mirror of
https://github.com/achlipala/frap.git
synced 2024-11-27 23:06:20 +00:00
Merge branch 'master' of ssh://schizomaniac.net//home/adamc/git-root/frap
This commit is contained in:
commit
2645e91a23
5 changed files with 378 additions and 11 deletions
19
Frap.v
19
Frap.v
|
@ -3,6 +3,7 @@ Export String Arith Sets Relations Map Var Invariant.
|
|||
Require Import List.
|
||||
Export List ListNotations.
|
||||
Open Scope string_scope.
|
||||
Open Scope list_scope.
|
||||
|
||||
Ltac inductN n :=
|
||||
match goal with
|
||||
|
@ -63,10 +64,18 @@ Ltac linear_arithmetic := intros;
|
|||
Ltac equality := congruence.
|
||||
|
||||
Ltac cases E :=
|
||||
(is_var E; destruct E)
|
||||
|| match type of E with
|
||||
| {_} + {_} => destruct E
|
||||
| _ => let Heq := fresh "Heq" in destruct E eqn:Heq
|
||||
end.
|
||||
((is_var E; destruct E)
|
||||
|| match type of E with
|
||||
| {_} + {_} => destruct E
|
||||
| _ => let Heq := fresh "Heq" in destruct E eqn:Heq
|
||||
end);
|
||||
repeat match goal with
|
||||
| [ H : _ = left _ |- _ ] => clear H
|
||||
| [ H : _ = right _ |- _ ] => clear H
|
||||
end.
|
||||
|
||||
Global Opaque max min.
|
||||
|
||||
Infix "==n" := eq_nat_dec (no associativity, at level 50).
|
||||
|
||||
Export Frap.Map.
|
||||
|
|
354
Interpreters.v
Normal file
354
Interpreters.v
Normal file
|
@ -0,0 +1,354 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 3: Semantics via Interpreters
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
|
||||
(* We begin with a return to our arithmetic language from the last chapter,
|
||||
* adding subtraction, which will come in handy later. *)
|
||||
Inductive arith : Set :=
|
||||
| Const (n : nat)
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : arith)
|
||||
| Minus (e1 e2 : arith)
|
||||
| Times (e1 e2 : arith).
|
||||
|
||||
(* The above definition only explains what programs *look like*.
|
||||
* We also care about what they *mean*.
|
||||
* The natural meaning of an expression is the number it evaluates to.
|
||||
* Actually, it's not quite that simple.
|
||||
* We need to consider the meaning to be a function over a valuation
|
||||
* to the variables, which in turn is itself a finite map from variable
|
||||
* names to numbers. We use the book library's [map] type family. *)
|
||||
Definition valuation := map var nat.
|
||||
|
||||
Fixpoint interp (e : arith) (v : valuation) : nat :=
|
||||
match e with
|
||||
| Const n => n
|
||||
| Var x =>
|
||||
(* Note use of infix operator to look up a key in a finite map. *)
|
||||
match v $? x with
|
||||
| None => 0 (* goofy default value! *)
|
||||
| Some n => n
|
||||
end
|
||||
| Plus e1 e2 => interp e1 v + interp e2 v
|
||||
| Minus e1 e2 => interp e1 v - interp e2 v
|
||||
(* For anyone who's wondering: this [-] sticks at 0,
|
||||
* if we would otherwise underflow. *)
|
||||
| Times e1 e2 => interp e1 v * interp e2 v
|
||||
end.
|
||||
|
||||
(* Here's an example valuation. Unfortunately, we can't execute code based on
|
||||
* finite maps, since, for convenience, they use uncomputable features. *)
|
||||
Definition valuation0 : valuation :=
|
||||
$0 $+ ("x", 17).
|
||||
|
||||
(* Here's the silly transformation we defined last time. *)
|
||||
Fixpoint commuter (e : arith) : arith :=
|
||||
match e with
|
||||
| Const _ => e
|
||||
| Var _ => e
|
||||
| Plus e1 e2 => Plus (commuter e2) (commuter e1)
|
||||
| Minus e1 e2 => Minus (commuter e1) (commuter e2)
|
||||
| Times e1 e2 => Times (commuter e2) (commuter e1)
|
||||
end.
|
||||
|
||||
(* Instead of proving various odds-and-ends properties about it,
|
||||
* let's show what we *really* care about: it preserves the
|
||||
* *meanings* of expressions! *)
|
||||
Theorem commuter_ok : forall v e, interp (commuter e) v = interp e v.
|
||||
Proof.
|
||||
induct e; simplify.
|
||||
|
||||
equality.
|
||||
|
||||
equality.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
equality.
|
||||
|
||||
rewrite IHe1.
|
||||
rewrite IHe2.
|
||||
ring.
|
||||
Qed.
|
||||
(* Well, that's a relief! ;-) *)
|
||||
|
||||
(* Let's also revisit substitution. *)
|
||||
Fixpoint substitute (inThis : arith) (replaceThis : var) (withThis : arith) : arith :=
|
||||
match inThis with
|
||||
| Const _ => inThis
|
||||
| Var x => if x ==v replaceThis then withThis else inThis
|
||||
| Plus e1 e2 => Plus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
|
||||
| Minus e1 e2 => Minus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
|
||||
| Times e1 e2 => Times (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
|
||||
end.
|
||||
|
||||
(* Note the use of an infix operator for overriding one entry in a finite
|
||||
* map. *)
|
||||
Theorem substitute_ok : forall v replaceThis withThis inThis,
|
||||
interp (substitute inThis replaceThis withThis) v
|
||||
= interp inThis (v $+ (replaceThis, interp withThis v)).
|
||||
Proof.
|
||||
induct inThis; simplify; try equality.
|
||||
|
||||
(* One case left after our basic heuristic:
|
||||
* the variable case, naturally! *)
|
||||
cases (x ==v replaceThis); simplify; try equality.
|
||||
Qed.
|
||||
(* Great; we seem to have gotten that one right, too. *)
|
||||
|
||||
(* Let's also defined a pared-down version of the expression-simplificaton
|
||||
* functions from last chapter. *)
|
||||
Fixpoint doSomeArithmetic (e : arith) : arith :=
|
||||
match e with
|
||||
| Const _ => e
|
||||
| Var _ => e
|
||||
| Plus (Const n1) (Const n2) => Const (n1 + n2)
|
||||
| Plus e1 e2 => Plus (doSomeArithmetic e1) (doSomeArithmetic e2)
|
||||
| Minus e1 e2 => Minus (doSomeArithmetic e1) (doSomeArithmetic e2)
|
||||
| Times (Const n1) (Const n2) => Const (n1 * n2)
|
||||
| Times e1 e2 => Times (doSomeArithmetic e1) (doSomeArithmetic e2)
|
||||
end.
|
||||
|
||||
Theorem doSomeArithmetic_ok : forall e v, interp (doSomeArithmetic e) v = interp e v.
|
||||
Proof.
|
||||
induct e; simplify; try equality.
|
||||
|
||||
cases e1; simplify; try equality.
|
||||
cases e2; simplify; equality.
|
||||
|
||||
cases e1; simplify; try equality.
|
||||
cases e2; simplify; equality.
|
||||
Qed.
|
||||
|
||||
(* Of course, we're going to get bored if we confine ourselves to arithmetic
|
||||
* expressions for the rest of our journey. Let's get a bit fancier and define
|
||||
* a *stack machine*, related to postfix calculators that some of you may have
|
||||
* experienced. *)
|
||||
Inductive instruction :=
|
||||
| PushConst (n : nat)
|
||||
| PushVar (x : var)
|
||||
| Add
|
||||
| Subtract
|
||||
| Multiply.
|
||||
|
||||
(* What does it all mean? An interpreter tells us unambiguously! *)
|
||||
Definition run1 (i : instruction) (v : valuation) (stack : list nat) : list nat :=
|
||||
match i with
|
||||
| PushConst n => n :: stack
|
||||
| PushVar x => (match v $? x with
|
||||
| None => 0
|
||||
| Some n => n
|
||||
end) :: stack
|
||||
| Add =>
|
||||
match stack with
|
||||
| arg2 :: arg1 :: stack' => arg1 + arg2 :: stack'
|
||||
| _ => stack (* arbitrary behavior in erroneous case *)
|
||||
end
|
||||
| Subtract =>
|
||||
match stack with
|
||||
| arg2 :: arg1 :: stack' => arg1 - arg2 :: stack'
|
||||
| _ => stack (* arbitrary behavior in erroneous case *)
|
||||
end
|
||||
| Multiply =>
|
||||
match stack with
|
||||
| arg2 :: arg1 :: stack' => arg1 * arg2 :: stack'
|
||||
| _ => stack (* arbitrary behavior in erroneous case *)
|
||||
end
|
||||
end.
|
||||
|
||||
(* That function explained how to run one instruction.
|
||||
* Here's how to run several of them. *)
|
||||
Fixpoint run (is : list instruction) (v : valuation) (stack : list nat) : list nat :=
|
||||
match is with
|
||||
| nil => stack
|
||||
| i :: is' => run is' v (run1 i v stack)
|
||||
end.
|
||||
|
||||
(* Instead of writing fiddly stack programs ourselves, let's *compile*
|
||||
* arithmetic expressions into equivalent stack programs. *)
|
||||
Fixpoint compile (e : arith) : list instruction :=
|
||||
match e with
|
||||
| Const n => PushConst n :: nil
|
||||
| Var x => PushVar x :: nil
|
||||
| Plus e1 e2 => compile e1 ++ compile e2 ++ Add :: nil
|
||||
| Minus e1 e2 => compile e1 ++ compile e2 ++ Subtract :: nil
|
||||
| Times e1 e2 => compile e1 ++ compile e2 ++ Multiply :: nil
|
||||
end.
|
||||
|
||||
(* Now, of course, we should prove our compiler correct.
|
||||
* Skip down to the next theorem to see the overall correctness statement.
|
||||
* It turns out that we need to strengthen the induction hypothesis with a
|
||||
* lemma, to push the proof through. *)
|
||||
Lemma compile_ok' : forall e v is stack, run (compile e ++ is) v stack = run is v (interp e v :: stack).
|
||||
Proof.
|
||||
induct e; simplify.
|
||||
|
||||
equality.
|
||||
|
||||
equality.
|
||||
|
||||
(* Here we want to use associativity of [++], to get the conclusion to match
|
||||
* an induction hypothesis. Let's ask Coq to search its library for lemmas
|
||||
* that would justify such a rewrite, giving a pattern with wildcards, to
|
||||
* specify the essential structure that the rewrite should match. *)
|
||||
SearchRewrite ((_ ++ _) ++ _).
|
||||
(* Ah, we see just the one! *)
|
||||
rewrite app_assoc_reverse.
|
||||
rewrite IHe1.
|
||||
rewrite app_assoc_reverse.
|
||||
rewrite IHe2.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
rewrite app_assoc_reverse.
|
||||
rewrite IHe1.
|
||||
rewrite app_assoc_reverse.
|
||||
rewrite IHe2.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
rewrite app_assoc_reverse.
|
||||
rewrite IHe1.
|
||||
rewrite app_assoc_reverse.
|
||||
rewrite IHe2.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
(* The overall theorem follows as a simple corollary. *)
|
||||
Theorem compile_ok : forall e v, run (compile e) v nil = interp e v :: nil.
|
||||
Proof.
|
||||
simplify.
|
||||
|
||||
(* To match the form of our lemma, we need to replace [compile e] with
|
||||
* [compile e ++ nil], adding a "pointless" concatenation of the empty list.
|
||||
* [SearchRewrite] again helps us find a library lemma. *)
|
||||
SearchRewrite (_ ++ nil).
|
||||
rewrite (app_nil_end (compile e)).
|
||||
(* Note that we can use [rewrite] with explicit values of the first few
|
||||
* quantified variables of a lemma. Otherwise, [rewrite] picks an
|
||||
* unhelpful place to rewrite. (Try it and see!) *)
|
||||
|
||||
apply compile_ok'.
|
||||
(* Direct appeal to a previously proved lemma *)
|
||||
Qed.
|
||||
|
||||
|
||||
(* Let's get a bit fancier, moving toward the level of general-purpose
|
||||
* imperative languages. Here's a language of commands, building on the
|
||||
* language of expressions we have defined. *)
|
||||
Inductive cmd :=
|
||||
| Skip
|
||||
| Assign (x : var) (e : arith)
|
||||
| Sequence (c1 c2 : cmd)
|
||||
| Repeat (e : arith) (body : cmd).
|
||||
|
||||
(* That last constructor is for repeating a body command some number of
|
||||
* times. Note that we sneakily avoid constructs that could introduce
|
||||
* nontermination, since Coq only accepts terminating programs, and we want to
|
||||
* write an interpreter for commands.
|
||||
* In contrast to our last one, this interpreter *transforms valuations*.
|
||||
* We use a helper function for self-composing a function some number of
|
||||
* times. *)
|
||||
|
||||
Fixpoint selfCompose {A} (f : A -> A) (n : nat) : A -> A :=
|
||||
match n with
|
||||
| O => fun x => x
|
||||
| S n' => fun x => selfCompose f n' (f x)
|
||||
end.
|
||||
|
||||
Fixpoint exec (c : cmd) (v : valuation) : valuation :=
|
||||
match c with
|
||||
| Skip => v
|
||||
| Assign x e => v $+ (x, interp e v)
|
||||
| Sequence c1 c2 => exec c2 (exec c1 v)
|
||||
| Repeat e body => selfCompose (exec body) (interp e v) v
|
||||
end.
|
||||
|
||||
(* Let's define some programs and prove that they operate in certain ways. *)
|
||||
|
||||
Example factorial_ugly :=
|
||||
Sequence
|
||||
(Assign "output" (Const 1))
|
||||
(Repeat (Var "input")
|
||||
(Sequence
|
||||
(Assign "output" (Times (Var "output") (Var "input")))
|
||||
(Assign "input" (Minus (Var "input") (Const 1))))).
|
||||
|
||||
(* Ouch; that code is hard to read. Let's introduce some notations to make the
|
||||
* concrete syntax more palatable. We won't explain the general mechanisms on
|
||||
* display here, but see the Coq manual for details, or try to reverse-engineer
|
||||
* them from our examples. *)
|
||||
Coercion Const : nat >-> arith.
|
||||
Coercion Var : var >-> arith.
|
||||
Infix "+" := Plus : arith_scope.
|
||||
Infix "-" := Minus : arith_scope.
|
||||
Infix "*" := Times : arith_scope.
|
||||
Delimit Scope arith_scope with arith.
|
||||
Notation "x <- e" := (Assign x e%arith) (at level 75).
|
||||
Infix ";" := Sequence (at level 76).
|
||||
Notation "'repeat' e 'doing' body 'done'" := (Repeat e%arith body) (at level 75).
|
||||
|
||||
(* OK, let's try that program again. *)
|
||||
Example factorial :=
|
||||
"output" <- 1;
|
||||
repeat "input" doing
|
||||
"output" <- "output" * "input";
|
||||
"input" <- "input" - 1
|
||||
done.
|
||||
|
||||
(* Now we prove that it really computes factorial.
|
||||
* First, a reference implementation as a functional program. *)
|
||||
Fixpoint fact (n : nat) : nat :=
|
||||
match n with
|
||||
| O => 1
|
||||
| S n' => n * fact n'
|
||||
end.
|
||||
|
||||
Definition factorial_body :=
|
||||
"output" <- "output" * "input";
|
||||
"input" <- "input" - 1.
|
||||
|
||||
(* Note that here we're careful to put the quantified variable [input] *first*,
|
||||
* because the variables coming after it will need to *change* in the course of
|
||||
* the induction. Try switching the order to see what goes wrong if we put
|
||||
* [input] later. *)
|
||||
Lemma factorial_ok' : forall input output v,
|
||||
v $? "input" = Some input
|
||||
-> v $? "output" = Some output
|
||||
-> selfCompose (exec factorial_body) input v
|
||||
= v $+ ("input", 0) $+ ("output", output * fact input).
|
||||
Proof.
|
||||
induct input; simplify.
|
||||
|
||||
maps_equal; simplify.
|
||||
|
||||
rewrite H0.
|
||||
f_equal.
|
||||
linear_arithmetic.
|
||||
|
||||
trivial.
|
||||
|
||||
rewrite H, H0.
|
||||
rewrite (IHinput (output * S input)).
|
||||
maps_equal; simplify.
|
||||
f_equal; ring.
|
||||
simplify; f_equal; linear_arithmetic.
|
||||
simplify; equality.
|
||||
Qed.
|
||||
|
||||
Theorem factorial_ok : forall v input,
|
||||
v $? "input" = Some input
|
||||
-> exec factorial v $? "output" = Some (fact input).
|
||||
Proof.
|
||||
simplify.
|
||||
rewrite H.
|
||||
rewrite (factorial_ok' input 1); simplify.
|
||||
f_equal; linear_arithmetic.
|
||||
trivial.
|
||||
trivial.
|
||||
Qed.
|
13
Map.v
13
Map.v
|
@ -34,8 +34,9 @@ Module Type S.
|
|||
m $<= m'
|
||||
-> add m k v $<= add m' k v.
|
||||
|
||||
Axiom lookup_add_eq : forall A B (m : map A B) k v,
|
||||
add m k v $? k = Some v.
|
||||
Axiom lookup_add_eq : forall A B (m : map A B) k1 k2 v,
|
||||
k1 = k2
|
||||
-> add m k1 v $? k2 = Some v.
|
||||
|
||||
Axiom lookup_add_ne : forall A B (m : map A B) k k' v,
|
||||
k' <> k
|
||||
|
@ -142,11 +143,13 @@ Module M : S.
|
|||
destruct (decide (k0 = k)); auto.
|
||||
Qed.
|
||||
|
||||
Theorem lookup_add_eq : forall A B (m : map A B) k v,
|
||||
lookup (add m k v) k = Some v.
|
||||
Theorem lookup_add_eq : forall A B (m : map A B) k1 k2 v,
|
||||
k1 = k2
|
||||
-> lookup (add m k1 v) k2 = Some v.
|
||||
Proof.
|
||||
unfold lookup, add; intuition.
|
||||
destruct (decide (k = k)); tauto.
|
||||
destruct (decide (k2 = k1)); try tauto.
|
||||
congruence.
|
||||
Qed.
|
||||
|
||||
Theorem lookup_add_ne : forall A B (m : map A B) k k' v,
|
||||
|
|
2
Var.v
2
Var.v
|
@ -1,7 +1,7 @@
|
|||
Require Import String.
|
||||
|
||||
|
||||
Definition var := string.
|
||||
Notation var := string.
|
||||
Definition var_eq : forall x y : var, {x = y} + {x <> y} := string_dec.
|
||||
|
||||
Infix "==v" := var_eq (no associativity, at level 50).
|
||||
|
|
|
@ -6,3 +6,4 @@ Relations.v
|
|||
Frap.v
|
||||
BasicSyntax_template.v
|
||||
BasicSyntax.v
|
||||
Interpreters.v
|
||||
|
|
Loading…
Reference in a new issue