mirror of
https://github.com/achlipala/frap.git
synced 2025-01-22 06:16:12 +00:00
Start of DataAbstraction: queue examples
This commit is contained in:
parent
fed5f5d812
commit
2dac252854
2 changed files with 734 additions and 0 deletions
733
DataAbstraction.v
Normal file
733
DataAbstraction.v
Normal file
|
@ -0,0 +1,733 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 3: Data Abstraction
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
|
||||
Module Algebraic.
|
||||
Module Type QUEUE.
|
||||
Parameter t : Set -> Set.
|
||||
|
||||
Parameter empty : forall A, t A.
|
||||
Parameter enqueue : forall A, t A -> A -> t A.
|
||||
Parameter dequeue : forall A, t A -> option (t A * A).
|
||||
|
||||
Axiom dequeue_empty : forall A,
|
||||
dequeue (empty A) = None.
|
||||
Axiom empty_dequeue : forall A (q : t A),
|
||||
dequeue q = None -> q = empty A.
|
||||
Axiom dequeue_enqueue : forall A (q : t A) x,
|
||||
dequeue (enqueue q x) = Some (match dequeue q with
|
||||
| None => (empty A, x)
|
||||
| Some (q', y) => (enqueue q' x, y)
|
||||
end).
|
||||
End QUEUE.
|
||||
|
||||
Module ListQueue : QUEUE.
|
||||
Definition t : Set -> Set := list.
|
||||
|
||||
Definition empty A : t A := nil.
|
||||
Definition enqueue A (q : t A) (x : A) : t A := x :: q.
|
||||
Fixpoint dequeue A (q : t A) : option (t A * A) :=
|
||||
match q with
|
||||
| [] => None
|
||||
| x :: q' =>
|
||||
match dequeue q' with
|
||||
| None => Some ([], x)
|
||||
| Some (q'', y) => Some (x :: q'', y)
|
||||
end
|
||||
end.
|
||||
|
||||
Theorem dequeue_empty : forall A, dequeue (empty A) = None.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem empty_dequeue : forall A (q : t A),
|
||||
dequeue q = None -> q = empty A.
|
||||
Proof.
|
||||
simplify.
|
||||
cases q.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
cases (dequeue q).
|
||||
cases p.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem dequeue_enqueue : forall A (q : t A) x,
|
||||
dequeue (enqueue q x) = Some (match dequeue q with
|
||||
| None => (empty A, x)
|
||||
| Some (q', y) => (enqueue q' x, y)
|
||||
end).
|
||||
Proof.
|
||||
simplify.
|
||||
cases (dequeue q).
|
||||
|
||||
cases p.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
Qed.
|
||||
End ListQueue.
|
||||
|
||||
Module ReversedListQueue : QUEUE.
|
||||
Definition t : Set -> Set := list.
|
||||
|
||||
Definition empty A : t A := [].
|
||||
Definition enqueue A (q : t A) (x : A) : t A := q ++ [x].
|
||||
Definition dequeue A (q : t A) : option (t A * A) :=
|
||||
match q with
|
||||
| [] => None
|
||||
| x :: q' => Some (q', x)
|
||||
end.
|
||||
|
||||
Theorem dequeue_empty : forall A, dequeue (empty A) = None.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem empty_dequeue : forall A (q : t A),
|
||||
dequeue q = None -> q = empty A.
|
||||
Proof.
|
||||
simplify.
|
||||
cases q.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem dequeue_enqueue : forall A (q : t A) x,
|
||||
dequeue (enqueue q x) = Some (match dequeue q with
|
||||
| None => (empty A, x)
|
||||
| Some (q', y) => (enqueue q' x, y)
|
||||
end).
|
||||
Proof.
|
||||
simplify.
|
||||
unfold dequeue, enqueue.
|
||||
cases q; simplify.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
End ReversedListQueue.
|
||||
|
||||
Module DelayedSum (Q : QUEUE).
|
||||
Fixpoint makeQueue (n : nat) (q : Q.t nat) : Q.t nat :=
|
||||
match n with
|
||||
| 0 => q
|
||||
| S n' => makeQueue n' (Q.enqueue q n')
|
||||
end.
|
||||
|
||||
Fixpoint computeSum (n : nat) (q : Q.t nat) : nat :=
|
||||
match n with
|
||||
| 0 => 0
|
||||
| S n' => match Q.dequeue q with
|
||||
| None => 0
|
||||
| Some (q', v) => v + computeSum n' q'
|
||||
end
|
||||
end.
|
||||
|
||||
Fixpoint sumUpto (n : nat) : nat :=
|
||||
match n with
|
||||
| 0 => 0
|
||||
| S n' => n' + sumUpto n'
|
||||
end.
|
||||
|
||||
Lemma dequeue_makeQueue : forall n q,
|
||||
Q.dequeue (makeQueue n q)
|
||||
= match Q.dequeue q with
|
||||
| Some (q', v) => Some (makeQueue n q', v)
|
||||
| None =>
|
||||
match n with
|
||||
| 0 => None
|
||||
| S n' => Some (makeQueue n' q, n')
|
||||
end
|
||||
end.
|
||||
Proof.
|
||||
induct n.
|
||||
|
||||
simplify.
|
||||
cases (Q.dequeue q).
|
||||
cases p.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
rewrite IHn.
|
||||
rewrite Q.dequeue_enqueue.
|
||||
cases (Q.dequeue q).
|
||||
cases p.
|
||||
equality.
|
||||
|
||||
rewrite (Q.empty_dequeue (q := q)).
|
||||
equality.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem computeSum_ok : forall n,
|
||||
computeSum n (makeQueue n (Q.empty nat)) = sumUpto n.
|
||||
Proof.
|
||||
induct n.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
rewrite dequeue_makeQueue.
|
||||
rewrite Q.dequeue_enqueue.
|
||||
rewrite Q.dequeue_empty.
|
||||
rewrite IHn.
|
||||
equality.
|
||||
Qed.
|
||||
End DelayedSum.
|
||||
End Algebraic.
|
||||
|
||||
Module AlgebraicWithEquivalenceRelation.
|
||||
Module Type QUEUE.
|
||||
Parameter t : Set -> Set.
|
||||
|
||||
Parameter empty : forall A, t A.
|
||||
Parameter enqueue : forall A, t A -> A -> t A.
|
||||
Parameter dequeue : forall A, t A -> option (t A * A).
|
||||
|
||||
Parameter equiv : forall A, t A -> t A -> Prop.
|
||||
|
||||
Infix "~=" := equiv (at level 70).
|
||||
|
||||
Axiom equiv_refl : forall A (a : t A), a ~= a.
|
||||
Axiom equiv_sym : forall A (a b : t A), a ~= b -> b ~= a.
|
||||
Axiom equiv_trans : forall A (a b c : t A), a ~= b -> b ~= c -> a ~= c.
|
||||
|
||||
Axiom equiv_enqueue : forall A (a b : t A) (x : A),
|
||||
a ~= b
|
||||
-> enqueue a x ~= enqueue b x.
|
||||
|
||||
Definition dequeue_equiv A (a b : option (t A * A)) :=
|
||||
match a, b with
|
||||
| None, None => True
|
||||
| Some (qa, xa), Some (qb, xb) => qa ~= qb /\ xa = xb
|
||||
| _, _ => False
|
||||
end.
|
||||
|
||||
Infix "~~=" := dequeue_equiv (at level 70).
|
||||
|
||||
Axiom equiv_dequeue : forall A (a b : t A),
|
||||
a ~= b
|
||||
-> dequeue a ~~= dequeue b.
|
||||
|
||||
Axiom dequeue_empty : forall A,
|
||||
dequeue (empty A) = None.
|
||||
Axiom empty_dequeue : forall A (q : t A),
|
||||
dequeue q = None -> q ~= empty A.
|
||||
|
||||
Axiom dequeue_enqueue : forall A (q : t A) x,
|
||||
dequeue (enqueue q x)
|
||||
~~= match dequeue q with
|
||||
| None => Some (empty A, x)
|
||||
| Some (q', y) => Some (enqueue q' x, y)
|
||||
end.
|
||||
End QUEUE.
|
||||
|
||||
Module ListQueue : QUEUE.
|
||||
Definition t : Set -> Set := list.
|
||||
|
||||
Definition empty A : t A := nil.
|
||||
Definition enqueue A (q : t A) (x : A) : t A := x :: q.
|
||||
Fixpoint dequeue A (q : t A) : option (t A * A) :=
|
||||
match q with
|
||||
| [] => None
|
||||
| x :: q' =>
|
||||
match dequeue q' with
|
||||
| None => Some ([], x)
|
||||
| Some (q'', y) => Some (x :: q'', y)
|
||||
end
|
||||
end.
|
||||
|
||||
Definition equiv A (a b : t A) := a = b.
|
||||
Infix "~=" := equiv (at level 70).
|
||||
|
||||
Theorem equiv_refl : forall A (a : t A), a ~= a.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem equiv_sym : forall A (a b : t A), a ~= b -> b ~= a.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem equiv_trans : forall A (a b c : t A), a ~= b -> b ~= c -> a ~= c.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem equiv_enqueue : forall A (a b : t A) (x : A),
|
||||
a ~= b
|
||||
-> enqueue a x ~= enqueue b x.
|
||||
Proof.
|
||||
unfold equiv; equality.
|
||||
Qed.
|
||||
|
||||
Definition dequeue_equiv A (a b : option (t A * A)) :=
|
||||
match a, b with
|
||||
| None, None => True
|
||||
| Some (qa, xa), Some (qb, xb) => qa ~= qb /\ xa = xb
|
||||
| _, _ => False
|
||||
end.
|
||||
|
||||
Infix "~~=" := dequeue_equiv (at level 70).
|
||||
|
||||
Theorem equiv_dequeue : forall A (a b : t A),
|
||||
a ~= b
|
||||
-> dequeue a ~~= dequeue b.
|
||||
Proof.
|
||||
unfold equiv, dequeue_equiv; simplify.
|
||||
rewrite H.
|
||||
cases (dequeue b).
|
||||
|
||||
cases p.
|
||||
equality.
|
||||
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Theorem dequeue_empty : forall A, dequeue (empty A) = None.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem empty_dequeue : forall A (q : t A),
|
||||
dequeue q = None -> q ~= empty A.
|
||||
Proof.
|
||||
simplify.
|
||||
cases q.
|
||||
|
||||
simplify.
|
||||
unfold equiv.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
cases (dequeue q).
|
||||
cases p.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem dequeue_enqueue : forall A (q : t A) x,
|
||||
dequeue (enqueue q x)
|
||||
~~= match dequeue q with
|
||||
| None => Some (empty A, x)
|
||||
| Some (q', y) => Some (enqueue q' x, y)
|
||||
end.
|
||||
Proof.
|
||||
unfold dequeue_equiv, equiv.
|
||||
induct q; simplify.
|
||||
|
||||
equality.
|
||||
|
||||
cases (dequeue q).
|
||||
|
||||
cases p.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
End ListQueue.
|
||||
|
||||
Module TwoStacksQueue : QUEUE.
|
||||
Record stackpair (A : Set) := {
|
||||
EnqueueHere : list A;
|
||||
DequeueHere : list A
|
||||
}.
|
||||
|
||||
Definition t := stackpair.
|
||||
|
||||
Definition empty A : t A := {|
|
||||
EnqueueHere := [];
|
||||
DequeueHere := []
|
||||
|}.
|
||||
Definition enqueue A (q : t A) (x : A) : t A := {|
|
||||
EnqueueHere := x :: q.(EnqueueHere);
|
||||
DequeueHere := q.(DequeueHere)
|
||||
|}.
|
||||
Definition dequeue A (q : t A) : option (t A * A) :=
|
||||
match q.(DequeueHere) with
|
||||
| x :: dq => Some ({| EnqueueHere := q.(EnqueueHere);
|
||||
DequeueHere := dq |}, x)
|
||||
| [] =>
|
||||
match rev q.(EnqueueHere) with
|
||||
| [] => None
|
||||
| x :: eq => Some ({| EnqueueHere := [];
|
||||
DequeueHere := eq |}, x)
|
||||
end
|
||||
end.
|
||||
|
||||
Definition elements A (q : t A) : list A :=
|
||||
q.(EnqueueHere) ++ rev q.(DequeueHere).
|
||||
|
||||
Definition equiv A (a b : t A) :=
|
||||
elements a = elements b.
|
||||
Infix "~=" := equiv (at level 70).
|
||||
|
||||
Theorem equiv_refl : forall A (a : t A), a ~= a.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem equiv_sym : forall A (a b : t A), a ~= b -> b ~= a.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem equiv_trans : forall A (a b c : t A), a ~= b -> b ~= c -> a ~= c.
|
||||
Proof.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem equiv_enqueue : forall A (a b : t A) (x : A),
|
||||
a ~= b
|
||||
-> enqueue a x ~= enqueue b x.
|
||||
Proof.
|
||||
unfold equiv, elements; simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Definition dequeue_equiv A (a b : option (t A * A)) :=
|
||||
match a, b with
|
||||
| None, None => True
|
||||
| Some (qa, xa), Some (qb, xb) => qa ~= qb /\ xa = xb
|
||||
| _, _ => False
|
||||
end.
|
||||
|
||||
Infix "~~=" := dequeue_equiv (at level 70).
|
||||
|
||||
Theorem equiv_dequeue : forall A (a b : t A),
|
||||
a ~= b
|
||||
-> dequeue a ~~= dequeue b.
|
||||
Proof.
|
||||
unfold equiv, dequeue_equiv, elements, dequeue; simplify.
|
||||
cases (DequeueHere a); simplify.
|
||||
cases (rev (EnqueueHere a)); simplify.
|
||||
cases (DequeueHere b); simplify.
|
||||
cases (rev (EnqueueHere b)); simplify.
|
||||
propositional.
|
||||
SearchRewrite (_ ++ []).
|
||||
rewrite app_nil_r in H.
|
||||
rewrite app_nil_r in H.
|
||||
equality.
|
||||
cases (EnqueueHere a); simplify.
|
||||
cases (EnqueueHere b); simplify.
|
||||
cases (rev l); simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
cases (rev l0); simplify.
|
||||
equality.
|
||||
equality.
|
||||
cases (DequeueHere b); simplify.
|
||||
cases (rev (EnqueueHere b)); simplify.
|
||||
rewrite app_nil_r in H.
|
||||
rewrite app_nil_r in H.
|
||||
equality.
|
||||
rewrite app_nil_r in H.
|
||||
rewrite app_nil_r in H.
|
||||
equality.
|
||||
rewrite app_nil_r in H.
|
||||
rewrite H in Heq0.
|
||||
SearchRewrite (rev (_ ++ _)).
|
||||
rewrite rev_app_distr in Heq0.
|
||||
rewrite rev_app_distr in Heq0.
|
||||
simplify.
|
||||
invert Heq0.
|
||||
unfold equiv, elements.
|
||||
simplify.
|
||||
rewrite rev_app_distr.
|
||||
SearchRewrite (rev (rev _)).
|
||||
rewrite rev_involutive.
|
||||
rewrite rev_involutive.
|
||||
equality.
|
||||
cases (DequeueHere b); simplify.
|
||||
cases (rev (EnqueueHere b)); simplify.
|
||||
rewrite app_nil_r in H.
|
||||
rewrite <- H in Heq1.
|
||||
cases (EnqueueHere a); simplify.
|
||||
cases (rev l); simplify.
|
||||
equality.
|
||||
rewrite rev_app_distr in Heq1.
|
||||
simplify.
|
||||
equality.
|
||||
rewrite rev_app_distr in Heq1.
|
||||
rewrite rev_app_distr in Heq1.
|
||||
simplify.
|
||||
equality.
|
||||
unfold equiv, elements.
|
||||
simplify.
|
||||
rewrite app_nil_r in H.
|
||||
rewrite <- H in Heq1.
|
||||
rewrite rev_app_distr in Heq1. rewrite rev_app_distr in Heq1.
|
||||
simplify.
|
||||
invert Heq1.
|
||||
rewrite rev_involutive.
|
||||
rewrite rev_app_distr.
|
||||
rewrite rev_involutive.
|
||||
equality.
|
||||
unfold equiv, elements.
|
||||
simplify.
|
||||
SearchAbout app cons nil.
|
||||
apply app_inj_tail.
|
||||
rewrite <- app_assoc.
|
||||
rewrite <- app_assoc.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem dequeue_empty : forall A, dequeue (empty A) = None.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem empty_dequeue : forall A (q : t A),
|
||||
dequeue q = None -> q ~= empty A.
|
||||
Proof.
|
||||
simplify.
|
||||
cases q.
|
||||
unfold dequeue in *.
|
||||
simplify.
|
||||
cases DequeueHere0.
|
||||
cases (rev EnqueueHere0).
|
||||
cases EnqueueHere0.
|
||||
equality.
|
||||
simplify.
|
||||
cases (rev EnqueueHere0); simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem dequeue_enqueue : forall A (q : t A) x,
|
||||
dequeue (enqueue q x)
|
||||
~~= match dequeue q with
|
||||
| None => Some (empty A, x)
|
||||
| Some (q', y) => Some (enqueue q' x, y)
|
||||
end.
|
||||
Proof.
|
||||
unfold dequeue_equiv, equiv; simplify.
|
||||
cases q; simplify.
|
||||
unfold dequeue, enqueue; simplify.
|
||||
cases DequeueHere0; simplify.
|
||||
|
||||
cases (rev EnqueueHere0); simplify.
|
||||
|
||||
equality.
|
||||
|
||||
unfold elements; simplify.
|
||||
SearchRewrite (rev (_ ++ _)).
|
||||
rewrite rev_app_distr.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
Qed.
|
||||
End TwoStacksQueue.
|
||||
|
||||
Module DelayedSum (Q : QUEUE).
|
||||
Fixpoint makeQueue (n : nat) (q : Q.t nat) : Q.t nat :=
|
||||
match n with
|
||||
| 0 => q
|
||||
| S n' => makeQueue n' (Q.enqueue q n')
|
||||
end.
|
||||
|
||||
Fixpoint computeSum (n : nat) (q : Q.t nat) : nat :=
|
||||
match n with
|
||||
| 0 => 0
|
||||
| S n' => match Q.dequeue q with
|
||||
| None => 0
|
||||
| Some (q', v) => v + computeSum n' q'
|
||||
end
|
||||
end.
|
||||
|
||||
Fixpoint sumUpto (n : nat) : nat :=
|
||||
match n with
|
||||
| 0 => 0
|
||||
| S n' => n' + sumUpto n'
|
||||
end.
|
||||
|
||||
Infix "~=" := Q.equiv (at level 70).
|
||||
Infix "~~=" := Q.dequeue_equiv (at level 70).
|
||||
|
||||
Lemma makeQueue_congruence : forall n a b,
|
||||
a ~= b
|
||||
-> makeQueue n a ~= makeQueue n b.
|
||||
Proof.
|
||||
induct n; simplify.
|
||||
|
||||
assumption.
|
||||
|
||||
apply IHn.
|
||||
apply Q.equiv_enqueue.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma dequeue_makeQueue : forall n q,
|
||||
Q.dequeue (makeQueue n q)
|
||||
~~= match Q.dequeue q with
|
||||
| Some (q', v) => Some (makeQueue n q', v)
|
||||
| None =>
|
||||
match n with
|
||||
| 0 => None
|
||||
| S n' => Some (makeQueue n' q, n')
|
||||
end
|
||||
end.
|
||||
Proof.
|
||||
induct n.
|
||||
|
||||
simplify.
|
||||
cases (Q.dequeue q).
|
||||
cases p.
|
||||
unfold Q.dequeue_equiv.
|
||||
propositional.
|
||||
apply Q.equiv_refl.
|
||||
unfold Q.dequeue_equiv.
|
||||
propositional.
|
||||
|
||||
simplify.
|
||||
unfold Q.dequeue_equiv in *.
|
||||
specialize (IHn (Q.enqueue q n)).
|
||||
cases (Q.dequeue (makeQueue n (Q.enqueue q n))).
|
||||
|
||||
cases p.
|
||||
pose proof (Q.dequeue_enqueue q n).
|
||||
unfold Q.dequeue_equiv in *.
|
||||
cases (Q.dequeue (Q.enqueue q n)).
|
||||
|
||||
cases p.
|
||||
cases (Q.dequeue q).
|
||||
|
||||
cases p.
|
||||
propositional.
|
||||
apply Q.equiv_trans with (b := makeQueue n t0).
|
||||
assumption.
|
||||
apply makeQueue_congruence.
|
||||
assumption.
|
||||
equality.
|
||||
|
||||
propositional.
|
||||
apply Q.equiv_trans with (b := makeQueue n t0).
|
||||
assumption.
|
||||
apply makeQueue_congruence.
|
||||
apply Q.equiv_trans with (b := Q.empty nat).
|
||||
assumption.
|
||||
apply Q.equiv_sym.
|
||||
apply Q.empty_dequeue.
|
||||
assumption.
|
||||
equality.
|
||||
|
||||
cases (Q.dequeue q).
|
||||
|
||||
cases p.
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
pose proof (Q.dequeue_enqueue q n).
|
||||
unfold Q.dequeue_equiv in H.
|
||||
cases (Q.dequeue (Q.enqueue q n)).
|
||||
|
||||
cases p.
|
||||
propositional.
|
||||
|
||||
cases (Q.dequeue q).
|
||||
|
||||
cases p.
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Theorem computeSum_congruence : forall n a b,
|
||||
a ~= b
|
||||
-> computeSum n a = computeSum n b.
|
||||
Proof.
|
||||
induct n.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
pose proof (Q.equiv_dequeue H).
|
||||
unfold Q.dequeue_equiv in H0.
|
||||
cases (Q.dequeue a).
|
||||
|
||||
cases p.
|
||||
cases (Q.dequeue b).
|
||||
cases p.
|
||||
rewrite IHn with (b := t0).
|
||||
equality.
|
||||
equality.
|
||||
propositional.
|
||||
|
||||
cases (Q.dequeue b).
|
||||
propositional.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem computeSum_ok : forall n,
|
||||
computeSum n (makeQueue n (Q.empty nat)) = sumUpto n.
|
||||
Proof.
|
||||
induct n.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
pose proof (dequeue_makeQueue n (Q.enqueue (Q.empty nat) n)).
|
||||
unfold Q.dequeue_equiv in H.
|
||||
cases (Q.dequeue (makeQueue n (Q.enqueue (Q.empty nat) n))).
|
||||
|
||||
cases p.
|
||||
pose proof (Q.dequeue_enqueue (Q.empty nat) n).
|
||||
unfold Q.dequeue_equiv in H0.
|
||||
cases (Q.dequeue (Q.enqueue (Q.empty nat) n)).
|
||||
|
||||
cases p.
|
||||
rewrite Q.dequeue_empty in H0.
|
||||
propositional.
|
||||
f_equal.
|
||||
equality.
|
||||
rewrite <- IHn.
|
||||
|
||||
apply computeSum_congruence.
|
||||
apply Q.equiv_trans with (b := makeQueue n t0).
|
||||
assumption.
|
||||
apply makeQueue_congruence.
|
||||
assumption.
|
||||
|
||||
rewrite Q.dequeue_empty in H0.
|
||||
propositional.
|
||||
|
||||
pose proof (Q.dequeue_enqueue (Q.empty nat) n).
|
||||
unfold Q.dequeue_equiv in H0.
|
||||
cases (Q.dequeue (Q.enqueue (Q.empty nat) n)).
|
||||
|
||||
cases p.
|
||||
propositional.
|
||||
|
||||
rewrite Q.dequeue_empty in H0.
|
||||
propositional.
|
||||
Qed.
|
||||
End DelayedSum.
|
||||
End AlgebraicWithEquivalenceRelation.
|
|
@ -12,6 +12,7 @@ BasicSyntax_template.v
|
|||
BasicSyntax.v
|
||||
Polymorphism.v
|
||||
Polymorphism_template.v
|
||||
DataAbstraction.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
TransitionSystems_template.v
|
||||
|
|
Loading…
Reference in a new issue