SeparationLogic: example verifications

This commit is contained in:
Adam Chlipala 2016-04-17 21:49:48 -04:00
parent ef310e2b1e
commit 63be3681c8

View file

@ -207,6 +207,45 @@ Module Sep(Import S : SEP).
apply himp_heq in H0; intuition eauto.
Qed.
Instance exis_imp_morphism (A : Type) :
Proper (pointwise_relation A himp ==> himp) (@exis A).
Proof.
hnf; intros.
apply exis_left; intro.
eapply exis_right.
unfold pointwise_relation in H.
eauto.
Qed.
Lemma star_combine_lift1 : forall P Q, [| P |] * [| Q |] ===> [| P /\ Q |].
Proof.
intros.
apply lift_left; intro.
rewrite extra_lift with (P := True); auto.
apply lift_left; intro.
rewrite extra_lift with (P := True) (p := [| P /\ Q |]); auto.
apply lift_right.
tauto.
reflexivity.
Qed.
Lemma star_combine_lift2 : forall P Q, [| P /\ Q |] ===> [| P |] * [| Q |].
Proof.
intros.
rewrite extra_lift with (P := True); auto.
apply lift_left; intro.
apply lift_right; try tauto.
rewrite extra_lift with (P := True) (p := [| P |]); auto.
apply lift_right; try tauto.
reflexivity.
Qed.
Lemma star_combine_lift : forall P Q, [| P |] * [| Q |] === [| P /\ Q |].
Proof.
intros.
apply himp_heq; auto using star_combine_lift1, star_combine_lift2.
Qed.
Lemma star_comm_lift : forall P q, [| P |] * q === q * [| P |].
Proof.
intros; apply star_comm.
@ -262,6 +301,7 @@ Module Sep(Import S : SEP).
setoid_rewrite exis_gulp
|| setoid_rewrite lift_combine
|| setoid_rewrite star_assoc
|| setoid_rewrite star_combine_lift
|| setoid_rewrite star_comm_lift
|| setoid_rewrite star_assoc_lift
|| setoid_rewrite star_comm_exis.
@ -269,7 +309,7 @@ Module Sep(Import S : SEP).
Ltac normalizeL :=
(apply exis_left || apply lift_left; intro; try congruence)
|| match goal with
| [ |- [?P] ===> _ ] =>
| [ |- lift ?P ===> _ ] =>
match P with
| True => fail 1
| _ => apply lift1_left; intro; try congruence
@ -277,14 +317,15 @@ Module Sep(Import S : SEP).
end.
Ltac normalizeR :=
eapply exis_right || apply lift_right
|| match goal with
| [ |- _ ===> [?Q] ] =>
match Q with
| True => fail 1
| _ => apply lift1_right
end
end.
match goal with
| [ |- _ ===> exis _ ] => eapply exis_right
| [ |- _ ===> _ * lift _ ] => apply lift_right
| [ |- _ ===> lift ?Q ] =>
match Q with
| True => fail 1
| _ => apply lift1_right
end
end.
Ltac normalize1 := normalize0 || normalizeL || normalizeR.
@ -308,13 +349,13 @@ Module Sep(Import S : SEP).
| [ H : ex _ |- _ ===> _ ] => destruct H
| [ H : _ /\ _ |- _ ] => destruct H
| [ H : _ = _ |- _ ] => rewrite H
end; subst; subst rhs.
end; subst rhs.
Ltac normalize :=
simpl; intros; repeat normalize1; repeat normalize2;
repeat (match goal with
| [ H : ex _ |- _ ===> _ ] => destruct H
end; intuition subst); subst.
end; intuition idtac).
Ltac forAllAtoms p k :=
match p with
@ -353,10 +394,121 @@ Module Sep(Import S : SEP).
| _ => progress autorewrite with core
end.
Ltac cancel := normalize; repeat cancel1;
Ltac hide_evars :=
repeat match goal with
| [ |- ?P ===> _ ] => is_evar P; set P
| [ |- _ ===> ?Q ] => is_evar Q; set Q
| [ |- context[star ?P _] ] => is_evar P; set P
| [ |- context[star _ ?Q] ] => is_evar Q; set Q
| [ |- _ ===> (exists v, _ * ?R v) ] => is_evar R; set R
end.
Ltac restore_evars :=
repeat match goal with
| [ x := _ |- _ ] => subst x
end.
Fixpoint flattenAnds (Ps : list Prop) : Prop :=
match Ps with
| nil => True
| [P] => P
| P :: Ps => P /\ flattenAnds Ps
end.
Ltac allPuresFrom k :=
match goal with
| [ H : ?P |- _ ] =>
match type of P with
| Prop => generalize dependent H; allPuresFrom ltac:(fun Ps => k (P :: Ps))
end
| _ => intros; k (@nil Prop)
end.
Ltac whichToQuantify skip foundAlready k :=
match goal with
| [ x : ?T |- _ ] =>
match type of T with
| Prop => fail 1
| _ =>
match skip with
| context[x] => fail 1
| _ =>
match foundAlready with
| context[x] => fail 1
| _ => (instantiate (1 := lift (x = x)); fail 2)
|| (instantiate (1 := fun _ => lift (x = x)); fail 2)
|| (whichToQuantify skip (x, foundAlready) k)
end
end
end
| _ => k foundAlready
end.
Ltac quantifyOverThem vars e k :=
match vars with
| tt => k e
| (?x, ?vars') =>
match e with
| context[x] =>
match eval pattern x in e with
| ?f _ => quantifyOverThem vars' (exis f) k
end
| _ => quantifyOverThem vars' e k
end
end.
Ltac addQuantifiers P k :=
whichToQuantify tt tt ltac:(fun vars =>
quantifyOverThem vars P k).
Ltac addQuantifiersSkipping x P k :=
whichToQuantify x tt ltac:(fun vars =>
quantifyOverThem vars P k).
Ltac basic_cancel :=
normalize; repeat cancel1; intuition eassumption.
Ltac cancel := hide_evars; normalize; repeat cancel1; restore_evars;
repeat match goal with
| [ H : True |- _ ] => clear H
end;
try match goal with
| [ |- _ ===> _ ] => intuition (try congruence)
end.
| [ |- ?P ===> _ ] => sendToBack P;
match goal with
| [ |- ?P ===> ?Q * ?P ] => is_evar Q;
rewrite (star_comm Q P);
allPuresFrom ltac:(fun Ps =>
match Ps with
| nil => instantiate (1 := lift True)
| _ =>
let Ps' := eval simpl in (flattenAnds Ps) in
addQuantifiers (lift Ps') ltac:(fun e => instantiate (1 := e))
end;
basic_cancel)
end
| [ |- ?P ===> ?Q ] => is_evar Q;
allPuresFrom ltac:(fun Ps =>
match Ps with
| nil => reflexivity
| _ =>
let Ps' := eval simpl in (flattenAnds Ps) in
addQuantifiers (star P (lift Ps')) ltac:(fun e => instantiate (1 := e));
basic_cancel
end)
| [ |- ?P ===> ?Q ?x ] => is_evar Q;
allPuresFrom ltac:(fun Ps =>
match Ps with
| nil => reflexivity
| _ =>
let Ps' := eval simpl in (flattenAnds Ps) in
addQuantifiersSkipping x (star P (lift Ps'))
ltac:(fun e => match eval pattern x in e with
| ?f _ => instantiate (1 := f)
end);
basic_cancel
end)
| [ |- _ ===> _ ] => intuition (try congruence)
end; intuition (try eassumption).
End Sep.
@ -535,24 +687,24 @@ Fixpoint zeroes (n : nat) : list nat :=
(** * Finally, the Hoare logic *)
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
Inductive hoare_triple : forall {result}, assertion -> cmd result -> (result -> assertion) -> Prop :=
(* First, four basic rules that look exactly the same as before *)
| HtReturn : forall P {result : Set} (v : result),
hoare_triple P (Return v) (fun r h => P h /\ r = v)
hoare_triple P (Return v) (fun r => P * [| r = v |])%sep
| HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R,
hoare_triple P c1 Q
-> (forall r, hoare_triple (Q r) (c2 r) R)
-> hoare_triple P (Bind c1 c2) R
| HtLoop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) I,
(forall acc, hoare_triple (I (Again acc)) (body acc) I)
-> hoare_triple (I (Again init)) (Loop init body) (fun r h => I (Done r) h)
-> hoare_triple (I (Again init)) (Loop init body) (fun r => I (Done r))
| HtFail : forall {result},
hoare_triple (fun _ => False) (Fail (result := result)) (fun _ _ => False)
| HtRead : forall a v,
hoare_triple (a |-> v)%sep (Read a) (fun r => a |-> v * [| r = v |])%sep
| HtWrite : forall a v',
hoare_triple (exists v, a |-> v)%sep (Write a v') (fun _ => a |-> v')%sep
| HtRead : forall a R,
hoare_triple (exists v, a |-> v * R v)%sep (Read a) (fun r => a |-> r * R r)%sep
| HtWrite : forall a v v',
hoare_triple (a |-> v)%sep (Write a v') (fun _ => a |-> v')%sep
| HtAlloc : forall numWords,
hoare_triple emp%sep (Alloc numWords) (fun r => r |--> zeroes numWords)%sep
| HtFree : forall a numWords,
@ -567,12 +719,13 @@ Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result ->
hoare_triple P c Q
-> hoare_triple (P * R)%sep c (fun r => Q r * R)%sep.
Notation "{{ P }} c {{ r ~> Q }}" :=
(hoare_triple P%sep c (fun r => Q%sep)) (at level 90, c at next level).
Lemma HtStrengthen : forall {result} (c : cmd result) P Q (Q' : _ -> assertion),
hoare_triple P c Q
-> (forall r h, Q r h -> Q' r h)
-> (forall r, Q r ===> Q' r)
-> hoare_triple P c Q'.
Proof.
simplify.
@ -582,7 +735,7 @@ Qed.
Lemma HtWeaken : forall {result} (c : cmd result) P Q (P' : assertion),
hoare_triple P c Q
-> (forall h, P' h -> P h)
-> P' ===> P
-> hoare_triple P' c Q.
Proof.
simplify.
@ -596,11 +749,16 @@ Lemma invert_Return : forall {result : Set} (r : result) P Q,
Proof.
induct 1; propositional; eauto.
exists h, $0; propositional; eauto.
unfold lift; propositional.
unfold himp in *; eauto.
unfold star, himp in *; simp; eauto 7.
Qed.
Hint Constructors hoare_triple.
Lemma invert_Bind : forall {result' result} (c1 : cmd result') (c2 : result' -> cmd result) P Q,
hoare_triple P (Bind c1 c2) Q
-> exists R, hoare_triple P c1 R
@ -624,8 +782,6 @@ Proof.
eapply HtFrame; eauto.
Qed.
Hint Constructors hoare_triple.
Lemma invert_Loop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) P Q,
hoare_triple P (Loop init body) Q
-> exists I, (forall acc, hoare_triple (I (Again acc)) (body acc) I)
@ -671,12 +827,12 @@ Qed.
Lemma invert_Read : forall a P Q,
hoare_triple P (Read a) Q
-> exists v R, (P ===> a |-> v * R)%sep
/\ a |-> v * R ===> Q v.
-> exists R, (P ===> exists v, a |-> v * R v)%sep
/\ forall r, a |-> r * R r ===> Q r.
Proof.
induct 1; simp; eauto.
exists v, emp; simp.
exists R; simp.
cancel; auto.
cancel; auto.
@ -686,9 +842,11 @@ Proof.
eauto 7 using himp_trans.
exists x, (x0 * R)%sep; simp.
exists (fun n => x n * R)%sep; simp.
rewrite H1.
cancel.
rewrite <- H2.
cancel.
Qed.
@ -932,6 +1090,17 @@ Proof.
assumption.
Qed.
Lemma HtReturn' : forall P {result : Set} (v : result) Q,
P ===> Q v
-> hoare_triple P (Return v) Q.
Proof.
simp.
eapply HtStrengthen.
constructor.
simp.
cancel.
Qed.
(* Temporarily transparent again! *)
Transparent heq himp lift star exis ptsto.
@ -955,24 +1124,21 @@ Proof.
assumption.
simp.
cases r.
apply HtReturn'.
unfold himp; simp; eauto.
eapply HtStrengthen.
eauto.
simp; eauto.
eapply HtStrengthen.
eauto.
simp; eauto.
unfold himp; simp; eauto.
apply invert_Read in H0; simp.
eapply HtStrengthen.
econstructor.
simp.
assert ((a |-> x * x0)%sep h') by auto.
unfold star in H0; simp.
apply HtReturn'.
assert ((exists v, a |-> v * x v)%sep h') by auto.
unfold exis, star in H1; simp.
unfold ptsto in H4; subst.
unfold split in H3; subst.
unfold split in H1; subst.
unfold heap1 in H.
rewrite lookup_join1 in H by (simp; sets).
simp.
unfold himp; simp.
invert H.
apply H2.
unfold star.
@ -981,8 +1147,7 @@ Proof.
unfold ptsto; reflexivity.
apply invert_Write in H0; simp.
eapply HtStrengthen.
econstructor.
apply HtReturn'.
simp.
assert (((exists v : nat, a |-> v) * x)%sep h) by auto.
unfold star in H1; simp.
@ -991,7 +1156,7 @@ Proof.
unfold split in H3; subst.
unfold heap1 in H.
rewrite lookup_join1 in H by (simp; sets).
simp.
unfold himp; simp.
invert H.
apply H2.
unfold star.
@ -1011,18 +1176,16 @@ Proof.
unfold ptsto; reflexivity.
apply invert_Alloc with (r := a) in H0.
eapply HtStrengthen.
econstructor.
simp.
apply HtReturn'.
unfold himp; simp.
eapply himp_trans in H0; try apply zeroes_initialize.
auto.
assumption.
apply invert_Free in H.
assert (((exists vs : list nat, a |--> vs * [|Datatypes.length vs = numWords|]) * Q tt)%sep h) by auto.
eapply HtStrengthen.
econstructor.
simp.
apply HtReturn'.
unfold himp; simp.
eapply do_deallocate.
eauto.
Qed.
@ -1071,9 +1234,16 @@ Proof.
| [ H : forall _ h1 _, _ -> _ -> ?P h1 -> _, H' : ?P _ |- _ ] => eapply H in H'; clear H; try eassumption; simp
end; eauto.
right; exists h, (Return v).
invert H1.
right; exists h, (Return x0).
constructor.
unfold split, ptsto, heap1 in *; simp.
unfold star in H2; simp.
unfold split in H; simp.
rewrite lookup_join1; simp.
rewrite lookup_join1; simp.
sets.
eapply lookup_Some_dom.
rewrite lookup_join1; simp.
sets.
@ -1166,3 +1336,415 @@ Proof.
assert (exists bound, forall a, a >= bound -> fst s $? a = None) by eauto.
cases s; simp; eauto.
Qed.
(* Fancy theorem to help us rewrite within preconditions and postconditions *)
Instance hoare_triple_morphism : forall A,
Proper (heq ==> eq ==> (eq ==> heq) ==> iff) (@hoare_triple A).
Proof.
Transparent himp.
repeat (hnf; intros).
unfold pointwise_relation in *; intuition subst.
eapply HtConsequence; eauto.
rewrite H; reflexivity.
intros.
hnf in H1.
specialize (H1 r _ eq_refl).
rewrite H1; reflexivity.
eapply HtConsequence; eauto.
rewrite H; reflexivity.
intros.
hnf in H1.
specialize (H1 r _ eq_refl).
rewrite H1; reflexivity.
Qed.
(** * Examples *)
Opaque heq himp lift star exis ptsto.
Theorem use_lemma : forall result P' (c : cmd result) (Q : result -> assertion) P R,
hoare_triple P' c Q
-> P ===> P' * R
-> hoare_triple P c (fun r => Q r * R)%sep.
Proof.
simp.
eapply HtWeaken.
eapply HtFrame.
eassumption.
eauto.
Qed.
Theorem HtRead' : forall a v,
hoare_triple (a |-> v)%sep (Read a) (fun r => a |-> v * [| r = v |])%sep.
Proof.
simp.
apply HtWeaken with (exists r, a |-> r * [| r = v |])%sep.
eapply HtStrengthen.
apply HtRead.
simp.
cancel; auto.
subst; cancel.
cancel; auto.
Qed.
Theorem HtRead'' : forall p P R,
P ===> (exists v, p |-> v * R v)
-> hoare_triple P (Read p) (fun r => p |-> r * R r)%sep.
Proof.
simp.
eapply HtWeaken.
apply HtRead.
assumption.
Qed.
Ltac basic := apply HtReturn' || eapply HtRead' || eapply HtWrite || eapply HtAlloc
|| (eapply HtRead''; solve [ cancel ]).
Ltac step0 := basic || eapply HtBind || (eapply use_lemma; [ basic | cancel; auto ])
|| (eapply HtStrengthen; [ eapply use_lemma; [ basic | cancel; auto ] | ])
|| (eapply HtConsequence; [ apply HtFail | .. ]).
Ltac step := step0; simp.
Ltac ht := simp; repeat step.
Ltac conseq := simplify; eapply HtConsequence.
Ltac use_IH H := conseq; [ apply H | .. ]; ht.
Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ])
|| (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]).
Ltac loop_inv Inv := loop_inv0 Inv; ht.
Ltac use H := (eapply use_lemma; [ eapply H | cancel; auto ])
|| (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel; auto ] | ]).
Ltac heq := intros; apply himp_heq; split.
(** ** Swapping with two pointers *)
Definition swap p q :=
tmpp <- Read p;
tmpq <- Read q;
_ <- Write p tmpq;
Write q tmpp.
Theorem swap_ok : forall p q a b,
{{p |-> a * q |-> b}}
swap p q
{{_ ~> p |-> b * q |-> a}}.
Proof.
unfold swap.
simp.
step.
step.
simp.
step.
step.
simp.
step.
step.
simp.
step.
cancel.
subst.
cancel.
Qed.
Opaque swap.
Definition rotate p q r :=
_ <- swap p q;
swap q r.
Theorem rotate_ok : forall p q r a b c,
{{p |-> a * q |-> b * r |-> c}}
rotate p q r
{{_ ~> p |-> b * q |-> c * r |-> a}}.
Proof.
unfold rotate.
simp.
step.
use swap_ok.
simp.
use swap_ok.
simp.
cancel.
Qed.
Opaque rotate.
(** ** Initializing a fresh object *)
Definition init :=
p <- Alloc 2;
_ <- Write p 7;
_ <- Write (p+1) 8;
Return p.
Theorem init_ok :
{{emp}}
init
{{p ~> p |--> [7; 8]}}.
Proof.
unfold init.
simp.
step.
step.
simp.
step.
step.
simp.
step.
step.
simp.
step.
cancel.
Qed.
Opaque init.
Theorem ultra_combo_ok :
{{emp}}
p <- init;
_ <- swap p (p+1);
Return p
{{p ~> p |--> [8; 7]}}.
Proof.
step.
use init_ok.
simp.
step.
use swap_ok.
simp.
step.
cancel.
Qed.
(** ** In-place reversal of a singly linked list *)
(* Let's give a recursive definition of how a linked list should be laid out in
* memory. *)
Fixpoint linkedList (p : nat) (ls : list nat) :=
match ls with
| nil => [| p = 0 |]
(* An empty list is associated with a null pointer and no memory
* contents. *)
| x :: ls' => [| p <> 0 |]
* exists p', p |-> x * (p+1) |-> p' * linkedList p' ls'
(* A nonempty list is associated with a nonnull pointer and a two-cell
* struct, which points to a further list. *)
end%sep.
(* The definition of [linkedList] is recursive in the list. Let's also prove
* lemmas for simplifying [linkedList] invocations based on values of [p]. *)
Theorem linkedList_null : forall ls,
linkedList 0 ls === [| ls = nil |].
Proof.
heq; destruct ls; cancel.
Qed.
Theorem linkedList_nonnull : forall p ls,
p <> 0
-> linkedList p ls === exists x ls' p', [| ls = x :: ls' |] * p |-> x * (p+1) |-> p' * linkedList p' ls'.
Proof.
heq; destruct ls; cancel.
invert H0; cancel.
Qed.
Hint Rewrite <- rev_alt.
Hint Rewrite rev_involutive.
(* Let's hide the definition of [linkedList], so that we *only* reason about it
* via the two lemmas we just proved. *)
Opaque linkedList.
Definition reverse p :=
pr <- for pr := (p, 0) loop
let (p, r) := pr in
if p ==n 0 then
Return (Done pr)
else
tmp <- Read (p + 1);
_ <- Write (p+1) r;
Return (Again (tmp, p))
done;
Return (snd pr).
Definition valueOf {A} (o : loop_outcome A) :=
match o with
| Done v => v
| Again v => v
end.
Opaque himp.
(* Finally, it's correct. *)
Theorem reverse_ok : forall p ls,
{{linkedList p ls}}
reverse p
{{r ~> linkedList r (rev ls)}}.
Proof.
unfold reverse.
simp.
step.
loop_inv (fun o => exists ls1 ls2, [| ls = rev_append ls1 ls2 |]
* linkedList (fst (valueOf o)) ls2
* linkedList (snd (valueOf o)) ls1
* [| match o with
| Done (p, _) => p = 0
| _ => True
end |])%sep.
cases (a ==n 0); simp.
step.
cancel.
step.
setoid_rewrite (linkedList_nonnull _ n).
step.
simp.
step.
step.
simp.
step.
setoid_rewrite (linkedList_nonnull _ n).
cancel.
simp.
setoid_rewrite linkedList_null.
cancel.
equality.
simp.
step.
cancel.
simp.
setoid_rewrite linkedList_null.
cancel.
simp.
cancel.
Qed.
Opaque reverse.
(* ** Calling [reverse] twice, to illustrate the *frame rule* *)
Theorem reverse_two_ok : forall p1 ls1 p2 ls2,
{{linkedList p1 ls1 * linkedList p2 ls2}}
p1 <- reverse p1;
p2 <- reverse p2;
Return (p1, p2)
{{ps ~> linkedList (fst ps) (rev ls1) * linkedList (snd ps) (rev ls2)}}.
Proof.
simp.
step.
use reverse_ok.
simp.
step.
use reverse_ok.
simp.
step.
cancel.
Qed.
(* ** Computing the length of a linked list *)
(* To state a good loop invariant, it will be helpful to define
* *list segments* that end with some pointer beside null. *)
Fixpoint linkedListSegment (p : nat) (ls : list nat) (q : nat) :=
match ls with
| nil => [| p = q |]
| x :: ls' => [| p <> 0 |] * exists p', p |-> x * (p+1) |-> p' * linkedListSegment p' ls' q
end%sep.
(* Next, two [linkedListSegment] lemmas analogous to those for [linkedList]
* above *)
Lemma linkedListSegment_empty : forall p ls,
linkedList p ls ===> linkedList p ls * linkedListSegment p nil p.
Proof.
cancel.
Qed.
Lemma linkedListSegment_append : forall q r x ls p,
q <> 0
-> linkedListSegment p ls q * q |-> x * (q+1) |-> r ===> linkedListSegment p (ls ++ x :: nil) r.
Proof.
induction ls; cancel; auto.
subst; cancel.
rewrite <- IHls; cancel; auto.
Qed.
(* One more [linkedList] lemma will be helpful. We'll re-reveal the predicate's
* definition to prove the lemma. *)
Transparent linkedList.
Lemma linkedListSegment_null : forall ls p,
linkedListSegment p ls 0 ===> linkedList p ls.
Proof.
induction ls; cancel; auto.
Qed.
Opaque linkedList linkedListSegment.
Hint Rewrite <- app_assoc.
Hint Rewrite app_length app_nil_r.
Lemma move_along : forall A (ls : list A) x2 x1 x0 x,
ls = x2 ++ x1
-> x1 = x0 :: x
-> ls = (x2 ++ [x0]) ++ x.
Proof.
simp.
Qed.
Hint Resolve move_along.
(* Finally, this code is correct. *)
Theorem length_ok : forall p ls,
{{linkedList p ls}}
q_len <- for q_len := (p, 0) loop
let (q, len) := q_len in
if q ==n 0 then
Return (Done q_len)
else
tmp <- Read (q + 1);
Return (Again (tmp, len+1))
done;
Return (snd q_len)
{{len ~> linkedList p ls * [| len = length ls |]}}.
Proof.
simp.
step.
loop_inv (fun o => exists ls1 ls2, [| ls = ls1 ++ ls2 |]
* linkedListSegment p ls1 (fst (valueOf o))
* linkedList (fst (valueOf o)) ls2
* [| snd (valueOf o) = length ls1 |]
* [| match o with
| Done (q, _) => q = 0 /\ ls2 = nil
| _ => True
end |])%sep.
cases (a ==n 0); simp.
step.
setoid_rewrite linkedList_null.
cancel.
step.
setoid_rewrite (linkedList_nonnull _ n).
step.
simp.
step.
cancel.
eauto.
simp.
setoid_rewrite <- linkedListSegment_append.
cancel.
auto.
rewrite linkedListSegment_empty.
cancel.
simp.
step.
cancel.
simp.
simp.
rewrite linkedListSegment_null.
rewrite linkedList_null.
cancel.
Qed.