is usually
|
||||||
|
* presented from scratch as a proof technique, it turns out that the two key
|
||||||
|
* properties, progress and preservation, are just instances of the same methods
|
||||||
|
* we've been applying all along with invariants of transition systems! *)
|
||||||
|
Theorem safety : forall e t, hasty $0 e t
|
||||||
|
-> invariantFor (trsys_of e)
|
||||||
|
(fun e' => value e'
|
||||||
|
\/ exists e'', step e' e'').
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
|
||||||
|
(* Step 1: strengthen the invariant. In particular, the typing relation is
|
||||||
|
* exactly the right stronger invariant! Our progress theorem proves the
|
||||||
|
* required invariant inclusion. *)
|
||||||
|
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
||||||
|
|
||||||
|
(* Step 2: apply invariant induction, whose induction step turns out to match
|
||||||
|
* our preservation theorem exactly! *)
|
||||||
|
apply invariant_induction; simplify.
|
||||||
|
equality.
|
||||||
|
eauto. (* We use preservation here. *)
|
||||||
|
Qed.
|
Loading…
Reference in a new issue