mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
ProgramDerivation: ADT refinement and one general principle for it
This commit is contained in:
parent
cf67854a42
commit
4171f5c286
1 changed files with 136 additions and 0 deletions
|
@ -152,3 +152,139 @@ Print impl.
|
|||
* here. *)
|
||||
Transparent max.
|
||||
Eval compute in impl (1 :: 7 :: 8 :: 2 :: 13 :: 6 :: nil).
|
||||
|
||||
|
||||
(** * Abstract data types (ADTs) *)
|
||||
|
||||
Record method_ {state : Type} := {
|
||||
MethodName : string;
|
||||
MethodBody : state -> nat -> comp (state * nat)
|
||||
}.
|
||||
|
||||
Arguments method_ : clear implicits.
|
||||
|
||||
Inductive methods {state : Type} : list string -> Type :=
|
||||
| MethodsNil : methods []
|
||||
| MethodsCons : forall (m : method_ state) {names},
|
||||
methods names
|
||||
-> methods (MethodName m :: names).
|
||||
|
||||
Arguments methods : clear implicits.
|
||||
|
||||
Notation "'method' name [[ self , arg ]] = body" :=
|
||||
{| MethodName := name;
|
||||
MethodBody := fun self arg => body |}
|
||||
(at level 100, self at level 0, arg at level 0).
|
||||
|
||||
Record adt {names : list string} := {
|
||||
AdtState : Type;
|
||||
AdtConstructor : comp AdtState;
|
||||
AdtMethods : methods AdtState names
|
||||
}.
|
||||
|
||||
Arguments adt : clear implicits.
|
||||
|
||||
Notation "'ADT' { 'rep' = state 'and' 'constructor' = constr ms }" :=
|
||||
{| AdtState := state;
|
||||
AdtConstructor := constr;
|
||||
AdtMethods := ms |}.
|
||||
|
||||
Notation "'and' m1 'and' .. 'and' mn" :=
|
||||
(MethodsCons m1 (.. (MethodsCons mn MethodsNil) ..)) (at level 101).
|
||||
|
||||
|
||||
(** * ADT refinement *)
|
||||
|
||||
Inductive RefineMethods {state1 state2} (R : state1 -> state2 -> Prop)
|
||||
: forall {names}, methods state1 names -> methods state2 names -> Prop :=
|
||||
| RmNil : RefineMethods R MethodsNil MethodsNil
|
||||
| RmCons : forall name names (f1 : state1 -> nat -> comp (state1 * nat))
|
||||
(f2 : state2 -> nat -> comp (state2 * nat))
|
||||
(ms1 : methods state1 names) (ms2 : methods state2 names),
|
||||
(forall s1 s2 arg s2' res,
|
||||
R s1 s2
|
||||
-> f2 s2 arg (s2', res)
|
||||
-> exists s1', f1 s1 arg (s1', res)
|
||||
/\ R s1' s2')
|
||||
-> RefineMethods R ms1 ms2
|
||||
-> RefineMethods R (MethodsCons {| MethodName := name; MethodBody := f1 |} ms1)
|
||||
(MethodsCons {| MethodName := name; MethodBody := f2 |} ms2).
|
||||
|
||||
Record adt_refine {names} (adt1 adt2 : adt names) := {
|
||||
ArRel : AdtState adt1 -> AdtState adt2 -> Prop;
|
||||
ArConstructors : forall s2,
|
||||
AdtConstructor adt2 s2
|
||||
-> exists s1, AdtConstructor adt1 s1
|
||||
/\ ArRel s1 s2;
|
||||
ArMethods : RefineMethods ArRel (AdtMethods adt1) (AdtMethods adt2)
|
||||
}.
|
||||
|
||||
Ltac choose_relation R :=
|
||||
match goal with
|
||||
| [ |- adt_refine ?a ?b ] => apply (Build_adt_refine _ a b R)
|
||||
end; simplify.
|
||||
|
||||
(** ** Example: numeric counter *)
|
||||
|
||||
Definition counter := ADT {
|
||||
rep = nat
|
||||
and constructor = ret 0
|
||||
and method "increment1"[[self, arg]] = ret (self + arg, 0)
|
||||
and method "increment2"[[self, arg]] = ret (self + arg, 0)
|
||||
and method "value"[[self, _]] = ret (self, self)
|
||||
}.
|
||||
|
||||
Definition split_counter := ADT {
|
||||
rep = nat * nat
|
||||
and constructor = ret (0, 0)
|
||||
and method "increment1"[[self, arg]] = ret ((fst self + arg, snd self), 0)
|
||||
and method "increment2"[[self, arg]] = ret ((fst self, snd self + arg), 0)
|
||||
and method "value"[[self, _]] = ret (self, fst self + snd self)
|
||||
}.
|
||||
|
||||
Hint Extern 1 (@eq nat _ _) => simplify; linear_arithmetic.
|
||||
|
||||
Theorem split_counter_ok : adt_refine counter split_counter.
|
||||
Proof.
|
||||
choose_relation (fun n p => n = fst p + snd p).
|
||||
|
||||
unfold ret in *; subst.
|
||||
eauto.
|
||||
|
||||
repeat constructor; simplify; unfold ret in *; subst;
|
||||
match goal with
|
||||
| [ H : (_, _) = (_, _) |- _ ] => invert H
|
||||
end; eauto.
|
||||
|
||||
Grab Existential Variables.
|
||||
exact 0.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * General refinement strategies *)
|
||||
|
||||
Lemma RefineMethods_refl : forall state names (ms : methods state names),
|
||||
RefineMethods (@eq _) ms ms.
|
||||
Proof.
|
||||
induct ms.
|
||||
constructor.
|
||||
cases m; constructor; first_order.
|
||||
subst; eauto.
|
||||
Qed.
|
||||
|
||||
Theorem refine_constructor : forall names state constr1 constr2 (ms : methods _ names),
|
||||
refine constr1 constr2
|
||||
-> adt_refine {| AdtState := state;
|
||||
AdtConstructor := constr1;
|
||||
AdtMethods := ms |}
|
||||
{| AdtState := state;
|
||||
AdtConstructor := constr2;
|
||||
AdtMethods := ms |}.
|
||||
Proof.
|
||||
simplify.
|
||||
match goal with
|
||||
| [ |- adt_refine ?a ?b ] => apply (Build_adt_refine names a b (@eq _))
|
||||
end; simplify.
|
||||
morphisms.
|
||||
apply RefineMethods_refl.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue