ConcurrentSeparationLogic.v: finished soundness proof

This commit is contained in:
Adam Chlipala 2016-04-27 19:54:51 -04:00
parent 856d8b43b2
commit 38d4e24966

View file

@ -910,17 +910,62 @@ Proof.
apply lockChunks_lock' with (f := fun n => n); auto.
Qed.
Lemma lockChunks_unlock' : forall l I linvs (f : nat -> nat) a,
f a \in l
-> nth_error linvs a = Some I
-> (forall x y, f x = f y -> x = y)
-> I * bigstar (fun i I => (~f i \in l) ===> I)%sep linvs ===> bigstar (fun i I => (~(f i \in l \setminus {f a})) ===> I)%sep linvs.
Proof.
induct linvs; simplify.
cases a; simplify; equality.
cases a0; simplify.
invert H0.
rewrite guarded_false by sets.
rewrite guarded_true by sets.
cancel.
apply bigstar_impl.
simp.
apply guarded_impl.
sets.
apply H0; propositional.
apply H1 in H4.
equality.
apply (IHlinvs (fun n => f (S n))) in H0; auto.
rewrite <- H0.
cancel.
apply guarded_impl.
sets.
apply H2; propositional.
apply H1 in H5.
equality.
simp.
apply H1 in H2.
equality.
Qed.
Lemma lockChunks_unlock : forall a l I linvs,
a \in l
-> nth_error linvs a = Some I
-> I * lockChunks l linvs ===> lockChunks (l \setminus {a}) linvs.
Proof.
simp.
apply lockChunks_unlock' with (f := fun n => n); auto.
Qed.
Lemma preservation : forall linvs {result} (c : cmd result) h l c' h' l',
step (h, l, c) (h', l', c')
-> forall P Q, hoare_triple linvs P c Q
-> (P * lockChunks l linvs)%sep h
-> exists P', hoare_triple linvs P' c' Q
/\ (P' * lockChunks l' linvs)%sep h'.
-> forall P Q R, hoare_triple linvs P c Q
-> (P * R * lockChunks l linvs)%sep h
-> exists P', hoare_triple linvs P' c' Q
/\ (P' * R * lockChunks l' linvs)%sep h'.
Proof.
induct 1; simplify.
apply invert_Bind in H0; simp.
apply IHstep in H0; eauto.
eapply IHstep in H0; eauto.
simp.
eauto.
@ -943,7 +988,7 @@ Proof.
eauto.
apply invert_Read in H0; simp.
assert ((exists v, a |-> v * (x v * lockChunks l' linvs))%sep h').
assert ((exists v, a |-> v * (x v * R * lockChunks l' linvs))%sep h').
eapply use_himp; try eassumption.
rewrite H0.
cancel.
@ -955,7 +1000,7 @@ Proof.
cancel.
apply invert_Write in H0; simp.
assert ((exists v, a |-> v * (x * lockChunks l' linvs))%sep h).
assert ((exists v, a |-> v * (x * R * lockChunks l' linvs))%sep h).
eapply use_himp; try eassumption.
rewrite H0.
cancel.
@ -971,7 +1016,7 @@ Proof.
eexists; propositional.
apply HtReturn'.
eassumption.
apply use_himp with ((P * lockChunks l' linvs) * a |--> zeroes numWords)%sep.
apply use_himp with ((P * R * lockChunks l' linvs) * a |--> zeroes numWords)%sep.
cancel.
apply use_himp with ((fun h' => h' = h) * a |--> zeroes numWords)%sep.
cancel.
@ -999,7 +1044,50 @@ Proof.
rewrite <- H3.
cancel.
apply lockChunks_lock; auto.
Admitted.
apply invert_Unlock in H0.
simp.
eexists; propositional.
apply HtReturn'; auto.
eapply use_himp; try eassumption.
rewrite H3.
cancel.
rewrite <- lockChunks_unlock; eauto.
cancel.
apply invert_Par in H0.
simp.
eapply IHstep in H2.
simp.
eexists; propositional.
eapply HtStrengthen.
econstructor.
eassumption.
eassumption.
simp.
cases r; auto.
eapply use_himp; try eassumption.
cancel.
eapply use_himp; try eassumption.
cancel.
apply invert_Par in H0.
simp.
eapply IHstep in H0.
simp.
eexists; propositional.
eapply HtStrengthen.
econstructor.
eassumption.
eassumption.
simp.
cases r; auto.
eapply use_himp; try eassumption.
cancel.
eapply use_himp; try eassumption.
rewrite H3.
cancel.
Qed.
Definition allLockChunks (linvs : list hprop) := bigstar (fun _ I => I) linvs.
@ -1045,7 +1133,13 @@ Proof.
cases s'.
cases p.
simp.
eauto using preservation.
eapply preservation with (R := emp%sep) in H1; eauto.
simp.
eexists; propositional; eauto.
eapply use_himp; try eassumption.
cancel.
eapply use_himp; try eassumption.
cancel.
Qed.
Fixpoint notAboutToFail {result} (c : cmd result) :=