mirror of
https://github.com/achlipala/frap.git
synced 2025-01-08 17:14:14 +00:00
Start of splitting evaluation contexts out of LambdaCalculusAndTypeSoundness
This commit is contained in:
parent
26c272f53f
commit
5cdd4d1322
4 changed files with 480 additions and 193 deletions
219
EvaluationContexts.v
Normal file
219
EvaluationContexts.v
Normal file
|
@ -0,0 +1,219 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 12: More on Evaluation Contexts
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
|
||||
Module Stlc.
|
||||
Inductive exp : Set :=
|
||||
| Var (x : var)
|
||||
| Const (n : nat)
|
||||
| Plus (e1 e2 : exp)
|
||||
| Abs (x : var) (e1 : exp)
|
||||
| App (e1 e2 : exp).
|
||||
|
||||
Inductive value : exp -> Prop :=
|
||||
| VConst : forall n, value (Const n)
|
||||
| VAbs : forall x e1, value (Abs x e1).
|
||||
|
||||
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
||||
match e2 with
|
||||
| Var y => if y ==v x then e1 else Var y
|
||||
| Const n => Const n
|
||||
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
|
||||
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
|
||||
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
||||
end.
|
||||
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
| Plus2 : exp -> context -> context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e, plug Hole e e
|
||||
| PlugPlus1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (Plus1 C e2) e (Plus e' e2)
|
||||
| PlugPlus2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (Plus2 v1 C) e (Plus v1 e')
|
||||
| PlugApp1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (App1 C e2) e (App e' e2)
|
||||
| PlugApp2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (App2 v1 C) e (App v1 e').
|
||||
|
||||
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
|
||||
|
||||
(* First: the primitive reductions *)
|
||||
Inductive step0 : exp -> exp -> Prop :=
|
||||
| Beta : forall x e v,
|
||||
value v
|
||||
-> step0 (App (Abs x e) v) (subst v x e)
|
||||
| Add : forall n1 n2,
|
||||
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
|
||||
|
||||
(* Then: running them in context *)
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| StepRule : forall C e1 e2 e1' e2',
|
||||
plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step0 e1 e2
|
||||
-> step e1' e2'.
|
||||
|
||||
(* It's easy to wrap everything as a transition system. *)
|
||||
Definition trsys_of (e : exp) := {|
|
||||
Initial := {e};
|
||||
Step := step
|
||||
|}.
|
||||
|
||||
|
||||
(* Typing details are the same as last chapter. *)
|
||||
Inductive type :=
|
||||
| Nat (* Numbers *)
|
||||
| Fun (dom ran : type) (* Functions *).
|
||||
|
||||
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
||||
| HtVar : forall G x t,
|
||||
G $? x = Some t
|
||||
-> hasty G (Var x) t
|
||||
| HtConst : forall G n,
|
||||
hasty G (Const n) Nat
|
||||
| HtPlus : forall G e1 e2,
|
||||
hasty G e1 Nat
|
||||
-> hasty G e2 Nat
|
||||
-> hasty G (Plus e1 e2) Nat
|
||||
| HtAbs : forall G x e1 t1 t2,
|
||||
hasty (G $+ (x, t1)) e1 t2
|
||||
-> hasty G (Abs x e1) (Fun t1 t2)
|
||||
| HtApp : forall G e1 e2 t1 t2,
|
||||
hasty G e1 (Fun t1 t2)
|
||||
-> hasty G e2 t1
|
||||
-> hasty G (App e1 e2) t2.
|
||||
|
||||
Local Hint Constructors value plug step0 step hasty : core.
|
||||
|
||||
Infix "-->" := Fun (at level 60, right associativity).
|
||||
Coercion Const : nat >-> exp.
|
||||
Infix "^+^" := Plus (at level 50).
|
||||
Coercion Var : var >-> exp.
|
||||
Notation "\ x , e" := (Abs x e) (at level 51).
|
||||
Infix "@" := App (at level 49, left associativity).
|
||||
|
||||
(** * Now we adapt the automated proof of type soundness. *)
|
||||
|
||||
Ltac t0 := match goal with
|
||||
| [ H : ex _ |- _ ] => invert H
|
||||
| [ H : _ /\ _ |- _ ] => invert H
|
||||
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
|
||||
| [ H : Some _ = Some _ |- _ ] => invert H
|
||||
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
| [ H : step0 _ _ |- _ ] => invert1 H
|
||||
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
|
||||
| [ H : hasty _ _ _ |- _ ] => invert1 H
|
||||
| [ H : plug _ _ _ |- _ ] => invert1 H
|
||||
end; subst.
|
||||
|
||||
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
|
||||
|
||||
Lemma progress : forall e t,
|
||||
hasty $0 e t
|
||||
-> value e
|
||||
\/ (exists e' : exp, step e e').
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
||||
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
||||
-> G' $+ (x, t) $? x' = Some t').
|
||||
Proof.
|
||||
simplify.
|
||||
cases (x ==v x'); simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve weakening_override : core.
|
||||
|
||||
Lemma weakening : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
||||
-> hasty G' e t.
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve weakening : core.
|
||||
|
||||
(* Replacing a typing context with an equal one has no effect (useful to guide
|
||||
* proof search as a hint). *)
|
||||
Lemma hasty_change : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', G' = G
|
||||
-> hasty G' e t.
|
||||
Proof.
|
||||
t.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve hasty_change : core.
|
||||
|
||||
Lemma substitution : forall G x t' e t e',
|
||||
hasty (G $+ (x, t')) e t
|
||||
-> hasty $0 e' t'
|
||||
-> hasty G (subst e' x e) t.
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve substitution : core.
|
||||
|
||||
Lemma preservation0 : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; t.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve preservation0 : core.
|
||||
|
||||
Lemma generalize_plug : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve generalize_plug : core.
|
||||
|
||||
Lemma preservation : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; t.
|
||||
Qed.
|
||||
|
||||
Local Hint Resolve progress preservation : core.
|
||||
|
||||
Theorem safety : forall e t, hasty $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun e' => value e'
|
||||
\/ exists e'', step e' e'').
|
||||
Proof.
|
||||
simplify.
|
||||
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
||||
apply invariant_induction; simplify; eauto; equality.
|
||||
Qed.
|
||||
End Stlc.
|
|
@ -54,7 +54,7 @@ Module Ulc.
|
|||
| Value : forall x e, value (Abs x e).
|
||||
(* We're cheating a bit here, *assuming* that the term is also closed. *)
|
||||
|
||||
Hint Constructors eval value.
|
||||
Local Hint Constructors eval value : core.
|
||||
|
||||
(* Every value executes to itself. *)
|
||||
Theorem value_eval : forall v,
|
||||
|
@ -64,7 +64,7 @@ Module Ulc.
|
|||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve value_eval.
|
||||
Local Hint Resolve value_eval : core.
|
||||
|
||||
(* Conversely, let's prove that [eval] only produces values. *)
|
||||
Theorem eval_value : forall e v,
|
||||
|
@ -74,7 +74,7 @@ Module Ulc.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve eval_value.
|
||||
Local Hint Resolve eval_value : core.
|
||||
|
||||
(* Some notations, to let us write more normal-looking lambda terms *)
|
||||
Coercion Var : var >-> exp.
|
||||
|
@ -343,7 +343,7 @@ Module Ulc.
|
|||
-> plug c (subst v x e) e2
|
||||
-> step e1 e2.
|
||||
|
||||
Hint Constructors plug step.
|
||||
Local Hint Constructors plug step : core.
|
||||
|
||||
(* Here we now go through a proof of equivalence between big- and small-step
|
||||
* semantics, though we won't spend any further commentary on it. *)
|
||||
|
@ -360,7 +360,7 @@ Module Ulc.
|
|||
invert H0; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_eval''.
|
||||
Local Hint Resolve step_eval'' : core.
|
||||
|
||||
Lemma step_eval' : forall e1 e2,
|
||||
step e1 e2
|
||||
|
@ -370,7 +370,7 @@ Module Ulc.
|
|||
invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_eval'.
|
||||
Local Hint Resolve step_eval' : core.
|
||||
|
||||
Theorem step_eval : forall e v,
|
||||
step^* e v
|
||||
|
@ -413,7 +413,7 @@ Module Ulc.
|
|||
induct 2; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve compose_ok.
|
||||
Local Hint Resolve compose_ok : core.
|
||||
|
||||
Lemma step_plug : forall e1 e2,
|
||||
step e1 e2
|
||||
|
@ -448,7 +448,7 @@ Module Ulc.
|
|||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Resolve stepStar_plug eval_value.
|
||||
Local Hint Resolve stepStar_plug eval_value : core.
|
||||
|
||||
Theorem eval_step : forall e v,
|
||||
eval e v
|
||||
|
@ -494,49 +494,33 @@ Module Stlc.
|
|||
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
||||
end.
|
||||
|
||||
(* Evaluation contexts; note that we added cases for [Plus]. *)
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
| Plus2 : exp -> context -> context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
(* Small-step, call-by-value evaluation *)
|
||||
|
||||
(* Plugging an expression into a context *)
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e, plug Hole e e
|
||||
| PlugPlus1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (Plus1 C e2) e (Plus e' e2)
|
||||
| PlugPlus2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (Plus2 v1 C) e (Plus v1 e')
|
||||
| PlugApp1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (App1 C e2) e (App e' e2)
|
||||
| PlugApp2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (App2 v1 C) e (App v1 e').
|
||||
|
||||
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
|
||||
|
||||
(* First: the primitive reductions *)
|
||||
Inductive step0 : exp -> exp -> Prop :=
|
||||
| Beta : forall x e v,
|
||||
value v
|
||||
-> step0 (App (Abs x e) v) (subst v x e)
|
||||
| Add : forall n1 n2,
|
||||
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
|
||||
|
||||
(* Then: running them in context *)
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| StepRule : forall C e1 e2 e1' e2',
|
||||
plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step0 e1 e2
|
||||
-> step e1' e2'.
|
||||
(* These rules show the real action of the semantics. *)
|
||||
| Beta : forall x e v,
|
||||
value v
|
||||
-> step (App (Abs x e) v) (subst v x e)
|
||||
| Add : forall n1 n2,
|
||||
step (Plus (Const n1) (Const n2)) (Const (n1 + n2))
|
||||
(* Then we have a bunch of bureaucratic, repetitive rules encoding evaluation
|
||||
* order. See next lecture for how to streamline this part, but for now note
|
||||
* that the [value] premises below are crucial to enforce a single order of
|
||||
* evaluation. *)
|
||||
| App1 : forall e1 e1' e2,
|
||||
step e1 e1'
|
||||
-> step (App e1 e2) (App e1' e2)
|
||||
| App2 : forall v e2 e2',
|
||||
value v
|
||||
-> step e2 e2'
|
||||
-> step (App v e2) (App v e2')
|
||||
| Plus1 : forall e1 e1' e2,
|
||||
step e1 e1'
|
||||
-> step (Plus e1 e2) (Plus e1' e2)
|
||||
| Plus2 : forall v e2 e2',
|
||||
value v
|
||||
-> step e2 e2'
|
||||
-> step (Plus v e2) (Plus v e2').
|
||||
|
||||
(* It's easy to wrap everything as a transition system. *)
|
||||
Definition trsys_of (e : exp) := {|
|
||||
|
@ -573,7 +557,7 @@ Module Stlc.
|
|||
-> hasty G e2 t1
|
||||
-> hasty G (App e1 e2) t2.
|
||||
|
||||
Hint Constructors value plug step0 step hasty.
|
||||
Local Hint Constructors value step hasty : core.
|
||||
|
||||
(* Some notation to make it more pleasant to write programs *)
|
||||
Infix "-->" := Fun (at level 60, right associativity).
|
||||
|
@ -640,40 +624,31 @@ Module Stlc.
|
|||
| [ H1 : value e2, H2 : hasty $0 e2 _ |- _ ] => invert H1; invert H2
|
||||
end.
|
||||
exists (Const (n + n0)).
|
||||
eapply StepRule with (C := Hole).
|
||||
eauto.
|
||||
eauto.
|
||||
constructor.
|
||||
|
||||
match goal with
|
||||
| [ H : exists x, _ |- _ ] => invert H
|
||||
end.
|
||||
match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
end.
|
||||
right.
|
||||
eauto.
|
||||
exists (x ^+^ e2).
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
match goal with
|
||||
| [ H : exists x, _ |- _ ] => invert H
|
||||
end.
|
||||
match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
end.
|
||||
right.
|
||||
eauto.
|
||||
exists (e1 ^+^ x).
|
||||
apply Plus2.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
match goal with
|
||||
| [ H : exists x, step e1 _ |- _ ] => invert H
|
||||
end.
|
||||
match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
| [ H : exists x, _ |- _ ] => invert H
|
||||
end.
|
||||
right.
|
||||
exists (Plus x e2).
|
||||
eapply StepRule with (C := Plus1 C e2).
|
||||
eauto.
|
||||
eauto.
|
||||
exists (x ^+^ e2).
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
left.
|
||||
|
@ -686,41 +661,33 @@ Module Stlc.
|
|||
| [ H1 : value e1, H2 : hasty $0 e1 _ |- _ ] => invert H1; invert H2
|
||||
end.
|
||||
exists (subst e2 x e0).
|
||||
eapply StepRule with (C := Hole).
|
||||
eauto.
|
||||
eauto.
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
match goal with
|
||||
| [ H : exists x, _ |- _ ] => invert H
|
||||
end.
|
||||
match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
end.
|
||||
right.
|
||||
eauto.
|
||||
exists (x @ e2).
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
match goal with
|
||||
| [ H : exists x, _ |- _ ] => invert H
|
||||
end.
|
||||
match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
end.
|
||||
right.
|
||||
eauto.
|
||||
exists (e1 @ x).
|
||||
constructor.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
match goal with
|
||||
| [ H : exists x, step e1 _ |- _ ] => invert H
|
||||
end.
|
||||
match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
end.
|
||||
right.
|
||||
exists (App x e2).
|
||||
eapply StepRule with (C := App1 C e2).
|
||||
eauto.
|
||||
eauto.
|
||||
constructor.
|
||||
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
@ -819,92 +786,45 @@ Module Stlc.
|
|||
eapply IHhasty2; equality.
|
||||
Qed.
|
||||
|
||||
(* We're almost ready for the other main property. Let's prove it first
|
||||
* for the more basic [step0] relation: steps preserve typing. *)
|
||||
Lemma preservation0 : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; simplify.
|
||||
|
||||
invert H.
|
||||
invert H4.
|
||||
eapply substitution.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H.
|
||||
constructor.
|
||||
Qed.
|
||||
|
||||
(* We also need this key property, essentially saying that, if [e1] and [e2] are
|
||||
* "type-equivalent," then they remain "type-equivalent" after wrapping the same
|
||||
* context around both. *)
|
||||
Lemma generalize_plug : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
invert H.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
invert H2.
|
||||
constructor.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
constructor.
|
||||
assumption.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
invert H2.
|
||||
econstructor.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
econstructor.
|
||||
eassumption.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
Qed.
|
||||
|
||||
(* OK, now we're almost done. Full steps really do preserve typing! *)
|
||||
Lemma preservation : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; simplify.
|
||||
induct 1; simplify.
|
||||
|
||||
eapply generalize_plug with (e1' := e1).
|
||||
eassumption.
|
||||
eassumption.
|
||||
simplify.
|
||||
eapply preservation0.
|
||||
invert H0.
|
||||
invert H4.
|
||||
eapply substitution.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H.
|
||||
constructor.
|
||||
|
||||
invert H0.
|
||||
econstructor.
|
||||
apply IHstep.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
econstructor.
|
||||
eassumption.
|
||||
apply IHstep.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
constructor.
|
||||
apply IHstep.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
constructor.
|
||||
assumption.
|
||||
apply IHstep.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
@ -946,11 +866,9 @@ Module Stlc.
|
|||
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
|
||||
| [ H : Some _ = Some _ |- _ ] => invert H
|
||||
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
| [ H : step0 _ _ |- _ ] => invert1 H
|
||||
| [ H : step _ _ |- _ ] => invert1 H
|
||||
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
|
||||
| [ H : hasty _ _ _ |- _ ] => invert1 H
|
||||
| [ H : plug _ _ _ |- _ ] => invert1 H
|
||||
end; subst.
|
||||
|
||||
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
|
||||
|
@ -963,7 +881,7 @@ Module Stlc.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve weakening_override.
|
||||
Local Hint Resolve weakening_override : core.
|
||||
|
||||
Lemma weakening_snazzy : forall G e t,
|
||||
hasty G e t
|
||||
|
@ -973,7 +891,7 @@ Module Stlc.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve weakening_snazzy.
|
||||
Local Hint Resolve weakening_snazzy : core.
|
||||
|
||||
(* Replacing a typing context with an equal one has no effect (useful to guide
|
||||
* proof search as a hint). *)
|
||||
|
@ -985,7 +903,7 @@ Module Stlc.
|
|||
t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve hasty_change.
|
||||
Local Hint Resolve hasty_change : core.
|
||||
|
||||
Lemma substitution_snazzy : forall G x t' e t e',
|
||||
hasty (G $+ (x, t')) e t
|
||||
|
@ -995,38 +913,17 @@ Module Stlc.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve substitution_snazzy.
|
||||
|
||||
Lemma preservation0_snazzy : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve preservation0_snazzy.
|
||||
|
||||
Lemma generalize_plug_snazzy : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve generalize_plug_snazzy.
|
||||
Local Hint Resolve substitution_snazzy : core.
|
||||
|
||||
Lemma preservation_snazzy : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; t.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve progress_snazzy preservation_snazzy.
|
||||
Local Hint Resolve progress_snazzy preservation_snazzy : core.
|
||||
|
||||
Theorem safety_snazzy : forall e t, hasty $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
|
|
|
@ -41,6 +41,7 @@ SubsetTypes_template.v
|
|||
SubsetTypes.v
|
||||
LambdaCalculusAndTypeSoundness_template.v
|
||||
LambdaCalculusAndTypeSoundness.v
|
||||
EvaluationContexts.v
|
||||
DependentInductiveTypes_template.v
|
||||
DependentInductiveTypes.v
|
||||
TypesAndMutation.v
|
||||
|
|
170
frap_book.tex
170
frap_book.tex
|
@ -3281,6 +3281,176 @@ Since the basic proof structure matches our standard one, the main insight is th
|
|||
In this case, invariant $I(e) = \; \hasty{}{e}{\tau}$ is that crucial insight, including the original design of the set of types and the typing relation.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\chapter{More on Evaluation Contexts}\label{ectx}
|
||||
|
||||
\section{Small-Step Semantics}
|
||||
|
||||
$\lambda$-calculus is also straightforward to formalize with a small-step semantics\index{small-step operational semantics} and evaluation contexts\index{evaluation contexts}, following the method of Section \ref{eval_contexts}.
|
||||
One might argue that the technique is even simpler for $\lambda$-calculus, since we must deal only with expressions, not also imperative variable valuations.
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Evaluation contexts} & C &::=& \Box \mid C \; e \mid v \; C
|
||||
\end{array}$$
|
||||
Note the one subtlety: the last form of evaluation context requires the term in a function position to be a \emph{value}.
|
||||
This innocuous-looking restriction enforces \emph{call-by-value evaluation order}\index{call-by-value}, where, upon encountering a function application, we must first evaluate the function, then evaluate the argument, and only then call the function.
|
||||
Tweaks to the definition of $C$ produce other evaluation orders, like \emph{call-by-name}\index{call-by-name}, but we will say no more about those alternatives.
|
||||
|
||||
We assume a standard definition of what it means to plug an expression into the hole in a context, and now we can give the sole small-step evaluation rule for basic $\lambda$-calculus, conventionally called the \emph{$\beta$-reduction} rule\index{$\beta$-reduction}.
|
||||
\encoding
|
||||
$$\infer{\smallstep{\plug{C}{(\lambda x. \; e) \; v}}{\plug{C}{\subst{e}{x}{v}}}}{}$$
|
||||
That is, we find a suitable position within the expression where a $\lambda$-expression is applied to a value, and we replace that position with the appropriate substitution result.
|
||||
|
||||
Following a very similar outline to what we used in Chapter \ref{operational_semantics}, we establish equivalence between the two semantics for $\lambda$-calculus.
|
||||
|
||||
\begin{theorem}
|
||||
If $\smallsteps{e}{v}$, then $\bigstep{e}{v}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}
|
||||
If $\bigstep{e}{v}$, then $\smallsteps{e}{v}$.
|
||||
\end{theorem}
|
||||
|
||||
There are a few proof subtleties beyond what we encountered before, and the Coq formalization may be worth reading, to see those details.
|
||||
|
||||
Again as before, we have a natural way to build a transition system from any $\lambda$-term $e$, where $\mathcal L$ is the set of $\lambda$-terms.
|
||||
We define $\mathbb T(e) = \angled{\mathcal L, \{e\}, \to}$.
|
||||
The next section gives probably the most celebrated $\lambda$-calculus result based on the transition-system perspective.
|
||||
|
||||
|
||||
\section{Simple Types and Their Soundness}
|
||||
|
||||
Let's spruce up the language with some more constructs.
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Variables} & x &\in& \mathsf{Strings} \\
|
||||
\textrm{Numbers} & n &\in& \mathbb N \\
|
||||
\textrm{Expressions} & e &::=& n \mid e + e \mid x \mid \lambda x. \; e \mid e \; e \\
|
||||
\textrm{Values} & v &::=& n \mid \lambda x. \; e
|
||||
\end{array}$$
|
||||
We've added natural numbers as a primitive feature, supported via constants and addition.
|
||||
Numbers may be intermixed with functions, and we may, for instance, write first-class functions that take numbers as input or return numbers.
|
||||
|
||||
Our language of evaluation contexts expands a bit.
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Evaluation contexts} & C &::=& \Box \mid C \; e \mid v \; C \mid C + e \mid v + C
|
||||
\end{array}$$
|
||||
|
||||
Now we want to define two kinds of basic small steps, so it is worth defining a separate relation for them.
|
||||
Here we face a classic nuisance in writing rules that combine explicit syntax with standard mathematical operators, and we write $+$ for the syntactic construct and $\textbf{+}$ for the mathematical addition operator.
|
||||
$$\infer{\smallstepo{(\lambda x. \; e) \; v}{\subst{e}{x}{v}}}{}
|
||||
\quad \infer{\smallstepo{n + m}{n \textbf{+} m}}{}$$
|
||||
|
||||
Here is the overall step rule.
|
||||
$$\infer{\smallstep{\plug{C}{e}}{\plug{C}{e'}}}{
|
||||
\smallstepo{e}{e'}
|
||||
}$$
|
||||
|
||||
What would be a useful property to prove about our new expressions?
|
||||
For one thing, we don't want them to ``crash,'' as in the expression $(\lambda x. \; x) + 7$ that tries to add a function and a number.
|
||||
No rule of the semantics knows what to do with that case, but it also isn't a value, so we shouldn't consider it as finished with evaluation.
|
||||
Define an expression as \emph{stuck}\index{stuck term} when it is not a value and it cannot take a small step.
|
||||
For ``reasonable'' expressions $e$, we should be able to prove that it is an invariant of $\mathbb T(e)$ that no expression is ever stuck.
|
||||
|
||||
To define ``reasonable,'' we formalize the popular idea of a static type system.
|
||||
Every expression will be assigned a type, capturing which sorts of contexts it may legally be dropped into.
|
||||
Our language of types is simple.
|
||||
\abstraction
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Types} & \tau &::=& \mathbb N \mid \tau \to \tau
|
||||
\end{array}$$
|
||||
We have trees of function-space constructors, where all the leaves are instances of the natural-number type $\mathbb N$.
|
||||
Note that, with type assignment, we have yet another case of \emph{abstraction}, approximating a potentially complex expression with a type that only records enough information to rule out crashes.
|
||||
|
||||
To assign types to closed terms, we must recursively define what it means for an open term to have a type.
|
||||
To that end, we use \emph{typing contexts}\index{typing context} $\Gamma$, finite maps from variables to types.
|
||||
To mimic standard notation, we write $\Gamma, x : \tau$ as shorthand for $\mupd{\Gamma}{x}{\tau}$, overriding of key $x$ with value $\tau$ in $\Gamma$.
|
||||
Now we define typing as a three-place relation, written $\hasty{\Gamma}{e}{\tau}$, to indicate that, assuming $\Gamma$ as an assignment of types to $e$'s free variables, we conclude that $e$ has type $\tau$.
|
||||
|
||||
We define the relation inductively, with one case per syntactic construct.
|
||||
\modularity
|
||||
$$\infer{\hasty{\Gamma}{x}{\tau}}{
|
||||
\msel{\Gamma}{x} = \tau
|
||||
}
|
||||
\quad \infer{\hasty{\Gamma}{n}{\mathbb N}}{}
|
||||
\quad \infer{\hasty{\Gamma}{e_1 + e_2}{\mathbb N}}{
|
||||
\hasty{\Gamma}{e_1}{\mathbb N}
|
||||
& \hasty{\Gamma}{e_2}{\mathbb N}
|
||||
}$$
|
||||
$$\infer{\hasty{\Gamma}{\lambda x. \; e}{\tau_1 \to \tau_2}}{
|
||||
\hasty{\Gamma, x : \tau_1}{e}{\tau_2}
|
||||
}
|
||||
\quad \infer{\hasty{\Gamma}{e_1 \; e_2}{\tau_2}}{
|
||||
\hasty{\Gamma}{e_1}{\tau_1 \to \tau_2}
|
||||
& \hasty{\Gamma}{e_2}{\tau_1}
|
||||
}$$
|
||||
|
||||
We write $\hasty{}{e}{\tau}$ as shorthand for $\hasty{\mempty}{e}{\tau}$, meaning that closed term $e$ has type $\tau$, with no typing context required.
|
||||
Note that this style of typing rules provides another instance of \emph{modularity}, since we can separately type-check different subexpressions of a large expression, using just their types to coordinate expectations among subexpressions.
|
||||
|
||||
It should be an invariant of $\mathbb T(e)$ that every reachable expression has the same type as the original, so long as the original was well-typed.
|
||||
This observation is the key to proving that it is also an invariant that no reachable expression is stuck, using a proof technique called \emph{the syntactic approach to type soundness}\index{syntactic approach to type soundness}, which turns out to be just another instance of our general toolbox for invariant proofs.
|
||||
|
||||
We work our way through a suite of standard lemmas to support that invariant proof.
|
||||
|
||||
\begin{lemma}[Progress]\label{progress}
|
||||
If $\hasty{}{e}{\tau}$, then $e$ isn't stuck.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By induction on the derivation of $\hasty{}{e}{\tau}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[Weakening]\label{weakening}
|
||||
If $\hasty{\Gamma}{e}{\tau}$ and every mapping in $\Gamma$ is also included in $\Gamma'$, then $\hasty{\Gamma'}{e}{\tau}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By induction on the derivation of $\hasty{\Gamma}{e}{\tau}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[Substitution]\label{substitution}
|
||||
If $\hasty{\Gamma, x : \tau'}{e}{\tau}$ and $\hasty{}{e'}{\tau'}$, then $\hasty{\Gamma}{\subst{e}{x}{e'}}{\tau}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By induction on the derivation of $\hasty{\Gamma, x: \tau'}{e}{\tau}$, with appeal to Lemma \ref{weakening}.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}\label{preservation0}
|
||||
If $\smallstepo{e}{e'}$ and $\hasty{}{e}{\tau}$, then $\hasty{}{e'}{\tau}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By inversion on the derivation of $\smallstepo{e}{e'}$, with appeal to Lemma \ref{substitution}.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}\label{generalize_plug}
|
||||
If any type of $e_1$ is also a type of $e_2$, then any type of $\plug{C}{e_1}$ is also a type of $\plug{C}{e_2}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By induction on the structure of $C$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}[Preservation]\label{preservation}
|
||||
If $\smallstep{e_1}{e_2}$ and $\hasty{}{e_1}{\tau}$, then $\hasty{}{e_2}{\tau}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By inversion on the derivation of $\smallstep{e_1}{e_2}$, with appeal to Lemmas \ref{preservation0} and \ref{generalize_plug}.
|
||||
\end{proof}
|
||||
|
||||
\invariants
|
||||
\begin{theorem}[Type Soundness]
|
||||
If $\hasty{}{e}{\tau}$, then $\neg \textrm{stuck}$ is an invariant of $\mathbb T(e)$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
First, we strengthen the invariant to $I(e) = \; \hasty{}{e}{\tau}$, justifying the implication by Lemma \ref{progress}, Progress.
|
||||
Then we apply invariant induction, where the base case is trivial.
|
||||
The induction step is a direct match for Lemma \ref{preservation}, Preservation.
|
||||
\end{proof}
|
||||
|
||||
The syntactic approach to type soundness is often presented as a proof technique in isolation, but what we see here is that it follows very directly from our general invariant proof technique.
|
||||
Usually syntactic type soundness is presented as fundamentally about proving Progress and Preservation conditions.
|
||||
The Progress condition maps to invariant strengthening, and the Preservation condition maps to invariant induction, which we have used in almost every invariant proof so far.
|
||||
Since the basic proof structure matches our standard one, the main insight is the usual one: a good choice of a strengthened invariant.
|
||||
In this case, invariant $I(e) = \; \hasty{}{e}{\tau}$ is that crucial insight, including the original design of the set of types and the typing relation.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\chapter{Types and Mutation}
|
||||
|
|
Loading…
Reference in a new issue