From 4388ecc80e41fe050b6cef3dcad4b79c9d6ab451 Mon Sep 17 00:00:00 2001 From: Adam Chlipala Date: Sun, 1 Apr 2018 13:06:47 -0400 Subject: [PATCH] Revising LambdaCalculusAndTypeSoundness --- LambdaCalculusAndTypeSoundness.v | 11 ++++++----- LambdaCalculusAndTypeSoundness_template.v | 22 ++-------------------- 2 files changed, 8 insertions(+), 25 deletions(-) diff --git a/LambdaCalculusAndTypeSoundness.v b/LambdaCalculusAndTypeSoundness.v index 5903a3f..f3ecd14 100644 --- a/LambdaCalculusAndTypeSoundness.v +++ b/LambdaCalculusAndTypeSoundness.v @@ -27,7 +27,7 @@ Module Ulc. * discussion. *) Fixpoint subst (rep : exp) (x : var) (e : exp) : exp := match e with - | Var y => if string_dec y x then rep else Var y + | Var y => if y ==v x then rep else Var y | Abs y e1 => Abs y (if y ==v x then e1 else subst rep x e1) | App e1 e2 => App (subst rep x e1) (subst rep x e2) end. @@ -49,10 +49,10 @@ Module Ulc. (* Note that we omit a [Var] case, since variable terms can't be *closed*, * and therefore they aren't meaningful as top-level programs. *) - (** Which terms are values, that is, final results of execution? *) + (* Which terms are values, that is, final results of execution? *) Inductive value : exp -> Prop := | Value : forall x e, value (Abs x e). - (** We're cheating a bit here, *assuming* that the term is also closed. *) + (* We're cheating a bit here, *assuming* that the term is also closed. *) Hint Constructors eval value. @@ -66,7 +66,7 @@ Module Ulc. Hint Resolve value_eval. - (** Conversely, let's prove that [eval] only produces values. *) + (* Conversely, let's prove that [eval] only produces values. *) Theorem eval_value : forall e v, eval e v -> value v. @@ -467,7 +467,8 @@ End Ulc. (** * Now we turn to a variant of lambda calculus with static type-checking. * This variant is called *simply typed* lambda calculus, and *simple* has a - * technical meaning, which we will explore relaxing in a problem set. *) + * technical meaning, basically meaning "no polymorphism" in the sense of + * example file Polymorphism.v from this book. *) Module Stlc. (* We add expression forms for numeric constants and addition. *) Inductive exp : Set := diff --git a/LambdaCalculusAndTypeSoundness_template.v b/LambdaCalculusAndTypeSoundness_template.v index 1c5ab96..e3af65e 100644 --- a/LambdaCalculusAndTypeSoundness_template.v +++ b/LambdaCalculusAndTypeSoundness_template.v @@ -17,7 +17,7 @@ Module Ulc. Fixpoint subst (rep : exp) (x : var) (e : exp) : exp := match e with - | Var y => if string_dec y x then rep else Var y + | Var y => if y ==v x then rep else Var y | Abs y e1 => Abs y (if y ==v x then e1 else subst rep x e1) | App e1 e2 => App (subst rep x e1) (subst rep x e2) end. @@ -548,23 +548,6 @@ Module Stlc. Definition unstuck e := value e \/ (exists e' : exp, step e e'). - (* For class, we'll stick with this magic tactic, to save proving time. *) - - Ltac t0 := match goal with - | [ H : ex _ |- _ ] => invert H - | [ H : _ /\ _ |- _ ] => invert H - | [ |- context[?x ==v ?y] ] => cases (x ==v y) - | [ H : Some _ = Some _ |- _ ] => invert H - - | [ H : step _ _ |- _ ] => invert H - | [ H : step0 _ _ |- _ ] => invert1 H - | [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H - | [ H : hasty _ _ _ |- _ ] => invert1 H - | [ H : plug _ _ _ |- _ ] => invert1 H - end; subst. - - Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6. - Lemma progress : forall e t, hasty $0 e t -> value e @@ -579,8 +562,7 @@ Module Stlc. -> forall G', G' = G -> hasty G' e t. Proof. - t. - Qed. + Admitted. Hint Resolve hasty_change.