OperationalSemantics: Add concurrency example

This commit is contained in:
Adam Chlipala 2016-02-28 11:56:17 -05:00
parent 4889f08ac4
commit 31bb6daffb

View file

@ -932,3 +932,141 @@ Proof.
apply cstep_step.
eassumption.
Qed.
(** * Example of how easy it is to add concurrency to a contextual semantics *)
Module Concurrent.
Inductive cmd :=
| Skip
| Assign (x : var) (e : arith)
| Sequence (c1 c2 : cmd)
| If (e : arith) (then_ else_ : cmd)
| While (e : arith) (body : cmd)
| Parallel (c1 c2 : cmd).
Inductive context :=
| Hole
| CSeq (C : context) (c : cmd)
| CPar1 (C : context) (c : cmd)
| CPar2 (c : cmd) (C : context).
Inductive plug : context -> cmd -> cmd -> Prop :=
| PlugHole : forall c, plug Hole c c
| PlugSeq : forall c C c' c2,
plug C c c'
-> plug (CSeq C c2) c (Sequence c' c2)
| PlugPar1 : forall c C c' c2,
plug C c c'
-> plug (CPar1 C c2) c (Parallel c' c2)
| PlugPar2 : forall c C c' c1,
plug C c c'
-> plug (CPar2 c1 C) c (Parallel c1 c').
Inductive step0 : valuation * cmd -> valuation * cmd -> Prop :=
| Step0Assign : forall v x e,
step0 (v, Assign x e) (v $+ (x, interp e v), Skip)
| Step0Seq : forall v c2,
step0 (v, Sequence Skip c2) (v, c2)
| Step0IfTrue : forall v e then_ else_,
interp e v <> 0
-> step0 (v, If e then_ else_) (v, then_)
| Step0IfFalse : forall v e then_ else_,
interp e v = 0
-> step0 (v, If e then_ else_) (v, else_)
| Step0WhileTrue : forall v e body,
interp e v <> 0
-> step0 (v, While e body) (v, Sequence body (While e body))
| Step0WhileFalse : forall v e body,
interp e v = 0
-> step0 (v, While e body) (v, Skip)
| Step0Par1 : forall v c,
step0 (v, Parallel Skip c) (v, c)
| Step0Par2 : forall v c,
step0 (v, Parallel c Skip) (v, c).
Inductive cstep : valuation * cmd -> valuation * cmd -> Prop :=
| CStep : forall C v c v' c' c1 c2,
plug C c c1
-> step0 (v, c) (v', c')
-> plug C c' c2
-> cstep (v, c1) (v', c2).
(* To give us something interesting to prove, let's also define a
* non-contextual small-step semantics. *)
Inductive step : valuation * cmd -> valuation * cmd -> Prop :=
| StepAssign : forall v x e,
step (v, Assign x e) (v $+ (x, interp e v), Skip)
| StepSeq1 : forall v c1 c2 v' c1',
step (v, c1) (v', c1')
-> step (v, Sequence c1 c2) (v', Sequence c1' c2)
| StepSeq2 : forall v c2,
step (v, Sequence Skip c2) (v, c2)
| StepIfTrue : forall v e then_ else_,
interp e v <> 0
-> step (v, If e then_ else_) (v, then_)
| StepIfFalse : forall v e then_ else_,
interp e v = 0
-> step (v, If e then_ else_) (v, else_)
| StepWhileTrue : forall v e body,
interp e v <> 0
-> step (v, While e body) (v, Sequence body (While e body))
| StepWhileFalse : forall v e body,
interp e v = 0
-> step (v, While e body) (v, Skip)
| StepParSkip1 : forall v c,
step (v, Parallel Skip c) (v, c)
| StepParSkip2 : forall v c,
step (v, Parallel c Skip) (v, c)
| StepPar1 : forall v c1 c2 v' c1',
step (v, c1) (v', c1')
-> step (v, Parallel c1 c2) (v', Parallel c1' c2)
| StepPar2 : forall v c1 c2 v' c2',
step (v, c2) (v', c2')
-> step (v, Parallel c1 c2) (v', Parallel c1 c2').
(* Bonus material: here's how to make these proofs much more automatic. We
* won't explain the features being used here. *)
Hint Constructors plug step0 cstep step.
Theorem step_cstep : forall v c v' c',
step (v, c) (v', c')
-> cstep (v, c) (v', c').
Proof.
induct 1; repeat match goal with
| [ H : cstep _ _ |- _ ] => invert H
end; eauto.
Qed.
Hint Resolve step_cstep.
Lemma step0_step : forall v c v' c',
step0 (v, c) (v', c')
-> step (v, c) (v', c').
Proof.
induct 1; eauto.
Qed.
Hint Resolve step0_step.
Lemma cstep_step' : forall C c0 c,
plug C c0 c
-> forall v' c'0 v c', step0 (v, c0) (v', c'0)
-> plug C c'0 c'
-> step (v, c) (v', c').
Proof.
induct 1; simplify; repeat match goal with
| [ H : plug _ _ _ |- _ ] => invert1 H
end; eauto.
Qed.
Hint Resolve cstep_step'.
Theorem cstep_step_snazzy : forall v c v' c',
cstep (v, c) (v', c')
-> step (v, c) (v', c').
Proof.
induct 1; eauto.
Qed.
End Concurrent.