mirror of
https://github.com/achlipala/frap.git
synced 2025-01-21 13:56:12 +00:00
Revising for Monday's lecture
This commit is contained in:
parent
e3f0ada30e
commit
52e47df705
2 changed files with 21 additions and 20 deletions
|
@ -463,7 +463,7 @@ Module Simple.
|
|||
(* Bonus material: here's how to make these proofs much more automatic. We
|
||||
* won't explain the features being used here. *)
|
||||
|
||||
Hint Constructors trc step eval : core.
|
||||
Local Hint Constructors trc step eval : core.
|
||||
|
||||
Lemma step_star_Seq_snazzy : forall v c1 c2 v' c1',
|
||||
step^* (v, c1) (v', c1')
|
||||
|
@ -473,7 +473,7 @@ Module Simple.
|
|||
cases y; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_star_Seq_snazzy : core.
|
||||
Local Hint Resolve step_star_Seq_snazzy : core.
|
||||
|
||||
Theorem big_small_snazzy : forall v c v', eval v c v'
|
||||
-> step^* (v, c) (v', Skip).
|
||||
|
@ -491,7 +491,7 @@ Module Simple.
|
|||
end; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve small_big''_snazzy : core.
|
||||
Local Hint Resolve small_big''_snazzy : core.
|
||||
|
||||
Lemma small_big'_snazzy : forall v c v' c', step^* (v, c) (v', c')
|
||||
-> forall v'', eval v' c' v''
|
||||
|
@ -501,7 +501,7 @@ Module Simple.
|
|||
cases y; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve small_big'_snazzy : core.
|
||||
Local Hint Resolve small_big'_snazzy : core.
|
||||
|
||||
Theorem small_big_snazzy : forall v c v', step^* (v, c) (v', Skip)
|
||||
-> eval v c v'.
|
||||
|
@ -688,8 +688,8 @@ Module Simple.
|
|||
Qed.
|
||||
|
||||
(* That manual proof was quite a pain. Here's a bonus automated proof. *)
|
||||
Hint Constructors isEven : core.
|
||||
Hint Resolve isEven_minus2 isEven_plus : core.
|
||||
Local Hint Constructors isEven : core.
|
||||
Local Hint Resolve isEven_minus2 isEven_plus : core.
|
||||
|
||||
Lemma manually_proved_invariant'_snazzy : forall n,
|
||||
isEven n
|
||||
|
@ -866,7 +866,7 @@ Module Simple.
|
|||
(* Bonus material: here's how to make these proofs much more automatic. We
|
||||
* won't explain the features being used here. *)
|
||||
|
||||
Hint Constructors plug step0 cstep : core.
|
||||
Local Hint Constructors plug step0 cstep : core.
|
||||
|
||||
Theorem step_cstep_snazzy : forall v c v' c',
|
||||
step (v, c) (v', c')
|
||||
|
@ -877,7 +877,7 @@ Module Simple.
|
|||
end; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_cstep_snazzy : core.
|
||||
Local Hint Resolve step_cstep_snazzy : core.
|
||||
|
||||
Lemma step0_step_snazzy : forall v c v' c',
|
||||
step0 (v, c) (v', c')
|
||||
|
@ -886,7 +886,7 @@ Module Simple.
|
|||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step0_step_snazzy : core.
|
||||
Local Hint Resolve step0_step_snazzy : core.
|
||||
|
||||
Lemma cstep_step'_snazzy : forall C c0 c,
|
||||
plug C c0 c
|
||||
|
@ -899,7 +899,7 @@ Module Simple.
|
|||
end; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve cstep_step'_snazzy : core.
|
||||
Local Hint Resolve cstep_step'_snazzy : core.
|
||||
|
||||
Theorem cstep_step_snazzy : forall v c v' c',
|
||||
cstep (v, c) (v', c')
|
||||
|
@ -962,6 +962,7 @@ Module Simple.
|
|||
Qed.
|
||||
End Simple.
|
||||
|
||||
|
||||
(** * Example of how easy it is to add concurrency to a contextual semantics *)
|
||||
|
||||
Module Concurrent.
|
||||
|
@ -1044,7 +1045,7 @@ Module Concurrent.
|
|||
|| ("b" <- "n";;
|
||||
"n" <- "b" + 1).
|
||||
|
||||
Hint Constructors plug step0 cstep : core.
|
||||
Local Hint Constructors plug step0 cstep : core.
|
||||
|
||||
(* The naive "expected" answer is attainable. *)
|
||||
Theorem correctAnswer : forall n, exists v, cstep^* ($0 $+ ("n", n), prog) (v, Skip)
|
||||
|
@ -1149,7 +1150,7 @@ Module Concurrent.
|
|||
step (v, c2) (v', c2')
|
||||
-> step (v, Parallel c1 c2) (v', Parallel c1 c2').
|
||||
|
||||
Hint Constructors step : core.
|
||||
Local Hint Constructors step : core.
|
||||
|
||||
(* Now, an automated proof of equivalence. Actually, it's *exactly* the same
|
||||
* proof we used for the old feature set! *)
|
||||
|
@ -1163,7 +1164,7 @@ Module Concurrent.
|
|||
end; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_cstep : core.
|
||||
Local Hint Resolve step_cstep : core.
|
||||
|
||||
Lemma step0_step : forall v c v' c',
|
||||
step0 (v, c) (v', c')
|
||||
|
@ -1172,7 +1173,7 @@ Module Concurrent.
|
|||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step0_step : core.
|
||||
Local Hint Resolve step0_step : core.
|
||||
|
||||
Lemma cstep_step' : forall C c0 c,
|
||||
plug C c0 c
|
||||
|
@ -1185,7 +1186,7 @@ Module Concurrent.
|
|||
end; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve cstep_step' : core.
|
||||
Local Hint Resolve cstep_step' : core.
|
||||
|
||||
Theorem cstep_step : forall v c v' c',
|
||||
cstep (v, c) (v', c')
|
||||
|
|
|
@ -360,7 +360,7 @@ Qed.
|
|||
(* Automated proofs used here, if only to save time in class.
|
||||
* See book code for more manual proofs, too. *)
|
||||
|
||||
Hint Constructors trc step eval : core.
|
||||
Local Hint Constructors trc step eval : core.
|
||||
|
||||
Theorem big_small : forall v c v', eval v c v'
|
||||
-> step^* (v, c) (v', Skip).
|
||||
|
@ -430,8 +430,8 @@ Proof.
|
|||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Constructors isEven : core.
|
||||
Hint Resolve isEven_minus2 isEven_plus : core.
|
||||
Local Hint Constructors isEven : core.
|
||||
Local Hint Resolve isEven_minus2 isEven_plus : core.
|
||||
|
||||
Definition my_loop :=
|
||||
while "n" loop
|
||||
|
@ -581,7 +581,7 @@ Inductive cstep : valuation * cmd -> valuation * cmd -> Prop :=
|
|||
|
||||
(* We can prove equivalence between the two formulations. *)
|
||||
|
||||
Hint Constructors plug step0 cstep : core.
|
||||
Local Hint Constructors plug step0 cstep : core.
|
||||
|
||||
Theorem step_cstep : forall v c v' c',
|
||||
step (v, c) (v', c')
|
||||
|
@ -710,7 +710,7 @@ Definition prog :=
|
|||
|| ("b" <- "n";;
|
||||
"n" <- "b" + 1).
|
||||
|
||||
Hint Constructors plug step0 cstep : core.
|
||||
Local Hint Constructors plug step0 cstep : core.
|
||||
|
||||
(* The naive "expected" answer is attainable. *)
|
||||
Theorem correctAnswer : forall n, exists v, cstep^* ($0 $+ ("n", n), prog) (v, Skip)
|
||||
|
|
Loading…
Reference in a new issue