mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
DeepAndShallowEmbeddings: example of a derived program form
This commit is contained in:
parent
9330f3714e
commit
4849bf22a2
1 changed files with 151 additions and 1 deletions
|
@ -725,6 +725,8 @@ Module DeeperWithFail.
|
|||
end
|
||||
end.
|
||||
|
||||
Extraction "DeeperWithFail.ml" forever.
|
||||
|
||||
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
|
||||
| HtReturn : forall P {result : Set} (v : result),
|
||||
hoare_triple P (Return v) (fun r h => P h /\ r = v)
|
||||
|
@ -989,5 +991,153 @@ Module DeeperWithFail.
|
|||
cases (step (fst s) (snd s)); equality.
|
||||
Qed.
|
||||
|
||||
Extraction "DeeperWithFail.ml" forever.
|
||||
|
||||
(** ** Showcasing the opportunity to create new programming abstractions,
|
||||
* without modifying the language definition *)
|
||||
|
||||
Definition heapfold {A : Set} (init : A) (combine : A -> nat -> cmd A) (len : nat) : cmd A :=
|
||||
p <- for p := (0, init) loop
|
||||
if len <=? fst p then
|
||||
Return (Done p)
|
||||
else
|
||||
h_i <- Read (fst p);
|
||||
acc <- combine (snd p) h_i;
|
||||
Return (Again (S (fst p), acc))
|
||||
done;
|
||||
Return (snd p).
|
||||
|
||||
Lemma firstn_nochange : forall A (ls : list A) n,
|
||||
length ls <= n
|
||||
-> firstn n ls = ls.
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
|
||||
cases n; simplify; auto.
|
||||
|
||||
cases n; simplify.
|
||||
linear_arithmetic.
|
||||
rewrite IHls; auto.
|
||||
Qed.
|
||||
|
||||
Lemma fold_left_firstn : forall A B (f : A -> B -> A) (d : B) (ls : list B) (init : A) n,
|
||||
n < length ls
|
||||
-> f (fold_left f (firstn n ls) init) (nth_default d ls n)
|
||||
= fold_left f (firstn (S n) ls) init.
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
linear_arithmetic.
|
||||
cases n; simplify.
|
||||
unfold nth_default; simplify.
|
||||
reflexivity.
|
||||
rewrite <- IHls by linear_arithmetic.
|
||||
unfold nth_default; simplify.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite firstn_nochange fold_left_firstn using linear_arithmetic.
|
||||
|
||||
Theorem heapfold_ok : forall {A : Set} (init : A) combine
|
||||
(ls : list nat) (f : A -> nat -> A),
|
||||
(forall P v acc,
|
||||
{{h ~> P h}}
|
||||
combine acc v
|
||||
{{r&h ~> r = f acc v /\ P h}})
|
||||
-> {{h ~> forall i, i < length ls -> h $! i = nth_default 0 ls i}}
|
||||
heapfold init combine (length ls)
|
||||
{{r&h ~> (forall i, i < length ls -> h $! i = nth_default 0 ls i)
|
||||
/\ r = fold_left f ls init}}.
|
||||
Proof.
|
||||
unfold heapfold.
|
||||
simplify.
|
||||
econstructor.
|
||||
eapply HtWeaken.
|
||||
apply HtLoop with (I := fun r h => (forall i, i < length ls -> h $! i = nth_default 0 ls i)
|
||||
/\ match r with
|
||||
| Done (_, acc) => acc = fold_left f ls init
|
||||
| Again (i, acc) => acc = fold_left f (firstn i ls) init
|
||||
end).
|
||||
simplify.
|
||||
cases acc; simplify.
|
||||
cases (length ls <=? n); simplify.
|
||||
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
reflexivity.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
eapply HtWeaken.
|
||||
apply H with (P := fun h => (forall i, i < Datatypes.length ls -> h $! i = nth_default 0 ls i)
|
||||
/\ a = fold_left f (firstn n ls) init
|
||||
/\ r = h $! n).
|
||||
simplify; propositional; subst; auto.
|
||||
simplify.
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify; propositional; subst.
|
||||
rewrite H1 by assumption.
|
||||
simplify.
|
||||
reflexivity.
|
||||
|
||||
simplify; propositional.
|
||||
|
||||
simplify.
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
cases r; simplify.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Definition array_max (len : nat) : cmd nat :=
|
||||
heapfold 0 (fun n m => Return (max n m)) len.
|
||||
|
||||
Lemma le_max' : forall v ls acc,
|
||||
v <= acc
|
||||
-> v <= fold_left max ls acc.
|
||||
Proof.
|
||||
induct ls; simplify; auto.
|
||||
Qed.
|
||||
|
||||
Lemma le_max : forall ls i acc,
|
||||
i < Datatypes.length ls
|
||||
-> nth_default 0 ls i <= fold_left max ls acc.
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
cases i; simplify.
|
||||
unfold nth_default; simplify.
|
||||
apply le_max'; linear_arithmetic.
|
||||
unfold nth_default; simplify.
|
||||
apply IHls; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve le_max.
|
||||
|
||||
Theorem array_max_ok : forall ls : list nat,
|
||||
{{ h ~> forall i, i < length ls -> h $! i = nth_default 0 ls i}}
|
||||
array_max (length ls)
|
||||
{{ r&h ~> forall i, i < length ls -> h $! i <= r }}.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
apply heapfold_ok with (f := max).
|
||||
simplify.
|
||||
eapply HtStrengthen.
|
||||
econstructor.
|
||||
simplify; propositional.
|
||||
simplify; auto.
|
||||
simplify.
|
||||
subst.
|
||||
propositional; subst.
|
||||
rewrite H1 by assumption.
|
||||
auto.
|
||||
Qed.
|
||||
End DeeperWithFail.
|
||||
|
|
Loading…
Reference in a new issue