mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
DeepAndShallowEmbeddings: Deep
This commit is contained in:
parent
01d550e4b0
commit
290fec1e5b
4 changed files with 455 additions and 5 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -16,3 +16,4 @@ Makefile.coq
|
|||
frap.tgz
|
||||
.coq-native
|
||||
Deep.ml*
|
||||
Deeper.ml*
|
||||
|
|
|
@ -5,6 +5,8 @@
|
|||
|
||||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
(** * Shared notations and definitions *)
|
||||
|
||||
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
|
||||
|
@ -146,8 +148,8 @@ End Shallow.
|
|||
(** * A basic deep embedding *)
|
||||
|
||||
Module Deep.
|
||||
Inductive cmd : Type -> Type :=
|
||||
| Return {result} (r : result) : cmd result
|
||||
Inductive cmd : Set -> Type :=
|
||||
| Return {result : Set} (r : result) : cmd result
|
||||
| Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result
|
||||
| Read (a : nat) : cmd nat
|
||||
| Write (a v : nat) : cmd unit.
|
||||
|
@ -197,7 +199,7 @@ Module Deep.
|
|||
Qed.
|
||||
|
||||
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
|
||||
| HtReturn : forall P {result} (v : result),
|
||||
| HtReturn : forall P {result : Set} (v : result),
|
||||
hoare_triple P (Return v) (fun r h => P h /\ r = v)
|
||||
| HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R,
|
||||
hoare_triple P c1 Q
|
||||
|
@ -213,6 +215,111 @@ Module Deep.
|
|||
-> (forall r h, Q r h -> Q' r h)
|
||||
-> hoare_triple P' c Q'.
|
||||
|
||||
Lemma HtStrengthen : forall {result} (c : cmd result) P Q (Q' : _ -> assertion),
|
||||
hoare_triple P c Q
|
||||
-> (forall r h, Q r h -> Q' r h)
|
||||
-> hoare_triple P c Q'.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply HtConsequence; eauto.
|
||||
Qed.
|
||||
|
||||
Notation "{{ h ~> P }} c {{ r & h' ~> Q }}" :=
|
||||
(hoare_triple (fun h => P) c (fun r h' => Q)) (at level 90, c at next level).
|
||||
|
||||
Lemma array_max_ok' : forall len i acc,
|
||||
{{ h ~> forall j, i <= j < len -> h $! j <= acc }}
|
||||
array_max i acc
|
||||
{{ r&h ~> forall j, j < len -> h $! j <= r }}.
|
||||
Proof.
|
||||
induct i; simplify.
|
||||
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify.
|
||||
propositional.
|
||||
subst.
|
||||
auto.
|
||||
|
||||
econstructor.
|
||||
constructor.
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
apply IHi.
|
||||
simplify; propositional.
|
||||
subst.
|
||||
cases (j ==n i); subst; auto.
|
||||
assert (h $! j <= acc) by auto.
|
||||
linear_arithmetic.
|
||||
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Theorem array_max_ok : forall len,
|
||||
{{ _ ~> True }}
|
||||
array_max len 0
|
||||
{{ r&h ~> forall i, i < len -> h $! i <= r }}.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
apply array_max_ok' with (len := len).
|
||||
|
||||
simplify.
|
||||
linear_arithmetic.
|
||||
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Lemma increment_all_ok' : forall len h0 i,
|
||||
{{ h ~> (forall j, j < i -> h $! j = h0 $! j)
|
||||
/\ (forall j, i <= j < len -> h $! j = S (h0 $! j)) }}
|
||||
increment_all i
|
||||
{{ _&h ~> forall j, j < len -> h $! j = S (h0 $! j) }}.
|
||||
Proof.
|
||||
induct i; simplify; propositional.
|
||||
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify.
|
||||
propositional.
|
||||
auto.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
apply IHi.
|
||||
simplify.
|
||||
invert H; propositional; subst.
|
||||
simplify.
|
||||
auto.
|
||||
|
||||
cases (j ==n i); subst; auto.
|
||||
simplify; auto.
|
||||
simplify; auto.
|
||||
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Theorem increment_all_ok : forall len h0,
|
||||
{{ h ~> h = h0 }}
|
||||
increment_all len
|
||||
{{ _&h ~> forall j, j < len -> h $! j = S (h0 $! j) }}.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
apply increment_all_ok' with (len := len).
|
||||
|
||||
simplify; subst; propositional.
|
||||
linear_arithmetic.
|
||||
|
||||
simplify.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem hoare_triple_sound : forall P {result} (c : cmd result) Q,
|
||||
hoare_triple P c Q
|
||||
-> forall h, P h
|
||||
|
@ -232,3 +339,319 @@ Module Deep.
|
|||
|
||||
Extraction "Deep.ml" array_max increment_all.
|
||||
End Deep.
|
||||
|
||||
|
||||
(** * A slightly fancier deep embedding, adding unbounded loops *)
|
||||
|
||||
Module Deeper.
|
||||
Inductive loop_outcome acc :=
|
||||
| Done (a : acc)
|
||||
| Again (a : acc).
|
||||
|
||||
Inductive cmd : Set -> Type :=
|
||||
| Return {result : Set} (r : result) : cmd result
|
||||
| Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result
|
||||
| Read (a : nat) : cmd nat
|
||||
| Write (a v : nat) : cmd unit
|
||||
| Loop {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) : cmd acc.
|
||||
|
||||
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
|
||||
Notation "'for' x := i 'loop' c1 'done'" := (Loop i (fun x => c1)) (right associativity, at level 80).
|
||||
|
||||
Definition index_of (needle : nat) : cmd nat :=
|
||||
for i := 0 loop
|
||||
h_i <- Read i;
|
||||
if h_i ==n needle then
|
||||
Return (Done i)
|
||||
else
|
||||
Return (Again (S i))
|
||||
done.
|
||||
|
||||
Inductive stepResult (result : Set) :=
|
||||
| Answer (r : result)
|
||||
| Stepped (h : heap) (c : cmd result).
|
||||
|
||||
Fixpoint step {result} (c : cmd result) (h : heap) : stepResult result :=
|
||||
match c with
|
||||
| Return r => Answer r
|
||||
| Bind c1 c2 =>
|
||||
match step c1 h with
|
||||
| Answer r => Stepped h (c2 r)
|
||||
| Stepped h' c1' => Stepped h' (Bind c1' c2)
|
||||
end
|
||||
| Read a => Answer (h $! a)
|
||||
| Write a v => Stepped (h $+ (a, v)) (Return tt)
|
||||
| Loop init body =>
|
||||
Stepped h (r <- body init;
|
||||
match r with
|
||||
| Done r' => Return r'
|
||||
| Again r' => Loop r' body
|
||||
end)
|
||||
end.
|
||||
|
||||
Fixpoint multiStep {result} (c : cmd result) (h : heap) (n : nat) : stepResult result :=
|
||||
match n with
|
||||
| O => Stepped h c
|
||||
| S n' => match step c h with
|
||||
| Answer r => Answer r
|
||||
| Stepped h' c' => multiStep c' h' n'
|
||||
end
|
||||
end.
|
||||
|
||||
Example run_index_of : multiStep (index_of 6) h0 20 = Answer 3.
|
||||
Proof.
|
||||
unfold h0.
|
||||
simplify.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
|
||||
| HtReturn : forall P {result : Set} (v : result),
|
||||
hoare_triple P (Return v) (fun r h => P h /\ r = v)
|
||||
| HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R,
|
||||
hoare_triple P c1 Q
|
||||
-> (forall r, hoare_triple (Q r) (c2 r) R)
|
||||
-> hoare_triple P (Bind c1 c2) R
|
||||
| HtRead : forall P a,
|
||||
hoare_triple P (Read a) (fun r h => P h /\ r = h $! a)
|
||||
| HtWrite : forall P a v,
|
||||
hoare_triple P (Write a v) (fun _ h => exists h', P h' /\ h = h' $+ (a, v))
|
||||
| HtConsequence : forall {result} (c : cmd result) P Q (P' : assertion) (Q' : _ -> assertion),
|
||||
hoare_triple P c Q
|
||||
-> (forall h, P' h -> P h)
|
||||
-> (forall r h, Q r h -> Q' r h)
|
||||
-> hoare_triple P' c Q'
|
||||
|
||||
| HtLoop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) I,
|
||||
(forall acc, hoare_triple (I (Again acc)) (body acc) I)
|
||||
-> hoare_triple (I (Again init)) (Loop init body) (fun r h => I (Done r) h).
|
||||
|
||||
Notation "{{ h ~> P }} c {{ r & h' ~> Q }}" :=
|
||||
(hoare_triple (fun h => P) c (fun r h' => Q)) (at level 90, c at next level).
|
||||
|
||||
Lemma HtStrengthen : forall {result} (c : cmd result) P Q (Q' : _ -> assertion),
|
||||
hoare_triple P c Q
|
||||
-> (forall r h, Q r h -> Q' r h)
|
||||
-> hoare_triple P c Q'.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply HtConsequence; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma HtWeaken : forall {result} (c : cmd result) P Q (P' : assertion),
|
||||
hoare_triple P c Q
|
||||
-> (forall h, P' h -> P h)
|
||||
-> hoare_triple P' c Q.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply HtConsequence; eauto.
|
||||
Qed.
|
||||
|
||||
Theorem index_of_ok : forall hinit needle,
|
||||
{{ h ~> h = hinit }}
|
||||
index_of needle
|
||||
{{ r&h ~> h = hinit
|
||||
/\ hinit $! r = needle
|
||||
/\ forall i, i < r -> hinit $! i <> needle }}.
|
||||
Proof.
|
||||
unfold index_of.
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
apply HtLoop with (I := fun r h => h = hinit
|
||||
/\ match r with
|
||||
| Done r' => hinit $! r' = needle
|
||||
/\ forall i, i < r' -> hinit $! i <> needle
|
||||
| Again r' => forall i, i < r' -> hinit $! i <> needle
|
||||
end); simplify.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
|
||||
simplify.
|
||||
cases (r ==n needle); subst.
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify; propositional; subst.
|
||||
auto.
|
||||
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
simplify.
|
||||
cases (i ==n acc); subst; auto.
|
||||
apply H3 with (i0 := i); auto.
|
||||
|
||||
simplify.
|
||||
propositional.
|
||||
linear_arithmetic.
|
||||
|
||||
simplify.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Definition trsys_of {result} (c : cmd result) (h : heap) := {|
|
||||
Initial := {(c, h)};
|
||||
Step := fun p1 p2 => step (fst p1) (snd p1) = Stepped (snd p2) (fst p2)
|
||||
|}.
|
||||
|
||||
Lemma invert_Return : forall {result : Set} (r : result) P Q,
|
||||
hoare_triple P (Return r) Q
|
||||
-> forall h, P h -> Q r h.
|
||||
Proof.
|
||||
induct 1; propositional; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma invert_Bind : forall {result' result} (c1 : cmd result') (c2 : result' -> cmd result) P Q,
|
||||
hoare_triple P (Bind c1 c2) Q
|
||||
-> exists R, hoare_triple P c1 R
|
||||
/\ forall r, hoare_triple (R r) (c2 r) Q.
|
||||
Proof.
|
||||
induct 1; propositional; eauto.
|
||||
|
||||
invert IHhoare_triple; propositional.
|
||||
eexists; propositional.
|
||||
eapply HtWeaken.
|
||||
eassumption.
|
||||
auto.
|
||||
eapply HtStrengthen.
|
||||
apply H4.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Lemma unit_not_nat : unit = nat -> False.
|
||||
Proof.
|
||||
simplify.
|
||||
assert (exists x : unit, forall y : unit, x = y).
|
||||
exists tt; simplify.
|
||||
cases y; reflexivity.
|
||||
rewrite H in H0.
|
||||
invert H0.
|
||||
specialize (H1 (S x)).
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma invert_Read : forall a P Q,
|
||||
hoare_triple P (Read a) Q
|
||||
-> forall h, P h -> Q (h $! a) h.
|
||||
Proof.
|
||||
induct 1; propositional; eauto.
|
||||
apply unit_not_nat in x0.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Lemma invert_Write : forall a v P Q,
|
||||
hoare_triple P (Write a v) Q
|
||||
-> forall h, P h -> Q tt (h $+ (a, v)).
|
||||
Proof.
|
||||
induct 1; propositional; eauto.
|
||||
symmetry in x0.
|
||||
apply unit_not_nat in x0.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Lemma invert_Loop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) P Q,
|
||||
hoare_triple P (Loop init body) Q
|
||||
-> exists I, (forall acc, hoare_triple (I (Again acc)) (body acc) I)
|
||||
/\ (forall h, P h -> I (Again init) h)
|
||||
/\ (forall r h, I (Done r) h -> Q r h).
|
||||
Proof.
|
||||
induct 1; propositional; eauto.
|
||||
|
||||
invert IHhoare_triple; propositional.
|
||||
exists x; propositional; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma step_sound : forall {result} (c : cmd result) h Q,
|
||||
hoare_triple (fun h' => h' = h) c Q
|
||||
-> match step c h with
|
||||
| Answer r => Q r h
|
||||
| Stepped h' c' => hoare_triple (fun h'' => h'' = h') c' Q
|
||||
end.
|
||||
Proof.
|
||||
induct c; simplify; propositional.
|
||||
|
||||
eapply invert_Return.
|
||||
eauto.
|
||||
simplify; auto.
|
||||
|
||||
apply invert_Bind in H0.
|
||||
invert H0; propositional.
|
||||
apply IHc in H0.
|
||||
cases (step c h); auto.
|
||||
econstructor.
|
||||
apply H2.
|
||||
equality.
|
||||
auto.
|
||||
econstructor; eauto.
|
||||
|
||||
eapply invert_Read; eauto.
|
||||
simplify; auto.
|
||||
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify; propositional; subst.
|
||||
eapply invert_Write; eauto.
|
||||
simplify; auto.
|
||||
|
||||
apply invert_Loop in H0.
|
||||
invert H0; propositional.
|
||||
econstructor.
|
||||
eapply HtWeaken.
|
||||
apply H0.
|
||||
equality.
|
||||
simplify.
|
||||
cases r.
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify.
|
||||
propositional; subst; eauto.
|
||||
eapply HtStrengthen.
|
||||
eapply HtLoop.
|
||||
auto.
|
||||
simplify.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma hoare_triple_sound' : forall P {result} (c : cmd result) Q,
|
||||
hoare_triple P c Q
|
||||
-> forall h, P h
|
||||
-> invariantFor (trsys_of c h)
|
||||
(fun p => hoare_triple (fun h => h = snd p)
|
||||
(fst p)
|
||||
Q).
|
||||
Proof.
|
||||
simplify.
|
||||
|
||||
apply invariant_induction; simplify.
|
||||
|
||||
propositional; subst; simplify.
|
||||
eapply HtConsequence.
|
||||
eassumption.
|
||||
equality.
|
||||
auto.
|
||||
|
||||
eapply step_sound in H1.
|
||||
rewrite H2 in H1.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem hoare_triple_sound : forall P {result} (c : cmd result) Q,
|
||||
hoare_triple P c Q
|
||||
-> forall h, P h
|
||||
-> invariantFor (trsys_of c h)
|
||||
(fun p => forall r, fst p = Return r
|
||||
-> Q r (snd p)).
|
||||
Proof.
|
||||
simplify.
|
||||
|
||||
eapply invariant_weaken.
|
||||
eapply hoare_triple_sound'; eauto.
|
||||
simplify.
|
||||
rewrite H2 in H1.
|
||||
eapply invert_Return; eauto.
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Extraction "Deeper.ml" index_of.
|
||||
End Deeper.
|
||||
|
|
|
@ -20,5 +20,4 @@ let interp c =
|
|||
with Not_found -> O)
|
||||
| Write (a, v) -> Obj.magic (Hashtbl.replace h a v)
|
||||
|
||||
in let v = interp' c in
|
||||
h, v
|
||||
in h, interp' c
|
||||
|
|
27
DeeperInterp.ml
Normal file
27
DeeperInterp.ml
Normal file
|
@ -0,0 +1,27 @@
|
|||
let rec i2n n =
|
||||
match n with
|
||||
| 0 -> O
|
||||
| _ -> S (i2n (n - 1))
|
||||
|
||||
let interp c =
|
||||
let h : (nat, nat) Hashtbl.t = Hashtbl.create 0 in
|
||||
Hashtbl.add h (i2n 0) (i2n 2);
|
||||
Hashtbl.add h (i2n 1) (i2n 1);
|
||||
Hashtbl.add h (i2n 2) (i2n 8);
|
||||
Hashtbl.add h (i2n 3) (i2n 6);
|
||||
|
||||
let rec interp' (c : 'a cmd) : 'a =
|
||||
match c with
|
||||
| Return v -> v
|
||||
| Bind (c1, c2) -> interp' (c2 (interp' c1))
|
||||
| Read a ->
|
||||
Obj.magic (try
|
||||
Hashtbl.find h a
|
||||
with Not_found -> O)
|
||||
| Write (a, v) -> Obj.magic (Hashtbl.replace h a v)
|
||||
| Loop (i, b) ->
|
||||
match Obj.magic (interp' (Obj.magic (b i))) with
|
||||
| Done r -> r
|
||||
| Again r -> interp' (Loop (r, b))
|
||||
|
||||
in h, interp' c
|
Loading…
Reference in a new issue