Start of AbstractInterpretation: interpret_sound

This commit is contained in:
Adam Chlipala 2016-03-04 14:00:34 -05:00
parent e06af75c78
commit 26023bdcb1
2 changed files with 138 additions and 1 deletions

125
AbstractInterpretation.v Normal file
View file

@ -0,0 +1,125 @@
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 7: Abstract Interpretation and Dataflow Analysis
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap Imp.
Set Implicit Arguments.
Record absint := {
Typeof :> Set;
(* This [:>] notation lets us treat any [absint] as its [Typeof],
* automatically. *)
Top : Typeof;
(* The least precise element of the lattice *)
Join : Typeof -> Typeof -> Typeof;
(* Least upper bound of two elements *)
Represents : nat -> Typeof -> Prop
(* Which lattice elements represent which numbers? *)
}.
Definition absint_sound (a : absint) :=
(* [Top] really does cover everything. *)
(forall n, a.(Represents) n a.(Top))
(* [Join] really does return an upper bound. *)
/\ (forall x y n, a.(Represents) n x
-> a.(Represents) n (a.(Join) x y))
/\ (forall x y n, a.(Represents) n y
-> a.(Represents) n (a.(Join) x y)).
Definition astate (a : absint) := fmap var a.
Definition astates (a : absint) := fmap cmd (astate a).
Inductive compatible a (ss : astates a) (v : valuation) (c : cmd) : Prop :=
| Compatible : forall s,
ss $? c = Some s
-> (forall x n xa, v $? x = Some n
-> s $? x = Some xa
-> a.(Represents) n xa)
-> compatible ss v c.
Definition merge_astate a : astate a -> astate a -> astate a :=
merge (fun x y =>
match x with
| None => None
| Some x' =>
match y with
| None => None
| Some y' => Some (a.(Join) x' y')
end
end).
Definition merge_astates a : astates a -> astates a -> astates a :=
merge (fun x y =>
match x with
| None => y
| Some x' =>
match y with
| None => Some x'
| Some y' => Some (merge_astate x' y')
end
end).
Inductive oneStepClosure a : astates a -> astates a -> Prop :=
| OscNil :
oneStepClosure $0 $0
| OscCons : forall ss c s ss' ss'',
(forall v c' v', step (v, c) (v', c')
-> compatible ss' v' c')
-> oneStepClosure ss ss''
-> oneStepClosure (ss $+ (c, s)) (merge_astates ss' ss'').
Inductive interpret a : astates a -> astates a -> Prop :=
| InterpretDone : forall ss,
(forall v c, compatible ss v c
-> forall v' c', step (v, c) (v', c')
-> compatible ss v' c')
-> interpret ss ss
| InterpretStep : forall ss ss' ss'',
oneStepClosure ss ss'
-> interpret (merge_astates ss ss') ss''
-> interpret ss ss''.
Lemma interpret_sound' : forall v c a (ss ss' : astates a),
interpret ss ss'
-> ss $? c = Some $0
-> invariantFor (trsys_of v c) (fun p => compatible ss' (fst p) (snd p)).
Proof.
induct 1; simplify.
apply invariant_induction; simplify; propositional; subst; simplify.
econstructor.
eassumption.
simplify.
equality.
cases s; cases s'; simplify.
eapply H.
eassumption.
assumption.
apply IHinterpret.
unfold merge_astates; simplify.
rewrite H1.
cases (ss' $? c); trivial.
f_equal.
maps_equal.
unfold merge_astate; simplify.
trivial.
Qed.
Theorem interpret_sound : forall v c a (ss : astates a),
interpret ($0 $+ (c, $0)) ss
-> invariantFor (trsys_of v c) (fun p => compatible ss (fst p) (snd p)).
Proof.
simplify.
eapply interpret_sound'.
eassumption.
simplify.
trivial.
Qed.

14
Map.v
View file

@ -9,6 +9,7 @@ Module Type S.
Parameter add : forall A B, fmap A B -> A -> B -> fmap A B. Parameter add : forall A B, fmap A B -> A -> B -> fmap A B.
Parameter remove : forall A B, fmap A B -> A -> fmap A B. Parameter remove : forall A B, fmap A B -> A -> fmap A B.
Parameter join : forall A B, fmap A B -> fmap A B -> fmap A B. Parameter join : forall A B, fmap A B -> fmap A B -> fmap A B.
Parameter merge : forall A B, (option B -> option B -> option B) -> fmap A B -> fmap A B -> fmap A B.
Parameter lookup : forall A B, fmap A B -> A -> option B. Parameter lookup : forall A B, fmap A B -> A -> option B.
Parameter includes : forall A B, fmap A B -> fmap A B -> Prop. Parameter includes : forall A B, fmap A B -> fmap A B -> Prop.
@ -67,6 +68,9 @@ Module Type S.
Axiom join_assoc : forall A B (m1 m2 m3 : fmap A B), Axiom join_assoc : forall A B (m1 m2 m3 : fmap A B),
(m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3). (m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3).
Axiom lookup_merge : forall A B f (m1 m2 : fmap A B) k,
merge f m1 m2 $? k = f (m1 $? k) (m2 $? k).
Axiom empty_includes : forall A B (m : fmap A B), empty A B $<= m. Axiom empty_includes : forall A B (m : fmap A B), empty A B $<= m.
Axiom dom_empty : forall A B, dom (empty A B) = {}. Axiom dom_empty : forall A B, dom (empty A B) = {}.
@ -81,7 +85,7 @@ Module Type S.
Hint Resolve includes_lookup includes_add empty_includes. Hint Resolve includes_lookup includes_add empty_includes.
Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne using congruence. Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne lookup_merge using congruence.
Ltac maps_equal := Ltac maps_equal :=
apply fmap_ext; intros; apply fmap_ext; intros;
@ -121,6 +125,8 @@ Module M : S.
| None => m2 k | None => m2 k
| x => x | x => x
end. end.
Definition merge A B f (m1 m2 : fmap A B) : fmap A B :=
fun k => f (m1 k) (m2 k).
Definition lookup A B (m : fmap A B) (k : A) := m k. Definition lookup A B (m : fmap A B) (k : A) := m k.
Definition includes A B (m1 m2 : fmap A B) := Definition includes A B (m1 m2 : fmap A B) :=
forall k v, m1 k = Some v -> m2 k = Some v. forall k v, m1 k = Some v -> m2 k = Some v.
@ -225,6 +231,12 @@ Module M : S.
destruct (m1 k); auto. destruct (m1 k); auto.
Qed. Qed.
Theorem lookup_merge : forall A B f (m1 m2 : fmap A B) k,
lookup (merge f m1 m2) k = f (m1 k) (m2 k).
Proof.
auto.
Qed.
Theorem empty_includes : forall A B (m : fmap A B), includes (empty (A := A) B) m. Theorem empty_includes : forall A B (m : fmap A B), includes (empty (A := A) B) m.
Proof. Proof.
unfold includes, empty; intuition congruence. unfold includes, empty; intuition congruence.