mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
More examples for first chapter
This commit is contained in:
parent
f8945106da
commit
42d48c6e58
2 changed files with 115 additions and 2 deletions
111
BasicSyntax.v
111
BasicSyntax.v
|
@ -247,4 +247,115 @@ Module ArithWithVariables.
|
|||
end; equality || linear_arithmetic || ring.
|
||||
Qed.
|
||||
|
||||
Definition isConst (e : arith) : option nat :=
|
||||
match e with
|
||||
| Const n => Some n
|
||||
| _ => None
|
||||
end.
|
||||
|
||||
Fixpoint pushMultiplicationInside' (multiplyBy : nat) (e : arith) : arith :=
|
||||
match e with
|
||||
| Const n => Const (multiplyBy * n)
|
||||
| Var _ => Times (Const multiplyBy) e
|
||||
| Plus e1 e2 => Plus (pushMultiplicationInside' multiplyBy e1)
|
||||
(pushMultiplicationInside' multiplyBy e2)
|
||||
| Times e1 e2 =>
|
||||
match isConst e1 with
|
||||
| Some k => pushMultiplicationInside' (k * multiplyBy) e2
|
||||
| None => Times (pushMultiplicationInside' multiplyBy e1) e2
|
||||
end
|
||||
end.
|
||||
|
||||
Definition pushMultiplicationInside (e : arith) : arith :=
|
||||
pushMultiplicationInside' 1 e.
|
||||
|
||||
Lemma n_times_0 : forall n, n * 0 = 0.
|
||||
Proof.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma depth_pushMultiplicationInside'_irrelevance0 : forall e multiplyBy,
|
||||
depth (pushMultiplicationInside' multiplyBy e)
|
||||
= depth (pushMultiplicationInside' 0 e).
|
||||
Proof.
|
||||
induct e; simplify.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
rewrite IHe1.
|
||||
rewrite IHe2.
|
||||
linear_arithmetic.
|
||||
|
||||
cases (isConst e1); simplify.
|
||||
|
||||
rewrite IHe2.
|
||||
rewrite n_times_0.
|
||||
linear_arithmetic.
|
||||
|
||||
rewrite IHe1.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma depth_pushMultiplicationInside'_irrelevance0_snazzy : forall e multiplyBy,
|
||||
depth (pushMultiplicationInside' multiplyBy e)
|
||||
= depth (pushMultiplicationInside' 0 e).
|
||||
Proof.
|
||||
induct e; simplify;
|
||||
try match goal with
|
||||
| [ |- context[match ?E with _ => _ end] ] => cases E; simplify
|
||||
end; equality.
|
||||
Qed.
|
||||
|
||||
Lemma depth_pushMultiplicationInside'_irrelevance : forall e multiplyBy1 multiplyBy2,
|
||||
depth (pushMultiplicationInside' multiplyBy1 e)
|
||||
= depth (pushMultiplicationInside' multiplyBy2 e).
|
||||
Proof.
|
||||
intros.
|
||||
transitivity (depth (pushMultiplicationInside' 0 e)).
|
||||
apply depth_pushMultiplicationInside'_irrelevance0.
|
||||
symmetry.
|
||||
apply depth_pushMultiplicationInside'_irrelevance0.
|
||||
Qed.
|
||||
|
||||
Lemma depth_pushMultiplicationInside' : forall e,
|
||||
depth (pushMultiplicationInside' 0 e) <= S (depth e).
|
||||
Proof.
|
||||
induct e; simplify.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
cases (isConst e1); simplify.
|
||||
|
||||
rewrite n_times_0.
|
||||
linear_arithmetic.
|
||||
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite n_times_0.
|
||||
|
||||
Lemma depth_pushMultiplicationInside'_snazzy : forall e,
|
||||
depth (pushMultiplicationInside' 0 e) <= S (depth e).
|
||||
Proof.
|
||||
induct e; simplify;
|
||||
try match goal with
|
||||
| [ |- context[match ?E with _ => _ end] ] => cases E; simplify
|
||||
end; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Theorem depth_pushMultiplicationInside : forall e,
|
||||
depth (pushMultiplicationInside e) <= S (depth e).
|
||||
Proof.
|
||||
simplify.
|
||||
unfold pushMultiplicationInside.
|
||||
rewrite depth_pushMultiplicationInside'_irrelevance0.
|
||||
apply depth_pushMultiplicationInside'.
|
||||
Qed.
|
||||
|
||||
End ArithWithVariables.
|
||||
|
|
6
Frap.v
6
Frap.v
|
@ -42,9 +42,9 @@ Ltac invert0 e := invert e; fail.
|
|||
Ltac invert1 e := invert0 e || (invert e; []).
|
||||
Ltac invert2 e := invert1 e || (invert e; [|]).
|
||||
|
||||
Ltac simplify := simpl in *.
|
||||
Ltac simplify := simpl in *; intros; try autorewrite with core in *.
|
||||
|
||||
Ltac linear_arithmetic :=
|
||||
Ltac linear_arithmetic := intros;
|
||||
repeat match goal with
|
||||
| [ |- context[max ?a ?b] ] =>
|
||||
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
|
||||
|
@ -68,3 +68,5 @@ Ltac cases E :=
|
|||
| {_} + {_} => destruct E
|
||||
| _ => let Heq := fresh "Heq" in destruct E eqn:Heq
|
||||
end.
|
||||
|
||||
Global Opaque max min.
|
||||
|
|
Loading…
Reference in a new issue