mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
DependentInductiveTypes_template
This commit is contained in:
parent
b28a21620c
commit
26365924ef
3 changed files with 956 additions and 0 deletions
|
@ -492,6 +492,66 @@ Qed.
|
|||
* adapt automatically to changes in function definitions. *)
|
||||
|
||||
|
||||
(** * Interlude: The Convoy Pattern *)
|
||||
|
||||
(* Here are some examples, contemplation of which may provoke enlightenment.
|
||||
* See more discussion later of the idea behind the examples. *)
|
||||
|
||||
Fail Definition firstElements n A B (ls1 : ilist A n) (ls2 : ilist B n) : option (A * B) :=
|
||||
match ls1 with
|
||||
| Cons _ v1 _ =>
|
||||
Some (v1,
|
||||
match ls2 in ilist _ N return match N with O => unit | S _ => B end with
|
||||
| Cons _ v2 _ => v2
|
||||
| Nil => tt
|
||||
end)
|
||||
| Nil => None
|
||||
end.
|
||||
|
||||
Definition firstElements n A B (ls1 : ilist A n) (ls2 : ilist B n) : option (A * B) :=
|
||||
match ls1 in ilist _ N return ilist B N -> option (A * B) with
|
||||
| Cons _ v1 _ => fun ls2 =>
|
||||
Some (v1,
|
||||
match ls2 in ilist _ N return match N with O => unit | S _ => B end with
|
||||
| Cons _ v2 _ => v2
|
||||
| Nil => tt
|
||||
end)
|
||||
| Nil => fun _ => None
|
||||
end ls2.
|
||||
|
||||
(* Note use of a [struct] annotation to tell Coq which argument should decrease
|
||||
* across recursive calls. It's an artificial choice here, since usually those
|
||||
* annotations are inferred. Here we are making an effort to demonstrate a
|
||||
* decently common problem! *)
|
||||
Fail Fixpoint zip n A B (ls1 : ilist A n) (ls2 : ilist B n) {struct ls1} : ilist (A * B) n :=
|
||||
match ls1 in ilist _ N return ilist B N -> ilist (A * B) N with
|
||||
| Cons _ v1 ls1' =>
|
||||
fun ls2 =>
|
||||
match ls2 in ilist _ N return match N with
|
||||
| O => unit
|
||||
| S N' => ilist A N' -> ilist (A * B) N
|
||||
end with
|
||||
| Cons _ v2 ls2' => fun ls1' => Cons (v1, v2) (zip ls1' ls2')
|
||||
| Nll => tt
|
||||
end ls1'
|
||||
| Nil => fun _ => Nil _
|
||||
end ls2.
|
||||
|
||||
Fixpoint zip n A B (ls1 : ilist A n) (ls2 : ilist B n) {struct ls1} : ilist (A * B) n :=
|
||||
match ls1 in ilist _ N return ilist B N -> ilist (A * B) N with
|
||||
| Cons _ v1 ls1' =>
|
||||
fun ls2 =>
|
||||
match ls2 in ilist _ N return match N with
|
||||
| O => unit
|
||||
| S N' => (ilist B N' -> ilist (A * B) N') -> ilist (A * B) N
|
||||
end with
|
||||
| Cons _ v2 ls2' => fun zip_ls1' => Cons (v1, v2) (zip_ls1' ls2')
|
||||
| Nll => tt
|
||||
end (zip ls1')
|
||||
| Nil => fun _ => Nil _
|
||||
end ls2.
|
||||
|
||||
|
||||
(** * Dependently Typed Red-Black Trees *)
|
||||
|
||||
(* Red-black trees are a favorite purely functional data structure with an
|
||||
|
|
895
DependentInductiveTypes_template.v
Normal file
895
DependentInductiveTypes_template.v
Normal file
|
@ -0,0 +1,895 @@
|
|||
Require Import FrapWithoutSets SubsetTypes.
|
||||
|
||||
Set Implicit Arguments.
|
||||
Set Asymmetric Patterns.
|
||||
|
||||
|
||||
(** * Length-Indexed Lists *)
|
||||
|
||||
Section ilist.
|
||||
Variable A : Set.
|
||||
Inductive ilist : nat -> Set :=
|
||||
| Nil : ilist O
|
||||
| Cons : forall n, A -> ilist n -> ilist (S n).
|
||||
|
||||
Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
||||
match ls1 with
|
||||
| Nil => ls2
|
||||
| Cons _ x ls1' => Cons x (app ls1' ls2)
|
||||
end.
|
||||
|
||||
Fixpoint inject (ls : list A) : ilist (length ls) :=
|
||||
match ls with
|
||||
| nil => Nil
|
||||
| h :: t => Cons h (inject t)
|
||||
end.
|
||||
|
||||
Fixpoint unject n (ls : ilist n) : list A :=
|
||||
match ls with
|
||||
| Nil => nil
|
||||
| Cons _ h t => h :: unject t
|
||||
end.
|
||||
|
||||
Theorem inject_inverse : forall ls, unject (inject ls) = ls.
|
||||
Proof.
|
||||
induct ls; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Fail Definition hd n (ls : ilist (S n)) : A :=
|
||||
match ls with
|
||||
| Nil => _
|
||||
| Cons _ h _ => h
|
||||
end.
|
||||
End ilist.
|
||||
|
||||
|
||||
(** * A Tagless Interpreter *)
|
||||
|
||||
Inductive type : Set :=
|
||||
| Nat : type
|
||||
| Bool : type
|
||||
| Prod : type -> type -> type.
|
||||
|
||||
Inductive exp : type -> Set :=
|
||||
| NConst : nat -> exp Nat
|
||||
| Plus : exp Nat -> exp Nat -> exp Nat
|
||||
| Eq : exp Nat -> exp Nat -> exp Bool
|
||||
|
||||
| BConst : bool -> exp Bool
|
||||
| And : exp Bool -> exp Bool -> exp Bool
|
||||
| If : forall t, exp Bool -> exp t -> exp t -> exp t
|
||||
|
||||
| Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
|
||||
| Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
|
||||
| Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
|
||||
|
||||
Fixpoint typeDenote (t : type) : Set :=
|
||||
match t with
|
||||
| Nat => nat
|
||||
| Bool => bool
|
||||
| Prod t1 t2 => typeDenote t1 * typeDenote t2
|
||||
end%type.
|
||||
|
||||
Fixpoint expDenote t (e : exp t) : typeDenote t :=
|
||||
match e with
|
||||
| NConst n => n
|
||||
| Plus e1 e2 => expDenote e1 + expDenote e2
|
||||
| Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
|
||||
|
||||
| BConst b => b
|
||||
| And e1 e2 => expDenote e1 && expDenote e2
|
||||
| If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
|
||||
|
||||
| Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
|
||||
| Fst _ _ e' => fst (expDenote e')
|
||||
| Snd _ _ e' => snd (expDenote e')
|
||||
end.
|
||||
|
||||
Fixpoint cfold t (e : exp t) : exp t :=
|
||||
match e with
|
||||
| NConst n => NConst n
|
||||
| Plus e1 e2 =>
|
||||
let e1' := cfold e1 in
|
||||
let e2' := cfold e2 in
|
||||
match e1', e2' return exp Nat with
|
||||
| NConst n1, NConst n2 => NConst (n1 + n2)
|
||||
| _, _ => Plus e1' e2'
|
||||
end
|
||||
| Eq e1 e2 =>
|
||||
let e1' := cfold e1 in
|
||||
let e2' := cfold e2 in
|
||||
match e1', e2' return exp Bool with
|
||||
| NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
||||
| _, _ => Eq e1' e2'
|
||||
end
|
||||
|
||||
| BConst b => BConst b
|
||||
| And e1 e2 =>
|
||||
let e1' := cfold e1 in
|
||||
let e2' := cfold e2 in
|
||||
match e1', e2' return exp Bool with
|
||||
| BConst b1, BConst b2 => BConst (b1 && b2)
|
||||
| _, _ => And e1' e2'
|
||||
end
|
||||
| If _ e e1 e2 =>
|
||||
let e' := cfold e in
|
||||
match e' with
|
||||
| BConst true => cfold e1
|
||||
| BConst false => cfold e2
|
||||
| _ => If e' (cfold e1) (cfold e2)
|
||||
end
|
||||
|
||||
| Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
|
||||
| Fst _ _ e => Fst e
|
||||
| Snd _ _ e => Snd e
|
||||
end.
|
||||
|
||||
Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
|
||||
Proof.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Admitted.
|
||||
(*induct e; simplify;
|
||||
repeat (match goal with
|
||||
| [ |- context[match cfold ?E with NConst _ => _ | _ => _ end] ] =>
|
||||
dep_cases (cfold E)
|
||||
| [ |- context[match pairOut (cfold ?E) with Some _ => _
|
||||
| None => _ end] ] =>
|
||||
dep_cases (cfold E)
|
||||
| [ |- context[if ?E then _ else _] ] => cases E
|
||||
| [ H : _ = _ |- _ ] => rewrite H
|
||||
end; simplify); try equality.
|
||||
Qed.*)
|
||||
|
||||
|
||||
(** * Interlude: The Convoy Pattern *)
|
||||
|
||||
Fail Definition firstElements n A B (ls1 : ilist A n) (ls2 : ilist B n) : option (A * B) :=
|
||||
match ls1 with
|
||||
| Cons _ v1 _ =>
|
||||
Some (v1,
|
||||
match ls2 in ilist _ N return match N with O => unit | S _ => B end with
|
||||
| Cons _ v2 _ => v2
|
||||
| Nil => tt
|
||||
end)
|
||||
| Nil => None
|
||||
end.
|
||||
|
||||
Fail Fixpoint zip n A B (ls1 : ilist A n) (ls2 : ilist B n) {struct ls1} : ilist (A * B) n :=
|
||||
match ls1 in ilist _ N return ilist B N -> ilist (A * B) N with
|
||||
| Cons _ v1 ls1' =>
|
||||
fun ls2 =>
|
||||
match ls2 in ilist _ N return match N with
|
||||
| O => unit
|
||||
| S N' => ilist A N' -> ilist (A * B) N
|
||||
end with
|
||||
| Cons _ v2 ls2' => fun ls1' => Cons (v1, v2) (zip ls1' ls2')
|
||||
| Nll => tt
|
||||
end ls1'
|
||||
| Nil => fun _ => Nil _
|
||||
end ls2.
|
||||
|
||||
|
||||
(** * Dependently Typed Red-Black Trees *)
|
||||
|
||||
Inductive color : Set := Red | Black.
|
||||
|
||||
Inductive rbtree : color -> nat -> Set :=
|
||||
| Leaf : rbtree Black 0
|
||||
| RedNode : forall n, rbtree Black n -> nat -> rbtree Black n -> rbtree Red n
|
||||
| BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
|
||||
|
||||
Section depth.
|
||||
Variable f : nat -> nat -> nat.
|
||||
|
||||
Fixpoint depth c n (t : rbtree c n) : nat :=
|
||||
match t with
|
||||
| Leaf => 0
|
||||
| RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
|
||||
| BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
|
||||
end.
|
||||
End depth.
|
||||
|
||||
Theorem depth_min : forall c n (t : rbtree c n), depth min t >= 0.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 0.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem balanced : forall c n (t : rbtree c n), t = t.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Inductive rtree : nat -> Set :=
|
||||
| RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
|
||||
|
||||
Section present.
|
||||
Variable x : nat.
|
||||
|
||||
Fixpoint present c n (t : rbtree c n) : Prop :=
|
||||
match t with
|
||||
| Leaf => False
|
||||
| RedNode _ a y b => present a \/ x = y \/ present b
|
||||
| BlackNode _ _ _ a y b => present a \/ x = y \/ present b
|
||||
end.
|
||||
|
||||
Definition rpresent n (t : rtree n) : Prop :=
|
||||
match t with
|
||||
| RedNode' _ _ _ a y b => present a \/ x = y \/ present b
|
||||
end.
|
||||
End present.
|
||||
|
||||
Locate "{ _ : _ & _ }".
|
||||
Print sigT.
|
||||
|
||||
Notation "{< x >}" := (existT _ _ x).
|
||||
|
||||
Definition balance1 n (a : rtree n) (data : nat) c2 :=
|
||||
match a in rtree n return rbtree c2 n
|
||||
-> { c : color & rbtree c (S n) } with
|
||||
| RedNode' _ c0 _ t1 y t2 =>
|
||||
match t1 in rbtree c n return rbtree c0 n -> rbtree c2 n
|
||||
-> { c : color & rbtree c (S n) } with
|
||||
| RedNode _ a x b => fun c d =>
|
||||
{<RedNode (BlackNode a x b) y (BlackNode c data d)>}
|
||||
| t1' => fun t2 =>
|
||||
match t2 in rbtree c n return rbtree Black n -> rbtree c2 n
|
||||
-> { c : color & rbtree c (S n) } with
|
||||
| RedNode _ b x c => fun a d =>
|
||||
{<RedNode (BlackNode a y b) x (BlackNode c data d)>}
|
||||
| b => fun a t => {<BlackNode (RedNode a y b) data t>}
|
||||
end t1'
|
||||
end t2
|
||||
end.
|
||||
|
||||
Definition balance2 n (a : rtree n) (data : nat) c2 :=
|
||||
match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
|
||||
| RedNode' _ c0 _ t1 z t2 =>
|
||||
match t1 in rbtree c n return rbtree c0 n -> rbtree c2 n
|
||||
-> { c : color & rbtree c (S n) } with
|
||||
| RedNode _ b y c => fun d a =>
|
||||
{<RedNode (BlackNode a data b) y (BlackNode c z d)>}
|
||||
| t1' => fun t2 =>
|
||||
match t2 in rbtree c n return rbtree Black n -> rbtree c2 n
|
||||
-> { c : color & rbtree c (S n) } with
|
||||
| RedNode _ c z' d => fun b a =>
|
||||
{<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
|
||||
| b => fun a t => {<BlackNode t data (RedNode a z b)>}
|
||||
end t1'
|
||||
end t2
|
||||
end.
|
||||
|
||||
Section insert.
|
||||
Variable x : nat.
|
||||
|
||||
Definition insResult c n :=
|
||||
match c with
|
||||
| Red => rtree n
|
||||
| Black => { c' : color & rbtree c' n }
|
||||
end.
|
||||
|
||||
Fixpoint ins c n (t : rbtree c n) : insResult c n :=
|
||||
match t with
|
||||
| Leaf => {< RedNode Leaf x Leaf >}
|
||||
| RedNode _ a y b =>
|
||||
if le_lt_dec x y
|
||||
then RedNode' (projT2 (ins a)) y b
|
||||
else RedNode' a y (projT2 (ins b))
|
||||
| BlackNode c1 c2 _ a y b =>
|
||||
if le_lt_dec x y
|
||||
then
|
||||
match c1 return insResult c1 _ -> _ with
|
||||
| Red => fun ins_a => balance1 ins_a y b
|
||||
| _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
|
||||
end (ins a)
|
||||
else
|
||||
match c2 return insResult c2 _ -> _ with
|
||||
| Red => fun ins_b => balance2 ins_b y a
|
||||
| _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
|
||||
end (ins b)
|
||||
end.
|
||||
|
||||
Definition insertResult c n :=
|
||||
match c with
|
||||
| Red => rbtree Black (S n)
|
||||
| Black => { c' : color & rbtree c' n }
|
||||
end.
|
||||
|
||||
Definition makeRbtree {c n} : insResult c n -> insertResult c n :=
|
||||
match c with
|
||||
| Red => fun r =>
|
||||
match r with
|
||||
| RedNode' _ _ _ a x b => BlackNode a x b
|
||||
end
|
||||
| Black => fun r => r
|
||||
end.
|
||||
|
||||
Definition insert c n (t : rbtree c n) : insertResult c n :=
|
||||
makeRbtree (ins t).
|
||||
|
||||
Section present.
|
||||
Variable z : nat.
|
||||
|
||||
Ltac present_balance :=
|
||||
simplify;
|
||||
repeat (match goal with
|
||||
| [ _ : context[match ?T with Leaf => _ | _ => _ end] |- _ ] =>
|
||||
dep_cases T
|
||||
| [ |- context[match ?T with Leaf => _ | _ => _ end] ] => dep_cases T
|
||||
end; simplify); propositional.
|
||||
|
||||
Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
||||
present z (projT2 (balance1 a y b))
|
||||
<-> rpresent z a \/ z = y \/ present z b.
|
||||
Proof.
|
||||
simplify; cases a; present_balance.
|
||||
Qed.
|
||||
|
||||
Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
||||
present z (projT2 (balance2 a y b))
|
||||
<-> rpresent z a \/ z = y \/ present z b.
|
||||
Proof.
|
||||
simplify; cases a; present_balance.
|
||||
Qed.
|
||||
|
||||
Definition present_insResult c n :=
|
||||
match c return (rbtree c n -> insResult c n -> Prop) with
|
||||
| Red => fun t r => rpresent z r <-> z = x \/ present z t
|
||||
| Black => fun t r => present z (projT2 r) <-> z = x \/ present z t
|
||||
end.
|
||||
|
||||
Theorem present_ins : forall c n (t : rbtree c n),
|
||||
present_insResult t (ins t).
|
||||
Proof.
|
||||
induct t; simplify;
|
||||
repeat (match goal with
|
||||
| [ _ : context[if ?E then _ else _] |- _ ] => cases E
|
||||
| [ |- context[if ?E then _ else _] ] => cases E
|
||||
| [ _ : context[match ?C with Red => _ | Black => _ end]
|
||||
|- _ ] => cases C
|
||||
end; simplify);
|
||||
try match goal with
|
||||
| [ _ : context[balance1 ?A ?B ?C] |- _ ] =>
|
||||
pose proof (present_balance1 A B C)
|
||||
end;
|
||||
try match goal with
|
||||
| [ _ : context[balance2 ?A ?B ?C] |- _ ] =>
|
||||
pose proof (present_balance2 A B C)
|
||||
end;
|
||||
try match goal with
|
||||
| [ |- context[balance1 ?A ?B ?C] ] =>
|
||||
pose proof (present_balance1 A B C)
|
||||
end;
|
||||
try match goal with
|
||||
| [ |- context[balance2 ?A ?B ?C] ] =>
|
||||
pose proof (present_balance2 A B C)
|
||||
end;
|
||||
simplify; propositional.
|
||||
Qed.
|
||||
|
||||
Ltac present_insert :=
|
||||
unfold insert; intros n t;
|
||||
pose proof (present_ins t); simplify;
|
||||
cases (ins t); propositional.
|
||||
|
||||
Theorem present_insert_Red : forall n (t : rbtree Red n),
|
||||
present z (insert t)
|
||||
<-> (z = x \/ present z t).
|
||||
Proof.
|
||||
present_insert.
|
||||
Qed.
|
||||
|
||||
Theorem present_insert_Black : forall n (t : rbtree Black n),
|
||||
present z (projT2 (insert t))
|
||||
<-> (z = x \/ present z t).
|
||||
Proof.
|
||||
present_insert.
|
||||
Qed.
|
||||
End present.
|
||||
End insert.
|
||||
|
||||
Recursive Extraction insert.
|
||||
|
||||
|
||||
(** * A Certified Regular Expression Matcher *)
|
||||
|
||||
Require Import Ascii String.
|
||||
Open Scope string_scope.
|
||||
|
||||
Section star.
|
||||
Variable P : string -> Prop.
|
||||
|
||||
Inductive star : string -> Prop :=
|
||||
| Empty : star ""
|
||||
| Iter : forall s1 s2,
|
||||
P s1
|
||||
-> star s2
|
||||
-> star (s1 ++ s2).
|
||||
End star.
|
||||
|
||||
Fail Inductive regexp : (string -> Prop) -> Set :=
|
||||
| Char : forall ch : ascii,
|
||||
regexp (fun s => s = String ch "")
|
||||
| Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
|
||||
regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Inductive regexp : (string -> Prop) -> Type :=
|
||||
| Char : forall ch : ascii,
|
||||
regexp (fun s => s = String ch "")
|
||||
| Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
||||
regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
|
||||
| Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
||||
regexp (fun s => P1 s \/ P2 s)
|
||||
| Star : forall P (r : regexp P),
|
||||
regexp (star P).
|
||||
|
||||
(* Many theorems about strings are useful for implementing a certified regexp
|
||||
* matcher, and few of them are in the [String] library. Here they are. Feel
|
||||
* free to resume reading at "BOREDOM'S END". *)
|
||||
|
||||
Lemma length_emp : length "" <= 0.
|
||||
Proof.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Lemma append_emp : forall s, s = "" ++ s.
|
||||
Proof.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Ltac substring :=
|
||||
simplify;
|
||||
repeat match goal with
|
||||
| [ |- context[match ?N with O => _ | S _ => _ end] ] =>
|
||||
destruct N; simplify
|
||||
end; try linear_arithmetic; eauto; try equality.
|
||||
|
||||
Hint Resolve le_n_S.
|
||||
|
||||
Lemma substring_le : forall s n m,
|
||||
length (substring n m s) <= m.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Lemma substring_all : forall s,
|
||||
substring 0 (length s) s = s.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Lemma substring_none : forall s n,
|
||||
substring n 0 s = "".
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite substring_all substring_none.
|
||||
|
||||
Lemma substring_split : forall s m,
|
||||
substring 0 m s ++ substring m (length s - m) s = s.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Lemma length_app1 : forall s1 s2,
|
||||
length s1 <= length (s1 ++ s2).
|
||||
Proof.
|
||||
induct s1; substring.
|
||||
Qed.
|
||||
|
||||
Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
||||
|
||||
Lemma substring_app_fst : forall s2 s1 n,
|
||||
length s1 = n
|
||||
-> substring 0 n (s1 ++ s2) = s1.
|
||||
Proof.
|
||||
induct s1; simplify; subst; simplify; try equality.
|
||||
rewrite IHs1; auto.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite <- minus_n_O.
|
||||
|
||||
Lemma substring_app_snd : forall s2 s1 n,
|
||||
length s1 = n
|
||||
-> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
|
||||
Proof.
|
||||
induct s1; simplify; subst; simplify; auto.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite substring_app_fst substring_app_snd using solve [trivial].
|
||||
|
||||
(* BOREDOM'S END! *)
|
||||
|
||||
Section sumbool_and.
|
||||
Variables P1 Q1 P2 Q2 : Prop.
|
||||
|
||||
Variable x1 : {P1} + {Q1}.
|
||||
Variable x2 : {P2} + {Q2}.
|
||||
|
||||
Definition sumbool_and : {P1 /\ P2} + {Q1 \/ Q2} :=
|
||||
match x1 with
|
||||
| left HP1 =>
|
||||
match x2 with
|
||||
| left HP2 => left _ (conj HP1 HP2)
|
||||
| right HQ2 => right _ (or_intror _ HQ2)
|
||||
end
|
||||
| right HQ1 => right _ (or_introl _ HQ1)
|
||||
end.
|
||||
End sumbool_and.
|
||||
|
||||
Infix "&&" := sumbool_and (at level 40, left associativity).
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
|
||||
Section split.
|
||||
Variables P1 P2 : string -> Prop.
|
||||
Variable P1_dec : forall s, {P1 s} + {~ P1 s}.
|
||||
Variable P2_dec : forall s, {P2 s} + {~ P2 s}.
|
||||
|
||||
Variable s : string.
|
||||
|
||||
Definition split' : forall n : nat, n <= length s
|
||||
-> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
||||
+ {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2}.
|
||||
refine (fix F (n : nat) : n <= length s
|
||||
-> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
||||
+ {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2} :=
|
||||
match n with
|
||||
| O => fun _ => Reduce (P1_dec "" && P2_dec s)
|
||||
| S n' => fun _ => (P1_dec (substring 0 (S n') s)
|
||||
&& P2_dec (substring (S n') (length s - S n') s))
|
||||
|| F n' _
|
||||
end); clear F; simplify;
|
||||
repeat match goal with
|
||||
| [ H : exists x, _ |- _ ] => invert H
|
||||
end; propositional; eauto 7;
|
||||
try match goal with
|
||||
| [ _ : length ?S <= 0 |- _ ] => cases S; simplify
|
||||
| [ _ : length ?S' <= S ?N |- _ ] => cases (length S' ==n S N)
|
||||
end; subst; simplify; try equality; try linear_arithmetic; eauto.
|
||||
Defined.
|
||||
|
||||
Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
|
||||
+ {forall s1 s2, s = s1 ++ s2 -> ~ P1 s1 \/ ~ P2 s2}.
|
||||
refine (Reduce (split' (n := length s) _)); simplify; auto; first_order; subst; eauto.
|
||||
Defined.
|
||||
End split.
|
||||
|
||||
Implicit Arguments split [P1 P2].
|
||||
|
||||
(* And now, a few more boring lemmas. Rejoin at "BOREDOM VANQUISHED", if you
|
||||
* like. *)
|
||||
|
||||
Lemma app_empty_end : forall s, s ++ "" = s.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite app_empty_end.
|
||||
|
||||
Lemma substring_self : forall s n,
|
||||
n <= 0
|
||||
-> substring n (length s - n) s = s.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Lemma substring_empty : forall s n m,
|
||||
m <= 0
|
||||
-> substring n m s = "".
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite substring_self substring_empty using linear_arithmetic.
|
||||
Hint Rewrite substring_split.
|
||||
|
||||
Lemma substring_split' : forall s n m,
|
||||
substring n m s ++ substring (n + m) (length s - (n + m)) s
|
||||
= substring n (length s - n) s.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Hint Extern 1 (String _ _ = String _ _) => f_equal.
|
||||
|
||||
Lemma substring_stack : forall s n2 m1 m2,
|
||||
m1 <= m2
|
||||
-> substring 0 m1 (substring n2 m2 s)
|
||||
= substring n2 m1 s.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Ltac substring' :=
|
||||
simplify;
|
||||
repeat match goal with
|
||||
| [ |- context[match ?N with O => _ | S _ => _ end] ] => cases N; simplify
|
||||
end; try equality; try linear_arithmetic.
|
||||
|
||||
Lemma substring_stack' : forall s n1 n2 m1 m2,
|
||||
n1 + m1 <= m2
|
||||
-> substring n1 m1 (substring n2 m2 s)
|
||||
= substring (n1 + n2) m1 s.
|
||||
Proof.
|
||||
induct s; substring';
|
||||
match goal with
|
||||
| [ H : _ |- _ ] => rewrite H by linear_arithmetic; f_equal; linear_arithmetic
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Lemma substring_suffix : forall s n,
|
||||
n <= length s
|
||||
-> length (substring n (length s - n) s) = length s - n.
|
||||
Proof.
|
||||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Lemma substring_suffix_emp' : forall s n m,
|
||||
substring n (S m) s = ""
|
||||
-> n >= length s.
|
||||
Proof.
|
||||
induct s; simplify; auto;
|
||||
match goal with
|
||||
| [ |- ?N >= _ ] => cases N; simplify; try equality
|
||||
end;
|
||||
match goal with
|
||||
[ |- S ?N >= S ?E ] => assert (N >= E) by eauto; linear_arithmetic
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Lemma substring_suffix_emp : forall s n m,
|
||||
substring n m s = ""
|
||||
-> m > 0
|
||||
-> n >= length s.
|
||||
Proof.
|
||||
simplify; cases m; simplify; eauto using substring_suffix_emp'.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite substring_stack substring_stack' substring_suffix using linear_arithmetic.
|
||||
|
||||
Lemma minus_minus : forall n m1 m2,
|
||||
m1 + m2 <= n
|
||||
-> n - m1 - m2 = n - (m1 + m2).
|
||||
Proof.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
|
||||
Proof.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite minus_minus plus_n_Sm' using linear_arithmetic.
|
||||
|
||||
(* BOREDOM VANQUISHED! *)
|
||||
|
||||
Section dec_star.
|
||||
Variable P : string -> Prop.
|
||||
Variable P_dec : forall s, {P s} + {~ P s}.
|
||||
|
||||
(* Some new lemmas and hints about the [star] type family are useful. Rejoin
|
||||
* at BOREDOM DEMOLISHED to skip the details. *)
|
||||
|
||||
Hint Constructors star.
|
||||
|
||||
Lemma star_empty : forall s,
|
||||
length s = 0
|
||||
-> star P s.
|
||||
Proof.
|
||||
simplify; cases s; simplify; try equality; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma star_singleton : forall s, P s -> star P s.
|
||||
Proof.
|
||||
simplify.
|
||||
rewrite <- (app_empty_end s); auto.
|
||||
Qed.
|
||||
|
||||
Lemma star_app : forall s n m,
|
||||
P (substring n m s)
|
||||
-> star P (substring (n + m) (length s - (n + m)) s)
|
||||
-> star P (substring n (length s - n) s).
|
||||
Proof.
|
||||
induct n; substring;
|
||||
match goal with
|
||||
| [ H : P (substring ?N ?M ?S) |- _ ] =>
|
||||
solve [ rewrite <- (substring_split S M); auto
|
||||
| rewrite <- (substring_split' S N M); simplify; auto ]
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Hint Resolve star_empty star_singleton star_app.
|
||||
|
||||
Variable s : string.
|
||||
|
||||
Hint Extern 1 (exists i : nat, _) =>
|
||||
match goal with
|
||||
| [ H : P (String _ ?S) |- _ ] => exists (length S); simplify
|
||||
end.
|
||||
|
||||
Lemma star_inv : forall s,
|
||||
star P s
|
||||
-> s = ""
|
||||
\/ exists i, i < length s
|
||||
/\ P (substring 0 (S i) s)
|
||||
/\ star P (substring (S i) (length s - S i) s).
|
||||
Proof.
|
||||
induct 1; simplify; first_order; subst.
|
||||
cases s1; simplify; propositional; eauto 10.
|
||||
cases s1; simplify; propositional; eauto 10.
|
||||
Qed.
|
||||
|
||||
Lemma star_substring_inv : forall n,
|
||||
n <= length s
|
||||
-> star P (substring n (length s - n) s)
|
||||
-> substring n (length s - n) s = ""
|
||||
\/ exists l, l < length s - n
|
||||
/\ P (substring n (S l) s)
|
||||
/\ star P (substring (n + S l) (length s - (n + S l)) s).
|
||||
Proof.
|
||||
simplify;
|
||||
match goal with
|
||||
| [ H : star _ _ |- _ ] => pose proof (star_inv H); simplify;
|
||||
first_order; simplify; eauto
|
||||
end.
|
||||
Qed.
|
||||
|
||||
(* BOREDOM DEMOLISHED! *)
|
||||
|
||||
Section dec_star''.
|
||||
Variable n : nat.
|
||||
|
||||
Variable P' : string -> Prop.
|
||||
Variable P'_dec : forall n' : nat, n' > n
|
||||
-> {P' (substring n' (length s - n') s)}
|
||||
+ {~ P' (substring n' (length s - n') s)}.
|
||||
|
||||
Hint Extern 1 (_ \/ _) => linear_arithmetic.
|
||||
|
||||
Definition dec_star'' : forall l : nat,
|
||||
{exists l', S l' <= l
|
||||
/\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
||||
+ {forall l', S l' <= l
|
||||
-> ~ P (substring n (S l') s)
|
||||
\/ ~ P' (substring (n + S l') (length s - (n + S l')) s)}.
|
||||
refine (fix F (l : nat) : {exists l', S l' <= l
|
||||
/\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
||||
+ {forall l', S l' <= l
|
||||
-> ~ P (substring n (S l') s)
|
||||
\/ ~ P' (substring (n + S l') (length s - (n + S l')) s)} :=
|
||||
match l with
|
||||
| O => _
|
||||
| S l' =>
|
||||
(P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|
||||
|| F l'
|
||||
end); clear F; simplify; first_order; eauto 7;
|
||||
match goal with
|
||||
| [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); simplify; eauto; equality
|
||||
end.
|
||||
Defined.
|
||||
End dec_star''.
|
||||
|
||||
Lemma star_length_contra : forall n,
|
||||
length s > n
|
||||
-> n >= length s
|
||||
-> False.
|
||||
Proof.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma star_length_flip : forall n n',
|
||||
length s - n <= S n'
|
||||
-> length s > n
|
||||
-> length s - n > 0.
|
||||
Proof.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
||||
|
||||
Definition dec_star' : forall n n' : nat, length s - n' <= n
|
||||
-> {star P (substring n' (length s - n') s)}
|
||||
+ {~ star P (substring n' (length s - n') s)}.
|
||||
refine (fix F (n n' : nat) : length s - n' <= n
|
||||
-> {star P (substring n' (length s - n') s)}
|
||||
+ {~ star P (substring n' (length s - n') s)} :=
|
||||
match n with
|
||||
| O => fun _ => Yes
|
||||
| S n'' => fun _ =>
|
||||
le_gt_dec (length s) n'
|
||||
|| dec_star'' (n := n') (star P)
|
||||
(fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
|
||||
end); clear F; simplify; first_order; propositional; eauto;
|
||||
match goal with
|
||||
| [ H : star _ _ |- _ ] => apply star_substring_inv in H; simplify; eauto
|
||||
end; first_order; eauto.
|
||||
Defined.
|
||||
|
||||
Definition dec_star : {star P s} + {~ star P s}.
|
||||
refine (Reduce (dec_star' (n := length s) 0 _)); simplify; auto.
|
||||
Defined.
|
||||
End dec_star.
|
||||
|
||||
Lemma app_cong : forall x1 y1 x2 y2,
|
||||
x1 = x2
|
||||
-> y1 = y2
|
||||
-> x1 ++ y1 = x2 ++ y2.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Hint Resolve app_cong.
|
||||
|
||||
Definition matches : forall P (r : regexp P) s, {P s} + {~ P s}.
|
||||
refine (fix F P (r : regexp P) s : {P s} + {~ P s} :=
|
||||
match r with
|
||||
| Char ch => string_dec s (String ch "")
|
||||
| Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
|
||||
| Or _ _ r1 r2 => F _ r1 s || F _ r2 s
|
||||
| Star _ r => dec_star _ _ _
|
||||
end); simplify; first_order.
|
||||
Defined.
|
||||
|
||||
Definition toBool A B (x : {A} + {B}) :=
|
||||
if x then true else false.
|
||||
|
||||
Example hi := Concat (Char "h"%char) (Char "i"%char).
|
||||
Compute toBool (matches hi "hi").
|
||||
Compute toBool (matches hi "bye").
|
||||
|
||||
Example a_b := Or (Char "a"%char) (Char "b"%char).
|
||||
Compute toBool (matches a_b "").
|
||||
Compute toBool (matches a_b "a").
|
||||
Compute toBool (matches a_b "aa").
|
||||
Compute toBool (matches a_b "b").
|
||||
|
||||
Example a_star := Star (Char "a"%char).
|
||||
Compute toBool (matches a_star "").
|
||||
Compute toBool (matches a_star "a").
|
||||
Compute toBool (matches a_star "b").
|
||||
Compute toBool (matches a_star "aa").
|
|
@ -38,6 +38,7 @@ SubsetTypes.v
|
|||
SubsetTypes_template.v
|
||||
LambdaCalculusAndTypeSoundness_template.v
|
||||
LambdaCalculusAndTypeSoundness.v
|
||||
DependentInductiveTypes_template.v
|
||||
DependentInductiveTypes.v
|
||||
TypesAndMutation.v
|
||||
DeepAndShallowEmbeddings_template.v
|
||||
|
|
Loading…
Reference in a new issue