mirror of
https://github.com/achlipala/frap.git
synced 2025-01-10 01:54:13 +00:00
ProgramDerivation: ADT refinement reflexivity and transitivity
This commit is contained in:
parent
4171f5c286
commit
2f5635938c
1 changed files with 54 additions and 5 deletions
|
@ -6,6 +6,12 @@
|
||||||
|
|
||||||
Require Import FrapWithoutSets.
|
Require Import FrapWithoutSets.
|
||||||
Require Import Program Setoids.Setoid Classes.RelationClasses Classes.Morphisms Morphisms_Prop.
|
Require Import Program Setoids.Setoid Classes.RelationClasses Classes.Morphisms Morphisms_Prop.
|
||||||
|
Require Import Eqdep.
|
||||||
|
|
||||||
|
Ltac inv_pair :=
|
||||||
|
match goal with
|
||||||
|
| [ H : existT _ _ _ = existT _ _ _ |- _ ] => apply inj_pair2 in H; invert H
|
||||||
|
end.
|
||||||
|
|
||||||
|
|
||||||
(** * The computation monad *)
|
(** * The computation monad *)
|
||||||
|
@ -210,6 +216,8 @@ Inductive RefineMethods {state1 state2} (R : state1 -> state2 -> Prop)
|
||||||
-> RefineMethods R (MethodsCons {| MethodName := name; MethodBody := f1 |} ms1)
|
-> RefineMethods R (MethodsCons {| MethodName := name; MethodBody := f1 |} ms1)
|
||||||
(MethodsCons {| MethodName := name; MethodBody := f2 |} ms2).
|
(MethodsCons {| MethodName := name; MethodBody := f2 |} ms2).
|
||||||
|
|
||||||
|
Hint Constructors RefineMethods.
|
||||||
|
|
||||||
Record adt_refine {names} (adt1 adt2 : adt names) := {
|
Record adt_refine {names} (adt1 adt2 : adt names) := {
|
||||||
ArRel : AdtState adt1 -> AdtState adt2 -> Prop;
|
ArRel : AdtState adt1 -> AdtState adt2 -> Prop;
|
||||||
ArConstructors : forall s2,
|
ArConstructors : forall s2,
|
||||||
|
@ -272,6 +280,51 @@ Proof.
|
||||||
subst; eauto.
|
subst; eauto.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Hint Immediate RefineMethods_refl.
|
||||||
|
|
||||||
|
Theorem refine_refl : forall names (adt1 : adt names),
|
||||||
|
adt_refine adt1 adt1.
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
choose_relation (@eq (AdtState adt1)); eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma RefineMethods_trans : forall state1 state2 state3 names
|
||||||
|
R1 R2
|
||||||
|
(ms1 : methods state1 names)
|
||||||
|
(ms2 : methods state2 names)
|
||||||
|
(ms3 : methods state3 names),
|
||||||
|
|
||||||
|
RefineMethods R1 ms1 ms2
|
||||||
|
-> RefineMethods R2 ms2 ms3
|
||||||
|
-> RefineMethods (fun s1 s3 => exists s2, R1 s1 s2 /\ R2 s2 s3) ms1 ms3.
|
||||||
|
Proof.
|
||||||
|
induct 1; invert 1; repeat inv_pair; eauto.
|
||||||
|
|
||||||
|
econstructor; eauto.
|
||||||
|
first_order.
|
||||||
|
eapply H5 in H2; eauto.
|
||||||
|
first_order.
|
||||||
|
eapply H in H2; eauto.
|
||||||
|
first_order.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve RefineMethods_trans.
|
||||||
|
|
||||||
|
Theorem refine_trans : forall names (adt1 adt2 adt3 : adt names),
|
||||||
|
adt_refine adt1 adt2
|
||||||
|
-> adt_refine adt2 adt3
|
||||||
|
-> adt_refine adt1 adt3.
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
invert X.
|
||||||
|
invert X0.
|
||||||
|
choose_relation (fun s1 s3 => exists s2, ArRel0 s1 s2 /\ ArRel1 s2 s3); eauto.
|
||||||
|
|
||||||
|
apply ArConstructors1 in H.
|
||||||
|
first_order.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Theorem refine_constructor : forall names state constr1 constr2 (ms : methods _ names),
|
Theorem refine_constructor : forall names state constr1 constr2 (ms : methods _ names),
|
||||||
refine constr1 constr2
|
refine constr1 constr2
|
||||||
-> adt_refine {| AdtState := state;
|
-> adt_refine {| AdtState := state;
|
||||||
|
@ -282,9 +335,5 @@ Theorem refine_constructor : forall names state constr1 constr2 (ms : methods _
|
||||||
AdtMethods := ms |}.
|
AdtMethods := ms |}.
|
||||||
Proof.
|
Proof.
|
||||||
simplify.
|
simplify.
|
||||||
match goal with
|
choose_relation (@eq state); eauto.
|
||||||
| [ |- adt_refine ?a ?b ] => apply (Build_adt_refine names a b (@eq _))
|
|
||||||
end; simplify.
|
|
||||||
morphisms.
|
|
||||||
apply RefineMethods_refl.
|
|
||||||
Qed.
|
Qed.
|
||||||
|
|
Loading…
Reference in a new issue