Revising for the final week of class

This commit is contained in:
Adam Chlipala 2021-05-16 11:55:01 -04:00
parent 8fdc4e2cfd
commit 35d15a765d
3 changed files with 44 additions and 45 deletions

View file

@ -29,11 +29,11 @@ Notation channel := nat (only parsing).
(* Here are the basic syntactic constructions of processes. *)
Inductive proc :=
| NewChannel (notThese : list channel) (k : channel -> proc)
(* Pick a new channel name [ch] not found in [notThese], and continue like
(* Pick a new channel name [ch] not found in [notThese] and continue like
* [k ch]. *)
| BlockChannel (ch : channel) (pr : proc)
(* Act like [pr], but prevent interaction with other processes through channel
(* Act like [pr] but prevent interaction with other processes through channel
* [ch]. We effectively force [ch] to be *private*. *)
| Send (ch : channel) {A : Type} (v : A) (k : proc)
@ -146,7 +146,7 @@ Inductive lstep : proc -> label -> proc -> Prop :=
| LStepDup : forall pr,
lstep (Dup pr) Silent (Par (Dup pr) pr)
(* A channel allocation operation nondeterministically picks the new channel ID,
(* A channel-allocation operation nondeterministically picks the new channel ID,
* only checking that it isn't in the provided blacklist. We install a [Block]
* node to keep this channel truly private. *)
| LStepNew : forall chs ch k,
@ -241,7 +241,7 @@ Inductive couldGenerate : proc -> list action -> Prop :=
(* Skip ahead to [refines_couldGenerate] to see the top-level connection from
* [refines]. *)
Hint Constructors couldGenerate : core.
Global Hint Constructors couldGenerate : core.
Lemma lstepSilent_couldGenerate : forall pr1 pr2,
lstepSilent^* pr1 pr2
@ -251,7 +251,7 @@ Proof.
induct 1; eauto.
Qed.
Hint Resolve lstepSilent_couldGenerate : core.
Global Hint Resolve lstepSilent_couldGenerate : core.
Lemma simulates_couldGenerate' : forall (R : proc -> proc -> Prop),
(forall pr1 pr2, R pr1 pr2
@ -305,8 +305,8 @@ Ltac inverter :=
| [ H : lstepSilent _ _ |- _ ] => invert H
end.
Hint Constructors lstep : core.
Hint Unfold lstepSilent : core.
Global Hint Constructors lstep : core.
Global Hint Unfold lstepSilent : core.
Ltac lists' :=
repeat match goal with
@ -316,7 +316,7 @@ Ltac lists' :=
Ltac lists := solve [ lists' ].
Hint Extern 1 (NoDup _) => lists : core.
Global Hint Extern 1 (NoDup _) => lists : core.
(** * Examples *)
@ -361,7 +361,7 @@ Inductive R_add2 : proc -> proc -> Prop :=
(Block intermediate; Done || Done)
Done.
Hint Constructors R_add2 : core.
Global Hint Constructors R_add2 : core.
Theorem add2_once_refines_addN : forall input output,
input <> output
@ -462,9 +462,9 @@ Inductive RDup (R : proc -> proc -> Prop) : proc -> proc -> Prop :=
-> RDup R pr2 pr2'
-> RDup R (Par pr1 pr2) (Par pr1' pr2').
Hint Constructors RDup : core.
Global Hint Constructors RDup : core.
Hint Unfold lstepSilent : core.
Global Hint Unfold lstepSilent : core.
Lemma lstepSilent_Par1 : forall pr1 pr1' pr2,
lstepSilent^* pr1 pr1'
@ -480,7 +480,7 @@ Proof.
induct 1; eauto.
Qed.
Hint Resolve lstepSilent_Par1 lstepSilent_Par2 : core.
Global Hint Resolve lstepSilent_Par1 lstepSilent_Par2 : core.
Lemma refines_Dup_Action : forall R : _ -> _ -> Prop,
(forall pr1 pr2, R pr1 pr2
@ -593,7 +593,7 @@ Inductive RPar (R1 R2 : proc -> proc -> Prop) : proc -> proc -> Prop :=
-> R2 pr2 pr2'
-> RPar R1 R2 (pr1 || pr2) (pr1' || pr2').
Hint Constructors RPar : core.
Global Hint Constructors RPar : core.
Lemma refines_Par_Action : forall R1 R2 : _ -> _ -> Prop,
(forall pr1 pr2, R1 pr1 pr2
@ -706,8 +706,8 @@ Inductive RBlock (R : proc -> proc -> Prop) : proc -> proc -> Prop :=
R pr1 pr2
-> RBlock R (Block ch; pr1) (Block ch; pr2).
Hint Constructors RBlock : core.
Hint Unfold notUse : core.
Global Hint Constructors RBlock : core.
Global Hint Unfold notUse : core.
Lemma lstepSilent_Block : forall ch pr1 pr2,
lstepSilent^* pr1 pr2
@ -716,7 +716,7 @@ Proof.
induct 1; eauto.
Qed.
Hint Resolve lstepSilent_Block : core.
Global Hint Resolve lstepSilent_Block : core.
Theorem refines_Block : forall pr1 pr2 ch,
pr1 <| pr2
@ -743,7 +743,7 @@ Inductive RBlock2 : proc -> proc -> Prop :=
| RBlock2_1 : forall ch1 ch2 pr,
RBlock2 (Block ch1; Block ch2; pr) (Block ch2; Block ch1; pr).
Hint Constructors RBlock2 : core.
Global Hint Constructors RBlock2 : core.
Theorem refines_Block2 : forall ch1 ch2 pr,
Block ch1; Block ch2; pr <| Block ch2; Block ch1; pr.
@ -783,7 +783,7 @@ Inductive neverUses (ch : channel) : proc -> Prop :=
| NuDone :
neverUses ch Done.
Hint Constructors neverUses : core.
Global Hint Constructors neverUses : core.
Lemma neverUses_step : forall ch pr1,
neverUses ch pr1
@ -793,14 +793,14 @@ Proof.
induct 1; invert 1; eauto.
Qed.
Hint Resolve neverUses_step : core.
Global Hint Resolve neverUses_step : core.
Inductive RBlockS : proc -> proc -> Prop :=
| RBlockS1 : forall ch pr1 pr2,
neverUses ch pr2
-> RBlockS (Block ch; pr1 || pr2) ((Block ch; pr1) || pr2).
Hint Constructors RBlockS : core.
Global Hint Constructors RBlockS : core.
Lemma neverUses_notUse : forall ch pr l,
neverUses ch pr
@ -824,7 +824,7 @@ Proof.
simplify; auto.
Qed.
Hint Resolve neverUses_notUse : core.
Global Hint Resolve neverUses_notUse : core.
Theorem refines_BlockS : forall ch pr1 pr2,
neverUses ch pr2
@ -1008,7 +1008,7 @@ Inductive RTree (t : tree) (input output : channel) : proc -> proc -> Prop :=
(Block output'; threads || Done)
Done.
Hint Constructors TreeThreads RTree : core.
Global Hint Constructors TreeThreads RTree : core.
Lemma TreeThreads_actionIs : forall ch maySend pr,
TreeThreads ch maySend pr
@ -1055,7 +1055,7 @@ Proof.
induct 1; eauto.
Qed.
Hint Resolve TreeThreads_silent TreeThreads_maySend TreeThreads_action TreeThreads_weaken : core.
Global Hint Resolve TreeThreads_silent TreeThreads_maySend TreeThreads_action TreeThreads_weaken : core.
Lemma TreeThreads_inTree_par' : forall n ch t,
TreeThreads ch (mem n t) (inTree_par' n t ch).
@ -1066,7 +1066,7 @@ Proof.
cases (mem n t2); simplify; eauto.
Qed.
Hint Resolve TreeThreads_inTree_par' : core.
Global Hint Resolve TreeThreads_inTree_par' : core.
(* Finally, the main theorem: *)
Theorem refines_inTree_par : forall t input output,
@ -1186,7 +1186,7 @@ Inductive Rhandoff (ch : channel) (A : Type) (v : A) (k : A -> proc) : proc -> p
-> manyOf (??ch(x : A); k x) recvs
-> Rhandoff ch v k (Block ch; Done || recvs) rest.
Hint Constructors manyOf manyOfAndOneOf Rhandoff : core.
Global Hint Constructors manyOf manyOfAndOneOf Rhandoff : core.
Lemma manyOf_action : forall this pr,
manyOf this pr
@ -1226,7 +1226,7 @@ Proof.
invert H1; eauto.
Qed.
Hint Resolve manyOf_silent manyOf_rendezvous : core.
Global Hint Resolve manyOf_silent manyOf_rendezvous : core.
Lemma manyOfAndOneOf_output : forall ch (A : Type) (k : A -> _) rest ch0 (A0 : Type) (v0 : A0) pr,
manyOfAndOneOf (Recv ch k) rest pr
@ -1260,7 +1260,7 @@ Proof.
induct 1; simplify; eauto.
Qed.
Hint Resolve manyOf_manyOfAndOneOf : core.
Global Hint Resolve manyOf_manyOfAndOneOf : core.
Lemma no_rendezvous : forall ch0 (A0 : Type) (v : A0) pr1 rest (k : A0 -> _),
manyOfAndOneOf (??ch0 (x : _); k x) rest pr1
@ -1335,7 +1335,7 @@ Proof.
invert H.
Qed.
Hint Resolve manyOfAndOneOf_silent manyOf_rendezvous : core.
Global Hint Resolve manyOfAndOneOf_silent manyOf_rendezvous : core.
Lemma manyOfAndOneOf_action : forall ch (A : Type) (k : A -> _) rest pr,
manyOfAndOneOf (Recv ch k) rest pr

View file

@ -128,7 +128,7 @@ Definition trsys_of pr := {|
(* Note: here we force silent steps, so that all channel communication is
* internal. *)
Hint Constructors hasty : core.
Global Hint Constructors hasty : core.
(* The next two lemmas state some inversions that connect stepping and
* typing. *)
@ -347,7 +347,7 @@ Definition trsys_of pr := {|
Step := lstepSilent
|}.
Hint Constructors hasty : core.
Global Hint Constructors hasty : core.
Lemma input_typed : forall pr ch A v pr',
lstep pr (Action (Input {| Channel := ch; TypeOf := A; Value := v |})) pr'
@ -515,7 +515,7 @@ Definition trsys_of pr := {|
Step := lstepSilent
|}.
Hint Constructors hasty : core.
Global Hint Constructors hasty : core.
(* We prove that the type system rules out fancier constructs. *)
@ -546,7 +546,7 @@ Proof.
assumption.
Qed.
Hint Immediate hasty_not_Block hasty_not_Dup hasty_not_Par : core.
Global Hint Immediate hasty_not_Block hasty_not_Dup hasty_not_Par : core.
(* Next, we characterize how channels must be mapped, given typing of a
* process. *)
@ -605,7 +605,7 @@ Inductive typed_multistate party (channels : channel -> parties party) (t : type
-> typed_multistate channels t ps pr2
-> typed_multistate channels t (p :: ps) (pr1 || pr2).
Hint Constructors typed_multistate : core.
Global Hint Constructors typed_multistate : core.
(* This fancier typing judgment gets a fancier tactic for type-checking. *)
@ -652,7 +652,7 @@ Proof.
assumption.
Qed.
Hint Immediate no_silent_steps : core.
Global Hint Immediate no_silent_steps : core.
Lemma complementarity_forever_done : forall party (channels : _ -> parties party) pr pr',
lstep pr Silent pr'
@ -676,7 +676,7 @@ Proof.
assumption.
Qed.
Hint Immediate mayNotSend_really : core.
Global Hint Immediate mayNotSend_really : core.
Lemma may_not_output : forall (party : Type) pr pr' ch (A : Type) (v : A),
lstep pr (Action (Output {| Channel := ch; Value := v |})) pr'
@ -692,7 +692,7 @@ Proof.
assumption.
Qed.
Hint Immediate may_not_output : core.
Global Hint Immediate may_not_output : core.
Lemma output_is_legit : forall (party : Type) pr pr' ch (A : Type) (v : A),
lstep pr (Action (Output {| Channel := ch; Value := v |})) pr'
@ -815,7 +815,7 @@ Proof.
induct 1; eauto.
Qed.
Local Hint Immediate hasty_relax : core.
Global Hint Immediate hasty_relax : core.
Lemma complementarity_preserve_unused : forall party (channels : _ -> parties party)
pr ch (A : Type) (t : A -> _) all_parties,
@ -1058,7 +1058,7 @@ Inductive inert : proc -> Prop :=
-> inert pr2
-> inert (pr1 || pr2).
Hint Constructors inert : core.
Global Hint Constructors inert : core.
(* Now a few more fiddly lemmas. See you again at the [Theorem]. *)
@ -1070,7 +1070,7 @@ Proof.
invert H; eauto.
Qed.
Hint Immediate typed_multistate_inert : core.
Global Hint Immediate typed_multistate_inert : core.
Lemma deadlock_find_receiver : forall party (channels : _ -> parties party) all_parties
ch (A : Type) (k : A -> _) pr,
@ -1420,7 +1420,7 @@ Inductive mayTouch : proc -> channel -> Prop :=
mayTouch pr1 ch
-> mayTouch (Dup pr1) ch.
Hint Constructors mayTouch : core.
Global Hint Constructors mayTouch : core.
Import BasicTwoParty Multiparty.
@ -1435,7 +1435,7 @@ Proof.
end.
Qed.
Hint Immediate lstep_mayTouch : core.
Global Hint Immediate lstep_mayTouch : core.
Lemma Input_mayTouch : forall pr ch (A : Type) (v : A) pr',
lstep pr (Action (Input {| Channel := ch; Value := v |})) pr'
@ -1451,7 +1451,7 @@ Proof.
induct 1; eauto.
Qed.
Hint Immediate Input_mayTouch Output_mayTouch : core.
Global Hint Immediate Input_mayTouch Output_mayTouch : core.
Lemma independent_execution : forall pr1 pr2 pr,
lstepSilent^* (pr1 || pr2) pr

View file

@ -5607,7 +5607,7 @@ In the \emph{synchronous}\index{synchronous message passing} or \emph{rendezvous
The threads of the two complementary operations \emph{rendezvous} and pass the message in one atomic step.
Packages of semantics and proof techniques for such languages are often called \emph{process algebras}\index{process algebra}, as they support an algebraic style of reasoning about the source code of message-passing programs.
That is, we prove laws very similar to the familiar equations of algebra, and use those laws to ``rewrite'' inside larger processes, by replacing their subprocesses with others we have shown suitably equivalent.
That is, we prove laws very similar to the familiar equations of algebra and use those laws to ``rewrite'' inside larger processes, by replacing their subprocesses with others we have shown suitably equivalent.
It's a powerful technique for highly modular proofs, which we develop in the rest of this chapter for one concrete synchronous language.
Well-known process algebras include the $\pi$-calculus\index{$\pi$-calculus} and the Calculus of Communicating Systems\index{Calculus of Communicating Systems}; the one we focus on is idiosyncratic and designed partly to make the Coq proofs manageable.
@ -5722,7 +5722,6 @@ Instead, we formalize refinement via \emph{simulation}, very similarly to how we
Intuitively, $R$ is a simulation when, starting in a pair of related processes, any step on the left can be matched by a step on the right, taking us back into $R$.
The conditions are naturally illustrated with commuting diagrams\index{commuting diagram}.
\[
\begin{tikzcd}
p_1 \arrow{r}{R} \arrow{d}{\forall \longrightarrow} & p_2 \arrow{d}{\exists \longrightarrow^*} \\