mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Tweak model-checking library support
This commit is contained in:
parent
d677f255c4
commit
65c56a7a2e
2 changed files with 71 additions and 4 deletions
12
Frap.v
12
Frap.v
|
@ -96,8 +96,11 @@ Ltac first_order := firstorder idtac.
|
|||
Ltac model_check_done :=
|
||||
apply MscDone; apply prove_oneStepClosure; simplify; propositional; subst;
|
||||
repeat match goal with
|
||||
| [ H : _ |- _ ] => invert H
|
||||
end; simplify; equality.
|
||||
| [ H : ?P |- _ ] =>
|
||||
match type of P with
|
||||
| Prop => invert H; simplify
|
||||
end
|
||||
end; equality.
|
||||
|
||||
Ltac singletoner :=
|
||||
repeat match goal with
|
||||
|
@ -110,7 +113,10 @@ Ltac model_check_step :=
|
|||
repeat (apply oneStepClosure_empty
|
||||
|| (apply oneStepClosure_split; [ simplify;
|
||||
repeat match goal with
|
||||
| [ H : _ |- _ ] => invert H; simplify; try congruence
|
||||
| [ H : ?P |- _ ] =>
|
||||
match type of P with
|
||||
| Prop => invert H; simplify; try congruence
|
||||
end
|
||||
end; solve [ singletoner ] | ]))
|
||||
| simplify ].
|
||||
|
||||
|
|
63
ModelCheck.v
63
ModelCheck.v
|
@ -1,4 +1,7 @@
|
|||
Require Import Invariant Sets.
|
||||
Require Import Invariant Relations Sets.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
|
||||
Definition oneStepClosure_current {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop) :=
|
||||
|
@ -95,3 +98,61 @@ Theorem singleton_in_other : forall {A} (x : A) (s1 s2 : set A),
|
|||
Proof.
|
||||
unfold union; simpl; auto.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Abstraction *)
|
||||
|
||||
Inductive simulates state1 state2 (R : state1 -> state2 -> Prop)
|
||||
(sys1 : trsys state1) (sys2 : trsys state2) : Prop :=
|
||||
| Simulates :
|
||||
(forall st1, sys1.(Initial) st1
|
||||
-> exists st2, R st1 st2
|
||||
/\ sys2.(Initial) st2)
|
||||
-> (forall st1 st2, R st1 st2
|
||||
-> forall st1', sys1.(Step) st1 st1'
|
||||
-> exists st2', R st1' st2'
|
||||
/\ sys2.(Step) st2 st2')
|
||||
-> simulates R sys1 sys2.
|
||||
|
||||
Inductive invariantViaSimulation state1 state2 (R : state1 -> state2 -> Prop)
|
||||
(inv2 : state2 -> Prop)
|
||||
: state1 -> Prop :=
|
||||
| InvariantViaSimulation : forall st1 st2, R st1 st2
|
||||
-> inv2 st2
|
||||
-> invariantViaSimulation R inv2 st1.
|
||||
|
||||
Lemma invariant_simulates' : forall state1 state2 (R : state1 -> state2 -> Prop)
|
||||
(sys1 : trsys state1) (sys2 : trsys state2),
|
||||
(forall st1 st2, R st1 st2
|
||||
-> forall st1', sys1.(Step) st1 st1'
|
||||
-> exists st2', R st1' st2'
|
||||
/\ sys2.(Step) st2 st2')
|
||||
-> forall st1 st1', sys1.(Step)^* st1 st1'
|
||||
-> forall st2, R st1 st2
|
||||
-> exists st2', R st1' st2'
|
||||
/\ sys2.(Step)^* st2 st2'.
|
||||
Proof.
|
||||
induction 2; simpl; intuition eauto.
|
||||
|
||||
eapply H in H2.
|
||||
firstorder.
|
||||
apply IHtrc in H2.
|
||||
firstorder; eauto.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Local Hint Constructors invariantViaSimulation.
|
||||
|
||||
Theorem invariant_simulates : forall state1 state2 (R : state1 -> state2 -> Prop)
|
||||
(sys1 : trsys state1) (sys2 : trsys state2) (inv2 : state2 -> Prop),
|
||||
simulates R sys1 sys2
|
||||
-> invariantFor sys2 inv2
|
||||
-> invariantFor sys1 (invariantViaSimulation R inv2).
|
||||
Proof.
|
||||
inversion_clear 1; intros.
|
||||
unfold invariantFor; intros.
|
||||
apply H0 in H2.
|
||||
firstorder.
|
||||
apply invariant_simulates' with (sys2 := sys2) (R := R) (st2 := x) in H3; auto.
|
||||
firstorder; eauto.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue