mirror of
https://github.com/achlipala/frap.git
synced 2024-11-27 23:06:20 +00:00
Turn off some warnings
This commit is contained in:
parent
19d915fb37
commit
64fe989cdb
4 changed files with 75 additions and 64 deletions
|
@ -3,6 +3,8 @@
|
|||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Set Warnings "-notation-overridden". (* <-- needed while we play with defining one
|
||||
* of the book's notations ourselves locally *)
|
||||
Require Import Frap TransitionSystems.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
|
|
@ -3,6 +3,8 @@
|
|||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Set Warnings "-notation-overridden". (* <-- needed while we play with defining one
|
||||
* of the book's notations ourselves locally *)
|
||||
Require Import Frap TransitionSystems.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
@ -175,28 +177,64 @@ Qed.
|
|||
Theorem factorial_ok_2 :
|
||||
invariantFor (factorial_sys 2) (fact_correct 2).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
|
||||
apply multiStepClosure_ok.
|
||||
simplify.
|
||||
rewrite fact_init_is.
|
||||
|
||||
eapply MscStep.
|
||||
apply oneStepClosure_split.
|
||||
simplify.
|
||||
invert H.
|
||||
simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_empty.
|
||||
simplify.
|
||||
|
||||
eapply MscStep.
|
||||
apply oneStepClosure_split.
|
||||
simplify.
|
||||
invert H.
|
||||
simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split.
|
||||
simplify.
|
||||
invert H.
|
||||
simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_empty.
|
||||
simplify.
|
||||
|
||||
eapply MscStep.
|
||||
apply oneStepClosure_split.
|
||||
simplify.
|
||||
invert H.
|
||||
simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split.
|
||||
simplify.
|
||||
invert H.
|
||||
simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split.
|
||||
simplify.
|
||||
invert H.
|
||||
simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_empty.
|
||||
simplify.
|
||||
|
||||
apply MscDone.
|
||||
apply prove_oneStepClosure; simplify.
|
||||
assumption.
|
||||
propositional; subst; invert H0; simplify; propositional.
|
||||
|
||||
simplify.
|
||||
unfold fact_correct.
|
||||
propositional; subst; trivial.
|
||||
Qed.
|
||||
|
||||
(* BEGIN CODE THAT WILL NOT BE EXPLAINED IN DETAIL! *)
|
||||
|
||||
|
@ -404,25 +442,10 @@ Proof.
|
|||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem add2_ok :
|
||||
(*Theorem add2_ok :
|
||||
invariantFor add2_sys add2_correct.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Admitted.*)
|
||||
|
||||
Inductive add2_bthread :=
|
||||
| BRead
|
||||
|
@ -488,7 +511,7 @@ Qed.
|
|||
Hint Rewrite add2_init_is.
|
||||
|
||||
(* Now, let's verify the original system. *)
|
||||
(*Theorem add2_ok :
|
||||
Theorem add2_ok :
|
||||
invariantFor add2_sys add2_correct.
|
||||
Proof.
|
||||
(* First step: strengthen the invariant. We leave an underscore for the
|
||||
|
@ -597,7 +620,7 @@ Proof.
|
|||
|
||||
invert H1.
|
||||
propositional.
|
||||
Qed.*)
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Another abstraction example *)
|
||||
|
@ -1373,35 +1396,17 @@ Qed.
|
|||
Theorem twoadd2_ok :
|
||||
invariantFor (parallel twoadd_sys twoadd_sys) (twoadd_correct (private := _)).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
eapply invariant_weaken.
|
||||
eapply invariant_simulates.
|
||||
apply withInterference_abstracts.
|
||||
apply withInterference_parallel.
|
||||
apply twoadd_ok.
|
||||
apply twoadd_ok.
|
||||
|
||||
unfold twoadd_correct.
|
||||
invert 1.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* In fact, this modularity technique is so powerful that we now get correctness
|
||||
* for any number of threads, "for free"! Here's a tactic definition, which we
|
||||
|
|
|
@ -85,6 +85,8 @@ Proof.
|
|||
Qed.
|
||||
|
||||
(* Transitive-reflexive closure is so common that it deserves a shorthand notation! *)
|
||||
Set Warnings "-notation-overridden". (* <-- needed while we play with defining one
|
||||
* of the book's notations ourselves locally *)
|
||||
Notation "R ^*" := (trc R) (at level 0).
|
||||
|
||||
(* Now let's use it to execute the factorial program. *)
|
||||
|
|
|
@ -50,6 +50,8 @@ Inductive trc {A} (R : A -> A -> Prop) : A -> A -> Prop :=
|
|||
-> trc R x z.
|
||||
|
||||
(* Transitive-reflexive closure is so common that it deserves a shorthand notation! *)
|
||||
Set Warnings "-notation-overridden". (* <-- needed while we play with defining one
|
||||
* of the book's notations ourselves locally *)
|
||||
Notation "R ^*" := (trc R) (at level 0).
|
||||
|
||||
(* Now let's use it to execute the factorial program. *)
|
||||
|
|
Loading…
Reference in a new issue